library(readxl)
datauas <- read_excel("uas.xlsx")
datauas$Kerugian = as.numeric(datauas$Kerugian)
datauas$Rata_Kerugian = datauas$Kerugian/datauas$Kejadian
datauas <- as.data.frame(datauas)
datauas## Tahun Kerugian Kejadian Rata_Kerugian
## 1 2000 13555298411 11 1232299856
## 2 2001 11029916950 12 919159746
## 3 2002 15975856773 13 1228912059
## 4 2003 15410902354 17 906523668
## 5 2004 18985203519 19 999221238
## 6 2005 17557268712 18 975403817
## 7 2006 10848969106 10 1084896911
## 8 2007 17395018451 11 1581365314
## 9 2008 17187708350 14 1227693454
## 10 2009 19927948832 20 996397442
## 11 2010 30431913006 22 1383268773
## 12 2011 19079543271 21 908549680
## 13 2012 18862604189 22 857391099
## 14 2013 8834824848 23 384122819
## 15 2014 13231795220 23 575295444
## 16 2015 23703573276 25 948142931
## 17 2016 15743863220 31 507866555
## 18 2017 17353216867 34 510388731
## 19 2018 22655839743 25 906233590
## 20 2019 23433580385 19 1233346336
## 21 2020 21056987988 26 809884153
##
## Shapiro-Wilk normality test
##
## data: datauas$Kerugian
## W = 0.97089, p-value = 0.7527
##
## Shapiro-Wilk normality test
##
## data: datauas$Kejadian
## W = 0.96026, p-value = 0.5214
##
## Shapiro-Wilk normality test
##
## data: datauas$Rata_Kerugian
## W = 0.96158, p-value = 0.5484
## Loading required package: scales
## Warning: package 'scales' was built under R version 4.2.3
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ readr::col_factor() masks scales::col_factor()
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
ggplot(datauas,aes(Tahun,Rata_Kerugian))+
geom_bar(stat='identity',fill="#FF9980", colour="black"[128])+
scale_y_continuous(labels = comma) +
geom_text(aes(label = Kerugian), vjust = -0.75, size =2.5)# Soal nomor 2
a = mean(datauas$Kerugian)
b = mean(datauas$Kejadian)
c= var(datauas$Kerugian)
d = var(datauas$Kejadian)
print(paste("Mean dari Kerugian bencana alam ", a ))## [1] "Mean dari Kerugian bencana alam 17726753974.7452"
## [1] "Mean dari Kejadian bencana alam 19.8095238095238"
## [1] "Var dari Kerugian bencana alam 2.4819999294599e+19"
## [1] "Var dari Kejadian bencana alam 42.7619047619048"
# Soal nomor 3
mean = a*b #Mean Resiko Kolektif
print(paste("Mean dari Resiko Kolektif S(t)", mean ))## [1] "Mean dari Resiko Kolektif S(t) 351158554928.287"
var = ((b*c) + (d*(a^2))) # Variance Resiko Kolektif
print(paste("Variansi dari Resiko Kolektif S(t)", var ))## [1] "Variansi dari Resiko Kolektif S(t) 1.39290795203153e+22"
variansi dengan berdasarkan risiko kolektif (gunakan loading factor 1%-10%)
# Premi Murni dengan metode Standar Deviasi
# Loading Factor 1-10%
p1 = ((mean + sqrt(var)*0.01))
p2 = ((mean + sqrt(var)*0.02))
p3 = ((mean + sqrt(var)*0.03))
p4 = ((mean + sqrt(var)*0.04))
p5 = ((mean + sqrt(var)*0.05))
p6 = ((mean + sqrt(var)*0.06))
p7 = ((mean + sqrt(var)*0.07))
p8 = ((mean + sqrt(var)*0.08))
p9 = ((mean + sqrt(var)*0.09))
p10 = ((mean + sqrt(var)*0.1))
Loadingfact = c('1%', '2%','3%','4%', '5%', '6%', '7%', '8%', '9%', '10%' )
Premi_Murni = c(p1, p2, p3, p4, p5, p6, p7, p8, p9,p10)
datapremi = data.frame(Loadingfact, Premi_Murni)
datapremix = datapremi
datapremix$Premi_Murni = paste(format(round(datapremi$Premi_Murni / 1e9, 2), trim = TRUE), "Milyar")
datapremix## Loadingfact Premi_Murni
## 1 1% 352.34 Milyar
## 2 2% 353.52 Milyar
## 3 3% 354.70 Milyar
## 4 4% 355.88 Milyar
## 5 5% 357.06 Milyar
## 6 6% 358.24 Milyar
## 7 7% 359.42 Milyar
## 8 8% 360.60 Milyar
## 9 9% 361.78 Milyar
## 10 10% 362.96 Milyar
## Warning: package 'plotly' was built under R version 4.2.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
## Warning: package 'gapminder' was built under R version 4.2.3