CONTINUOUS NUMBERS - COUNTS

calc_stats(d_hadi, d_cody, 1:10, 6, continuous = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    number_of_student_first_names_in_post
## 1                                      0
## 2                                      0
## 3                                      0
## 4                                      1
## 5                                      0
## 6                                      0
## 7                                      0
## 8                                      1
## 9                                      1
## 10                                     0
##    number_of_student_first_names_in_post.1
## 1                                        0
## 2                                        0
## 3                                        0
## 4                                        1
## 5                                        0
## 6                                        0
## 7                                        0
## 8                                        1
## 9                                        1
## 10                                       0
##  Single Score Intraclass Correlation
## 
##    Model: oneway 
##    Type : consistency 
## 
##    Subjects = 10 
##      Raters = 2 
##      ICC(1) = 1
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##     F(9,10) = Inf , p = 0 
## 
##  95%-Confidence Interval for ICC Population Values:
##   NaN < ICC < NaN
##   mean_diff
## 1         0
calc_stats(d_hadi, d_cody, 1:10, 7, continuous = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    number_of_student_last_names_in_post number_of_student_last_names_in_post.1
## 1                                     0                                      0
## 2                                     0                                      0
## 3                                     0                                      0
## 4                                     1                                      1
## 5                                     0                                      0
## 6                                     0                                      0
## 7                                     0                                      0
## 8                                     0                                      0
## 9                                     1                                      1
## 10                                    0                                      0
##  Single Score Intraclass Correlation
## 
##    Model: oneway 
##    Type : consistency 
## 
##    Subjects = 10 
##      Raters = 2 
##      ICC(1) = 1
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##     F(9,10) = Inf , p = 0 
## 
##  95%-Confidence Interval for ICC Population Values:
##   NaN < ICC < NaN
##   mean_diff
## 1         0
calc_stats(d_hadi, d_cody, 1:10, 8, continuous = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    number_of_student_tagged_accounts number_of_student_tagged_accounts.1
## 1                                  0                                   0
## 2                                  0                                   0
## 3                                  0                                   0
## 4                                  0                                   0
## 5                                  0                                   0
## 6                                  0                                   0
## 7                                  0                                   0
## 8                                  0                                   0
## 9                                  0                                   0
## 10                                 0                                   0
##  Single Score Intraclass Correlation
## 
##    Model: oneway 
##    Type : consistency 
## 
##    Subjects = 10 
##      Raters = 2 
##      ICC(1) = NaN
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##     F(9,10) = NaN , p = NaN 
## 
##  95%-Confidence Interval for ICC Population Values:
##   NaN < ICC < NaN
##   mean_diff
## 1         0
calc_stats(d_hadi, d_cody, 1:10, 9, continuous = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    number_of_student_faces_in_image number_of_student_faces_in_image.1
## 1                                21                                 21
## 2                                17                                 17
## 3                                 7                                  7
## 4                                 7                                  7
## 5                                24                                 24
## 6                                 4                                  4
## 7                                 0                                  0
## 8                                 1                                  1
## 9                                 1                                  1
## 10                               16                                 16
##  Single Score Intraclass Correlation
## 
##    Model: oneway 
##    Type : consistency 
## 
##    Subjects = 10 
##      Raters = 2 
##      ICC(1) = 1
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##     F(9,10) = Inf , p = 0 
## 
##  95%-Confidence Interval for ICC Population Values:
##   NaN < ICC < NaN
##   mean_diff
## 1         0
calc_stats(d_hadi, d_cody, 1:10, 10, continuous = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    how_many_names_faces_connected how_many_names_faces_connected.1
## 1                               0                                0
## 2                               0                                0
## 3                               0                                0
## 4                               1                                1
## 5                               0                                0
## 6                               0                                0
## 7                               0                                0
## 8                               1                                1
## 9                               1                                1
## 10                              0                                0
##  Single Score Intraclass Correlation
## 
##    Model: oneway 
##    Type : consistency 
## 
##    Subjects = 10 
##      Raters = 2 
##      ICC(1) = 1
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##     F(9,10) = Inf , p = 0 
## 
##  95%-Confidence Interval for ICC Population Values:
##   NaN < ICC < NaN
##   mean_diff
## 1         0

