library("wooldridge")
## Warning: package 'wooldridge' was built under R version 4.2.3
data <- wooldridge::barium
head(data)
##     chnimp   bchlimp befile6 affile6 afdec6 befile12 affile12 afdec12 chempi
## 1 220.4620  9578.376       0       0      0        0        0       0  100.1
## 2  94.7980 11219.480       0       0      0        0        0       0  100.9
## 3 219.3575  9719.900       0       0      0        0        0       0  101.1
## 4 317.4215 12920.950       0       0      0        0        0       0  102.5
## 5 114.6390  9790.446       0       0      0        0        0       0  104.1
## 6 129.5240 11020.470       0       0      0        0        0       0  104.8
##          gas rtwex spr sum fall  lchnimp     lgas   lrtwex  lchempi t feb mar
## 1 7830000128 86.74   0   0    0 5.395725 22.78123 4.462915 4.606170 1   1   0
## 2 8819999744 85.63   1   0    0 4.551748 22.90029 4.450036 4.614130 2   0   1
## 3 8449999872 85.42   1   0    0 5.390703 22.85743 4.447580 4.616110 3   0   0
## 4 9240000512 87.29   1   0    0 5.760231 22.94681 4.469236 4.629863 4   0   0
## 5 9150000128 86.60   0   1    0 4.741788 22.93702 4.461300 4.645352 5   0   0
## 6 9520000000 84.63   0   1    0 4.863866 22.97666 4.438289 4.652054 6   0   0
##   apr may jun jul aug sep oct nov dec   percchn
## 1   0   0   0   0   0   0   0   0   0 2.3016636
## 2   0   0   0   0   0   0   0   0   0 0.8449411
## 3   1   0   0   0   0   0   0   0   0 2.2567875
## 4   0   1   0   0   0   0   0   0   0 2.4566422
## 5   0   0   1   0   0   0   0   0   0 1.1709272
## 6   0   0   0   1   0   0   0   0   0 1.1753038
Question i).
model1 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 , data = data)
a <- summary(model1)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.03356 -0.39080  0.03048  0.40248  1.51719 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.80300   21.04537  -0.846   0.3992    
## lchempi       3.11719    0.47920   6.505 1.72e-09 ***
## lgas          0.19635    0.90662   0.217   0.8289    
## lrtwex        0.98302    0.40015   2.457   0.0154 *  
## befile6       0.05957    0.26097   0.228   0.8198    
## affile6      -0.03241    0.26430  -0.123   0.9026    
## afdec6       -0.56524    0.28584  -1.978   0.0502 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5974 on 124 degrees of freedom
## Multiple R-squared:  0.3049, Adjusted R-squared:  0.2712 
## F-statistic: 9.064 on 6 and 124 DF,  p-value: 3.255e-08
The coefficient is statistically significant at the 5% level. So, only Irtwex is a significant variable. The P-value of Irtwex is 0.0154, which is lower than 0.05.
Question ii).
library(car)
## Warning: package 'car' was built under R version 4.2.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.2.3
hypothesis <- c("lchempi = 0", "lgas = 0", "lrtwex = 0", "befile6 = 0", "affile6 = 0", "afdec6 = 0" )
joint_test <- linearHypothesis(model1, hypothesis)
summary(joint_test)
##      Res.Df           RSS              Df      Sum of Sq           F        
##  Min.   :124.0   Min.   :44.25   Min.   :6   Min.   :19.41   Min.   :9.064  
##  1st Qu.:125.5   1st Qu.:49.10   1st Qu.:6   1st Qu.:19.41   1st Qu.:9.064  
##  Median :127.0   Median :53.95   Median :6   Median :19.41   Median :9.064  
##  Mean   :127.0   Mean   :53.95   Mean   :6   Mean   :19.41   Mean   :9.064  
##  3rd Qu.:128.5   3rd Qu.:58.80   3rd Qu.:6   3rd Qu.:19.41   3rd Qu.:9.064  
##  Max.   :130.0   Max.   :63.65   Max.   :6   Max.   :19.41   Max.   :9.064  
##                                  NA's   :1   NA's   :1       NA's   :1      
##      Pr(>F) 
##  Min.   :0  
##  1st Qu.:0  
##  Median :0  
##  Mean   :0  
##  3rd Qu.:0  
##  Max.   :0  
##  NA's   :1
model2 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + feb, data = data)
a <- summary(model2)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + feb, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0925 -0.4083  0.0486  0.4098  1.4965 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.44114   26.10573  -0.094   0.9257    
