Atividade Lista 12
Questao 1
xlim <- c(0, 3)
ylim <- c(0, 518)
MRT_1F <-c(517.1468515630205, 85.13094142168089, 30.333207896694553, 12.694776264558937, 3.3041601673945418, 1.1823111717498882, 1.1892293502386786)
clock <- c(0.1, 0.5, 1, 1.5, 2, 2.5, 3)
MRT_3F <-c(156.68929936163462, 11.540837783562276, 0.4512835621696538, 0.4509797929766453, 0.4502068233039181, 0.4496185276300172, 0.4543157082191288)
MRT_5F <-c(83.90319666471157, 0.3068151086494968, 0.30522314133037304, 0.3072588968084928, 0.30655265997285697, 0.3055812715727718, 0.3053297166713006)
MRT_10F <-c(29.55430642951759, 0.19832832665772515, 0.1971923924717474, 0.19796648905716516, 0.19615594370806338, 0.2034569237883263, 0.19617420889447737)
MRT_15F <-c(11.317736530583566, 0.167364215666193, 0.16172168266811013, 0.16701085329580515, 0.1598052657153692, 0.1645934043532696, 0.16216563797118075)
MRT_sem_F <-c(11.93430909937736, 0.6095414637034009, 0.6060645101029295, 0.612167181646899, 0.6146761002685637, 0.6096747087200697, 0.6125810476877268)
plot(clock ,MRT_1F, type="o", pch=0, xlim=c(0, 3), ylim=c(0, 518), xlab="Time Response (sec.)", ylab="Time between Things requests (seconds)")
lines(clock, MRT_3F, type="o", col="yellow", pch=1)
lines(clock, MRT_5F, type="o", col="red", pch=2)
lines(clock, MRT_10F, type="o", col="blue", pch=3)
lines(clock, MRT_15F, type="o", col="purple", pch=4)
lines(clock, MRT_sem_F, type="o", col="green", pch=5)

layout(matrix(c(1, 2,
1, 2,
3, 4,
3, 4,
5, 6,
5, 6
), nrow=3, ncol=2, byrow=TRUE))
colors <- c("#E6E6E6", "#666666")
log_MRT_1F <- log(MRT_1F)
bind_MRT_1F <- cbind(MRT_1F, log_MRT_1F)
val_MRT_1F <- matrix(bind_MRT_1F, nrow = 2, ncol = 7, byrow = TRUE)
barplot(val_MRT_1F, names.arg = clock, col = colors, beside=T, xlab="Time between Thngs requests", ylab="Response time (s)")
legend("topright", legend = c("w/aFog", "1 Fog"), col = colors, pch = c(15, 15))
log_MRT_3F <- log(MRT_3F)
bind_MRT_3F <- cbind(MRT_3F, log_MRT_3F)
val_MRT_3F <- matrix(bind_MRT_3F, nrow = 2, ncol = 7, byrow = TRUE)
barplot(val_MRT_1F, names.arg = clock, col = colors, beside=T, xlab="Time between Things requests", ylab="Response time (s)")
legend("topright", legend = c("w/aFog", "3 Fog"), col = colors, pch = c(15, 15))
log_MRT_5F <- log(MRT_5F)
bind_MRT_5F <- cbind(MRT_5F, log_MRT_5F)
val_MRT_5F <- matrix(bind_MRT_1F, nrow = 2, ncol = 7, byrow = TRUE)
barplot(val_MRT_5F, names.arg = clock, col = colors, beside=T, xlab="Time between Things requests", ylab="Response time (s)")
legend("topright", legend = c("w/aFog", "5 Fog"), col = colors, pch = c(15, 15))
log_MRT_10F <- log(MRT_10F)
bind_MRT_10F <- cbind(MRT_10F, log_MRT_10F)
val_MRT_10F <- matrix(bind_MRT_10F, nrow = 2, ncol = 7, byrow = TRUE)
barplot(val_MRT_10F, names.arg = clock, col = colors, beside=T, xlab="Time between Things requests", ylab="Response time (s)")
legend("topright", legend = c("w/aFog", "10 Fog"), col = colors, pch = c(15, 15))

log_MRT_15F <- log(MRT_15F)
bind_MRT_15F <- cbind(MRT_15F, log_MRT_15F)
val_MRT_15F <- matrix(bind_MRT_15F, nrow = 2, ncol = 7, byrow = TRUE)
barplot(val_MRT_1F, main="Grafico name", names.arg = clock, col = colors, beside=T, xlab="Time between Thngs requests", ylab="Response time (s)")
legend("topright", legend = c("w/aFog", "15 Fog"), col = colors, pch = c(15, 15))