CATEGORICAL VARIABLES - 0,1,2 or 0,1

calc_stats(d_hadi, d_cody, 1:10, 11, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    is_there_an_identifiable_face_in_this_post
## 1                                           0
## 2                                           0
## 3                                           0
## 4                                           1
## 5                                           0
## 6                                           0
## 7                                           0
## 8                                           1
## 9                                           1
## 10                                          0
##    is_there_an_identifiable_face_in_this_post.1
## 1                                             0
## 2                                             0
## 3                                             0
## 4                                             1
## 5                                             0
## 6                                             0
## 7                                             0
## 8                                             1
## 9                                             1
## 10                                            0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = 1 
## 
##         z = 3.16 
##   p-value = 0.00157
calc_stats(d_hadi, d_cody, 1:10, 12, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    ethnic_group ethnic_group.1
## 1             0              0
## 2             0              0
## 3             0              0
## 4             0              0
## 5             0              0
## 6             0              0
## 7             0              0
## 8             0              0
## 9             0              0
## 10            0              0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = NaN 
## 
##         z = NaN 
##   p-value = NaN
calc_stats(d_hadi, d_cody, 1:10, 13, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    first_generation_americans first_generation_americans.1
## 1                           0                            0
## 2                           0                            0
## 3                           0                            0
## 4                           0                            0
## 5                           0                            0
## 6                           0                            0
## 7                           0                            0
## 8                           0                            0
## 9                           0                            0
## 10                          0                            0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = NaN 
## 
##         z = NaN 
##   p-value = NaN
calc_stats(d_hadi, d_cody, 1:10, 14, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    date_of_birth date_of_birth.1
## 1              1               1
## 2              0               0
## 3              0               0
## 4              0               0
## 5              0               0
## 6              0               0
## 7              0               0
## 8              0               0
## 9              0               0
## 10             0               0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = 1 
## 
##         z = 3.16 
##   p-value = 0.00157
calc_stats(d_hadi, d_cody, 1:10, 15, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    religion religion.1
## 1         0          0
## 2         0          0
## 3         0          0
## 4         0          0
## 5         0          0
## 6         0          0
## 7         0          0
## 8         0          0
## 9         0          0
## 10        0          0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = NaN 
## 
##         z = NaN 
##   p-value = NaN
calc_stats(d_hadi, d_cody, 1:10, 16, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    gender_identity gender_identity.1
## 1                0                 0
## 2                0                 0
## 3                0                 0
## 4                0                 0
## 5                0                 0
## 6                0                 0
## 7                0                 0
## 8                0                 0
## 9                0                 0
## 10               1                 1
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = 1 
## 
##         z = 3.16 
##   p-value = 0.00157
calc_stats(d_hadi, d_cody, 1:10, 17, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    retweet retweet.1
## 1        0         0
## 2        0         0
## 3        0         0
## 4        0         0
## 5        0         0
## 6        0         0
## 7        1         1
## 8        0         0
## 9        0         0
## 10       1         1
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = 1 
## 
##         z = 3.16 
##   p-value = 0.00157
calc_stats(d_hadi, d_cody, 1:10, 18, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    external_link external_link.1
## 1              0               0
## 2              0               0
## 3              0               0
## 4              0               0
## 5              0               0
## 6              0               0
## 7              0               0
## 8              0               0
## 9              0               0
## 10             0               0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = NaN 
## 
##         z = NaN 
##   p-value = NaN
calc_stats(d_hadi, d_cody, 1:10, 19, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    phone_number phone_number.1
## 1             0              0
## 2             0              0
## 3             0              0
## 4             0              0
## 5             0              0
## 6             0              0
## 7             0              0
## 8             0              0
## 9             0              0
## 10            0              0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = NaN 
## 
##         z = NaN 
##   p-value = NaN
calc_stats(d_hadi, d_cody, 1:10, 20, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    email email.1
## 1      0       0
## 2      0       0
## 3      0       0
## 4      0       0
## 5      0       0
## 6      0       0
## 7      0       0
## 8      0       0
## 9      0       0
## 10     0       0
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = NaN 
## 
##         z = NaN 
##   p-value = NaN
calc_stats(d_hadi, d_cody, 1:10, 21, categorical = TRUE)
##  Percentage agreement (Tolerance=0)
## 
##  Subjects = 10 
##    Raters = 2 
##   %-agree = 100 
##    location location.1
## 1         0          0
## 2         0          0
## 3         0          0
## 4         1          1
## 5         0          0
## 6         0          0
## 7         0          0
## 8         0          0
## 9         0          0
## 10        1          1
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 10 
##    Raters = 2 
##     Kappa = 1 
## 
##         z = 3.16 
##   p-value = 0.00157