## lchempi      3.17909    0.48325   6.579 1.22e-09 ***
## lgas        -0.46115    1.12207  -0.411   0.6818    
## lrtwex       0.85124    0.42154   2.019   0.0456 *  
## befile6      0.05365    0.26105   0.206   0.8375    
## affile6     -0.01615    0.26481  -0.061   0.9515    
## afdec6      -0.55090    0.28621  -1.925   0.0566 .  
## feb         -0.23360    0.23487  -0.995   0.3219    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5974 on 123 degrees of freedom
## Multiple R-squared:  0.3104, Adjusted R-squared:  0.2712 
## F-statistic: 7.909 on 7 and 123 DF,  p-value: 6.655e-08
model3 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + mar, data = data)
a <- summary(model3)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + mar, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.00269 -0.42926  0.04595  0.41132  1.53769 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -21.28305   21.18542  -1.005   0.3171    
## lchempi       3.12401    0.47819   6.533 1.53e-09 ***
## lgas          0.33658    0.91165   0.369   0.7126    
## lrtwex        1.03134    0.40117   2.571   0.0113 *  
## befile6       0.07263    0.26061   0.279   0.7809    
## affile6      -0.05681    0.26445  -0.215   0.8303    
## afdec6       -0.59262    0.28606  -2.072   0.0404 *  
## mar           0.23715    0.19089   1.242   0.2165    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.596 on 123 degrees of freedom
## Multiple R-squared:  0.3135, Adjusted R-squared:  0.2744 
## F-statistic: 8.023 on 7 and 123 DF,  p-value: 5.178e-08
model4 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + apr, data = data)
a <- summary(model4)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + apr, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.08025 -0.40966  0.07476  0.36168  1.49712 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -10.599485  21.343575  -0.497   0.6203    
## lchempi       3.139957   0.476042   6.596 1.12e-09 ***
## lgas         -0.100653   0.917866  -0.110   0.9129    
## lrtwex        0.874347   0.402705   2.171   0.0318 *  
## befile6       0.105149   0.260591   0.404   0.6873    
## affile6       0.007588   0.263549   0.029   0.9771    
## afdec6       -0.519064   0.285192  -1.820   0.0712 .  
## apr          -0.320090   0.192801  -1.660   0.0994 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5932 on 123 degrees of freedom
## Multiple R-squared:  0.3201, Adjusted R-squared:  0.2814 
## F-statistic: 8.273 on 7 and 123 DF,  p-value: 2.998e-08
model5 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + may, data = data)
a <- summary(model5)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + may, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.02561 -0.37818  0.03768  0.40558  1.40003 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -16.50456   21.17616  -0.779   0.4372    
## lchempi       3.13182    0.48071   6.515 1.67e-09 ***
## lgas          0.13936    0.91239   0.153   0.8789    
## lrtwex        0.96626    0.40177   2.405   0.0177 *  
## befile6       0.05183    0.26178   0.198   0.8434    
## affile6      -0.02004    0.26548  -0.075   0.9400    
## afdec6       -0.55254    0.28705  -1.925   0.0566 .  
## may           0.13033    0.19072   0.683   0.4957    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5986 on 123 degrees of freedom
## Multiple R-squared:  0.3075, Adjusted R-squared:  0.2681 
## F-statistic: 7.802 on 7 and 123 DF,  p-value: 8.436e-08
model6 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + jun, data = data)
a <- summary(model6)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + jun, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0413 -0.3769  0.0439  0.4090  1.5031 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -18.98250   21.15475  -0.897   0.3713    
## lchempi       3.10448    0.48052   6.461 2.19e-09 ***
## lgas          0.24643    0.91125   0.270   0.7873    
## lrtwex        1.00641    0.40234   2.501   0.0137 *  
## befile6       0.06628    0.26168   0.253   0.8005    
## affile6      -0.04698    0.26564  -0.177   0.8599    
## afdec6       -0.58134    0.28733  -2.023   0.0452 *  
## jun          -0.13426    0.19070  -0.704   0.4828    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5986 on 123 degrees of freedom
## Multiple R-squared:  0.3077, Adjusted R-squared:  0.2683 
## F-statistic: 7.808 on 7 and 123 DF,  p-value: 8.327e-08
model7 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + jul, data = data)
a <- summary(model7)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + jul, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.03322 -0.38904  0.03496  0.40244  1.52179 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -16.44296   21.86520  -0.752   0.4535    