Questao 2
install.packages("ggplot2", repos = "http://cran.rstudio.com/")
## Installing package into 'C:/Users/andre/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'ggplot2' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\andre\AppData\Local\Temp\RtmpUX2nsN\downloaded_packages
library(ggplot2)
install.packages("ggplot2", dependencies = TRUE)
quality_ratings <- c("Good", "Very Good", "Excellent")
metal_prices <- c("$10-19", "$20-29", "$30-39", "$40-49")
matriz <- matrix(c(
"Good", 53.8, 33.9, 2.6, 0.0,
"Very Good", 43.6, 54.2, 60.5, 21.4,
"Excellent", 2.6, 11.9, 36.8, 78.6
), nrow = length(quality_ratings), byrow = TRUE)
df <- as.data.frame(matriz)
colnames(df) <- c("Quality_Rating", metal_prices)
df[, -1] <- sapply(df[, -1], as.numeric)
barplot(
t(as.matrix(df[, -1])), # Transpor os dados
beside = TRUE, # Barras empilhadas lado a lado
col = c("plum4", "orchid", "purple", "purple4"), # Cores para as barras
legend.text = FALSE, # Adicionar legenda
args.legend = list(x = "topright"), # Posição da legenda
main = "Qualidade de refeição", # Título principal
xlab = "Quality Rating", # Rótulo do eixo x
ylab = "Porcentagem (%)", # Rótulo do eixo y
names.arg = df$Quality_Rating, # Nomes no eixo x
ylim = c(0, 100) # Limite do eixo y
)
legend("topleft", title = " Metal Prices ", legend = metal_prices, fill = c("plum4", "orchid", "purple", "purple4"))

Questao 3
data(airquality)
airquality$Temp_Celsius <- (airquality$Temp - 32) / 1.8
hist_plot <- hist(airquality$Temp_Celsius, breaks = 20, col = "lightblue", main = "Histograma das Temperaturas em Graus Celsius (Maio)", xlab = "Temperatura (°C)", ylab = "Frequência", probability = TRUE)
lines(density(airquality$Temp_Celsius), col = "blue", lwd = 2)
legend("topright", legend = c("Densidade"), col = c("blue"), lwd = 2)

Questao 4
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
sales <- read.table("https://training-course-material.com/images/8/8f/Sales.txt", header = TRUE)
sales_percent <- sales %>%
mutate(Percentage = (sales$SALES / sum(sales$SALES)) * 100)
pie(sales_percent$Percentage, labels = paste(sales_percent$COUNTRY, "\n", round(sales_percent$Percentage, 1), "%"), col = rainbow(length(sales_percent$COUNTRY)))
title("Porcentagem Total de Vendas por País")
legend("topright", legend = sales_percent$COUNTRY, fill = rainbow(length(sales_percent$COUNTRY)), title = "País")

Questao 5
data(InsectSprays)
boxplot(count ~ spray, data = InsectSprays, col = "yellow", outline = FALSE,
main = "Boxplot de Contagens de Insetos por Tipo de Inseticida",
xlab = "Tipo de Inseticida", ylab = "Contagem de Insetos")

