df <- data.frame(
Gender = c("m", "m", "f", "f", "f", "m", "f"),
Muslim = c("yes", "yes", "no", "yes", "yes", "yes", "no"),
Result = c("p", "p", "p", "f", "p", "p", "p")
)
df
## Gender Muslim Result
## 1 m yes p
## 2 m yes p
## 3 f no p
## 4 f yes f
## 5 f yes p
## 6 m yes p
## 7 f no p
ftable(Muslim+Gender~Result,data=df)
## Muslim no yes
## Gender f m f m
## Result
## f 0 0 1 0
## p 2 0 1 3
##chi_square test
# Create a sample dataframe
df <- data.frame(
Gender = c("Male", "Male", "Female", "Female", "Female", "Male", "Female"),
Muslim = c("Yes", "Yes", "No", "Yes", "Yes", "Yes", "No"),
Result = c("Pass", "Pass", "Pass", "Fail", "Pass", "Pass", "Pass")
)
# Create a contingency table
contingency_table <- table(df$Gender, df$Muslim)
# Apply chi-square test
chi_square_result <- chisq.test(contingency_table)
## Warning in chisq.test(contingency_table): Chi-squared approximation may be
## incorrect
# Print the result
print(chi_square_result)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: contingency_table
## X-squared = 0.36458, df = 1, p-value = 0.546
my_datas<-matrix(c(3,9,12,7),nrow=2)
colnames(my_datas)<-c("pass","fail")
rownames(my_datas)<-c("male","female")
my_datas
## pass fail
## male 3 12
## female 9 7
chi_square_result <- chisq.test(my_datas)
print(chi_square_result)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: my_datas
## X-squared = 2.8962, df = 1, p-value = 0.08879