## lchempi       3.12445    0.48197   6.483 1.97e-09 ***
## lgas          0.13822    0.94145   0.147   0.8835    
## lrtwex        0.96781    0.40660   2.380   0.0188 *  
## befile6       0.05772    0.26208   0.220   0.8260    
## affile6      -0.02776    0.26601  -0.104   0.9171    
## afdec6       -0.56031    0.28765  -1.948   0.0537 .  
## jul           0.04753    0.19702   0.241   0.8098    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5996 on 123 degrees of freedom
## Multiple R-squared:  0.3052, Adjusted R-squared:  0.2656 
## F-statistic: 7.718 on 7 and 123 DF,  p-value: 1.016e-07
model8 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + aug, data = data)
a <- summary(model8)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + aug, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.03442 -0.39070  0.01653  0.41046  1.50470 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -21.59195   21.75833  -0.992   0.3230    
## lchempi       3.10478    0.48049   6.462 2.18e-09 ***
## lgas          0.35617    0.93616   0.380   0.7043    
## lrtwex        1.02793    0.40597   2.532   0.0126 *  
## befile6       0.06497    0.26161   0.248   0.8043    
## affile6      -0.04661    0.26559  -0.175   0.8610    
## afdec6       -0.58087    0.28726  -2.022   0.0453 *  
## aug          -0.13862    0.19608  -0.707   0.4809    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5986 on 123 degrees of freedom
## Multiple R-squared:  0.3077, Adjusted R-squared:  0.2683 
## F-statistic: 7.809 on 7 and 123 DF,  p-value: 8.311e-08
model9 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + sep, data = data)
a <- summary(model9)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + sep, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.03532 -0.39353  0.02849  0.40243  1.51520 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.76454   21.13180  -0.841   0.4022    
## lchempi       3.11976    0.48157   6.478 2.01e-09 ***
## lgas          0.19372    0.91049   0.213   0.8319    
## lrtwex        0.98550    0.40226   2.450   0.0157 *  
## befile6       0.06096    0.26226   0.232   0.8166    
## affile6      -0.03518    0.26632  -0.132   0.8951    
## afdec6       -0.56851    0.28821  -1.973   0.0508 .  
## sep          -0.02335    0.19075  -0.122   0.9028    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5997 on 123 degrees of freedom
## Multiple R-squared:  0.3049, Adjusted R-squared:  0.2654 
## F-statistic: 7.709 on 7 and 123 DF,  p-value: 1.036e-07
model10 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + oct, data = data)
a <- summary(model10)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + oct, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.01971 -0.38506  0.03717  0.40946  1.53496 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.800833  21.059325  -0.845   0.3996    
## lchempi       3.106504   0.479662   6.476 2.03e-09 ***
## lgas          0.202730   0.907245   0.223   0.8236    
## lrtwex        0.958200   0.401338   2.388   0.0185 *  
## befile6       0.080986   0.262191   0.309   0.7579    
## affile6      -0.009493   0.265658  -0.036   0.9716    
## afdec6       -0.538373   0.287531  -1.872   0.0635 .  
## oct           0.173983   0.190314   0.914   0.3624    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5977 on 123 degrees of freedom
## Multiple R-squared:  0.3096, Adjusted R-squared:  0.2703 
## F-statistic: 7.878 on 7 and 123 DF,  p-value: 7.135e-08
model11 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + nov, data = data)
a <- summary(model11)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + nov, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.90564 -0.34762  0.04643  0.38502  1.50778 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -18.06552   21.07956  -0.857   0.3931    
## lchempi       3.12449    0.48001   6.509 1.72e-09 ***
## lgas          0.20928    0.90812   0.230   0.8181    
## lrtwex        0.97072    0.40105   2.420   0.0170 *  
## befile6       0.05047    0.26161   0.193   0.8474    
## affile6      -0.01587    0.26551  -0.060   0.9524    
## afdec6       -0.54680    0.28721  -1.904   0.0593 .  
## nov          -0.15061    0.18997  -0.793   0.4294    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5983 on 123 degrees of freedom
## Multiple R-squared:  0.3084, Adjusted R-squared:  0.269 
## F-statistic: 7.835 on 7 and 123 DF,  p-value: 7.839e-08
model12 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + dec, data = data)
a <- summary(model12)
a
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + dec, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.02927 -0.39735  0.04348  0.40190  1.52884 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -11.93762   21.72657  -0.549   0.5837    
## lchempi       3.13171    0.47909   6.537  1.5e-09 ***
## lgas         -0.06033    0.93690  -0.064   0.9488    
## lrtwex        0.96522    0.40024   2.412   0.0174 *  
## befile6       0.07460    0.26118   0.286   0.7757    
## affile6      -0.05997    0.26537  -0.226   0.8216    
## afdec6       -0.59802    0.28727  -2.082   0.0394 *  
## dec           0.21112    0.19617   1.076   0.2839    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.597 on 123 degrees of freedom
## Multiple R-squared:  0.3113, Adjusted R-squared:  0.2722 
## F-statistic: 7.944 on 7 and 123 DF,  p-value: 6.164e-08