Questao 6
prim <- read.csv("monitoringCloudData_0.1.csv")
seg <- read.csv("monitoringCloudData_0.5.csv")
terc <- read.csv("monitoringCloudData_1.csv")
quart <- read.csv("monitoringCloudData_NONE.csv")
transformar_dataframe <- function(df) {
gb_indices <- grepl("GB", df$usedMemory)
df$usedMemory[gb_indices] <- as.numeric(sub("GB", "", df$usedMemory[gb_indices])) * 1024
df$usedMemory <- as.numeric(sub("MB", "", df$usedMemory))
df$currentTime <- as.POSIXct(df$currentTime, format = "%Y-%m-%d %H:%M:%OS")
df$hours_since_start <- as.numeric(difftime(df$currentTime, min(df$currentTime), units = "hours"))
return(df)
}
prim <- transformar_dataframe(prim)
terc <- transformar_dataframe(terc)
quart <- transformar_dataframe(quart)
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
library(ggplot2)
if (!requireNamespace("patchwork", quietly = TRUE)) {
install.packages("patchwork")
}
library(patchwork)
plot_prim <- ggplot(prim, aes(x = hours_since_start, y = usedMemory, group = 1)) +
geom_line() +
labs(title = expression(bold("Memory Analysis (None Workload)")),
x = "Time (hour)",
y = "Used Memory (MB)") +
annotate("rect", xmin = min(prim$hours_since_start), xmax = max(prim$hours_since_start),
ymin = min(prim$usedMemory), ymax = max(prim$usedMemory),
color = "black", fill = NA, linetype = "solid") +
theme(panel.background = element_rect(fill = "white")) +
scale_x_continuous(breaks = seq(0, 70, 10)) +
scale_y_continuous(breaks = c(500, 1500, 2500, 3500))
gb_indices <- grepl("GB", seg$usedMemory)
seg$usedMemory[gb_indices] <- as.numeric(sub("GB", "", seg$usedMemory[gb_indices])) * 1024
seg$usedMemory <- as.numeric(sub("MB", "", seg$usedMemory))
seg$currentTime <- as.POSIXct(seg$currentTime, format = "%Y-%m-%d %H:%M:%OS")
seg$hours_since_start <- as.numeric(difftime(seg$currentTime, seg$currentTime[1], units = "hours"))
seg <- seg[complete.cases(seg$hours_since_start, seg$usedMemory), ]
plot_seg <- ggplot(seg, aes(x = hours_since_start, y = usedMemory, group = 1)) +
geom_line() +
labs(title = expression(bold("Memory Analysis (Workload 0.1)")),
x = "Time (hour)",
y = "Used Memory (MB)") +
geom_rect(aes(xmin = min(seg$hours_since_start), xmax = max(seg$hours_since_start),
ymin = min(seg$usedMemory), ymax = max(seg$usedMemory)),
color = "black", fill = NA, linetype = "solid", alpha = 0) +
theme(panel.background = element_rect(fill = "white")) +
scale_x_continuous(breaks = seq(0, 70, 10)) +
scale_y_continuous(breaks = c(400, 800, 1200))
plot_terc <- ggplot(terc, aes(x = hours_since_start, y = usedMemory, group = 1)) +
geom_line() +
labs(title = expression(bold("Memory Analysis (Workload 0.5)")),
x = "Time (hour)",
y = "Used Memory (MB)") +
annotate("rect", xmin = min(terc$hours_since_start), xmax = max(terc$hours_since_start),
ymin = min(terc$usedMemory), ymax = max(terc$usedMemory),
color = "black", fill = NA, linetype = "solid") +
theme(panel.background = element_rect(fill = "white")) +
scale_x_continuous(breaks = seq(0, 70, 10)) +
scale_y_continuous(breaks = c(242, 246, 250, 254))
plot_quart <- ggplot(quart, aes(x = hours_since_start, y = usedMemory, group = 1)) +
geom_line() +
labs(title = expression(bold("Memory Analysis (Workload 1.0)")),
x = "Time (hour)",
y = "Used Memory (MB)") +
annotate("rect", xmin = min(quart$hours_since_start), xmax = max(quart$hours_since_start),
ymin = min(quart$usedMemory), ymax = max(quart$usedMemory),
color = "black", fill = NA, linetype = "solid") +
theme(panel.background = element_rect(fill = "white")) +
scale_x_continuous(breaks = seq(0, 70, 10)) +
scale_y_continuous(breaks = c(96, 98, 102, 106))
layout(matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2))
par(mar = c(4, 4, 2, 1)) # Ajuste das margens
graficos <- plot_quart + plot_prim + plot_seg + plot_terc
graficos

Questao 7
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
if (!requireNamespace("plotly", quietly = TRUE)) {
install.packages("plotly")
}
library(dplyr)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
#dplyr::filter(data_frame, condition)
netflix_titles <- read.csv(file = "netflix_titles.csv",
header = TRUE,
strip.white = TRUE,
na.strings = "")
netflix_titles <- netflix_titles %>%
filter(!is.na(country) & country != "" & !grepl(",", country)) %>%
filter(!is.na(country) & country != "" & !grepl(",", country))
top_countries <- netflix_titles %>%
group_by(country) %>%
summarise(count = n()) %>%
arrange(desc(count)) %>%
head(10)
plot_ly(labels = top_countries$country, values = top_countries$count, type = "pie",
textinfo = "label+percent", insidetextfont = list(color = "#FFFFFF"),
hoverinfo = "label+percent", hole = 0.6) %>%
layout(title = "Top 10 Países com Mais Conteúdo na Netflix",
xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
width = 900,
height = 800)
Questao 8
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
if (!requireNamespace("plotly", quietly = TRUE)) {
install.packages("plotly")
}
library(dplyr)
library(plotly)
top_countries <- netflix_titles %>%
group_by(country) %>%
summarise(count = n()) %>%
arrange(desc(count)) %>%
head(10)
table <- plot_ly(
type = "table",
header = list(values = c("País", "Total de Conteúdos"),
fill = list(color = "#a9a9a9"),
align = c("center"),
font = list(color = "white", size = 15)),
cells = list(values = list(top_countries$country, top_countries$count),
align = c("center"),
font = list(color = c("black", "black"), size = 12))
)
table
Questao 9
netflix <- read.csv("netflix_titles.csv")
library(dplyr)
library(plotly)
library(stringr)
netflix <- netflix %>%
mutate(decade = 10 * (release_year %/% 10))
filmesPorDecada <- netflix %>%
filter(type == "Movie") %>%
group_by(decade) %>%
summarise(qtd_conteúdo = n())
seriesPorDecada <- netflix %>%
filter(type == "TV Show") %>%
group_by(decade) %>%
summarise(num_series = n())
seriesFilmes <- left_join(filmesPorDecada, seriesPorDecada, by = "decade")
seriesFilmes$num_series[2] <- 1
fig <- plot_ly(
seriesFilmes,
x = ~decade
) %>%
add_trace(
y = ~qtd_conteúdo,
name = 'Filmes',
mode = 'lines+markers'
) %>%
add_trace(
y = ~num_series,
name = 'Séries',
mode = 'lines+markers'
)
fig
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
Questao 10
library(stringr)
netflix <- read.csv("netflix_titles.csv")
df_filtrado <- netflix %>%
filter(between(release_year, 2000, 2010) & type == "Movie") %>%
select(release_year, listed_in)
contagem_categorias_por_ano <- df_filtrado %>%
mutate(primeira_categoria = ifelse(str_detect(listed_in, ","), word(listed_in, 1, sep = ", "), listed_in)) %>%
group_by(release_year, primeira_categoria) %>%
summarise(num_filmes = n())
## `summarise()` has grouped output by 'release_year'. You can override using the
## `.groups` argument.
categorias <- c("Action & Adventure", "Comedies", "Dramas")
df_final <- contagem_categorias_por_ano %>%
filter(primeira_categoria %in% categorias)
df_grafico <- data.frame(release_year = 2000:2010)
df_grafico <- df_grafico %>%
left_join(
df_final %>%
filter(str_detect(primeira_categoria, "Comedies")) %>%
select(release_year, num_filmes) %>%
rename(Comedies = num_filmes),
by = "release_year"
) %>%
left_join(
df_final %>%
filter(str_detect(primeira_categoria, "Dramas")) %>%
select(release_year, num_filmes) %>%
rename(Dramas = num_filmes),
by = "release_year"
) %>%
left_join(
df_final %>%
filter(str_detect(primeira_categoria, "Action & Adventure")) %>%
select(release_year, num_filmes) %>%
rename(`ActionAdventure` = num_filmes),
by = "release_year"
)
fig <- plot_ly(
df_grafico,
x = ~release_year,
y = ~Comedies,
type = 'bar',
name = 'Comédia'
) %>%
add_trace(
y = ~Dramas,
name = 'Drama'
) %>%
add_trace(
y = ~ActionAdventure,
name = 'Ação e Aventura'
) %>%
layout(
yaxis = list(title = 'Qnt. de Lançamentos'),
xaxis = list(title = 'Ano de Lançamento')
)
#exibir gráfico
fig