library(datasets)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.2
## Warning: package 'dplyr' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#memanggil data rivers
data(CO2)
CO2 <- tibble::as.tibble(CO2)
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## ℹ Please use `as_tibble()` instead.
## ℹ The signature and semantics have changed, see `?as_tibble`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
#Memberikan ringkasan atau tampilan yang lebih lengkap tentang struktur suatu dataset
glimpse(CO2)
## Rows: 84
## Columns: 5
## $ Plant <ord> Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn2, Qn2, Qn2, Qn2, Qn2, …
## $ Type <fct> Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Queb…
## $ Treatment <fct> nonchilled, nonchilled, nonchilled, nonchilled, nonchilled, …
## $ conc <dbl> 95, 175, 250, 350, 500, 675, 1000, 95, 175, 250, 350, 500, 6…
## $ uptake <dbl> 16.0, 30.4, 34.8, 37.2, 35.3, 39.2, 39.7, 13.6, 27.3, 37.1, …
#Menampilkan beberapa baris pertama dari suatu objek
head(CO2)
## # A tibble: 6 × 5
## Plant Type Treatment conc uptake
## <ord> <fct> <fct> <dbl> <dbl>
## 1 Qn1 Quebec nonchilled 95 16
## 2 Qn1 Quebec nonchilled 175 30.4
## 3 Qn1 Quebec nonchilled 250 34.8
## 4 Qn1 Quebec nonchilled 350 37.2
## 5 Qn1 Quebec nonchilled 500 35.3
## 6 Qn1 Quebec nonchilled 675 39.2
#Mendapatkan atau menetapkan kelas objek
class(CO2)
## [1] "tbl_df" "tbl" "data.frame"
#Menghitung Rata-rata conc
mean(CO2$conc)
## [1] 435
#mengurutkan peubah conc dari yang terkecil
CO2 %>% arrange(conc)
## # A tibble: 84 × 5
## Plant Type Treatment conc uptake
## <ord> <fct> <fct> <dbl> <dbl>
## 1 Qn1 Quebec nonchilled 95 16
## 2 Qn2 Quebec nonchilled 95 13.6
## 3 Qn3 Quebec nonchilled 95 16.2
## 4 Qc1 Quebec chilled 95 14.2
## 5 Qc2 Quebec chilled 95 9.3
## 6 Qc3 Quebec chilled 95 15.1
## 7 Mn1 Mississippi nonchilled 95 10.6
## 8 Mn2 Mississippi nonchilled 95 12
## 9 Mn3 Mississippi nonchilled 95 11.3
## 10 Mc1 Mississippi chilled 95 10.5
## # ℹ 74 more rows
#Mengurutkan berdasarkan peubah conc dari nilai terbesar
CO2 %>% arrange(desc(conc))
## # A tibble: 84 × 5
## Plant Type Treatment conc uptake
## <ord> <fct> <fct> <dbl> <dbl>
## 1 Qn1 Quebec nonchilled 1000 39.7
## 2 Qn2 Quebec nonchilled 1000 44.3
## 3 Qn3 Quebec nonchilled 1000 45.5
## 4 Qc1 Quebec chilled 1000 38.7
## 5 Qc2 Quebec chilled 1000 42.4
## 6 Qc3 Quebec chilled 1000 41.4
## 7 Mn1 Mississippi nonchilled 1000 35.5
## 8 Mn2 Mississippi nonchilled 1000 31.5
## 9 Mn3 Mississippi nonchilled 1000 27.8
## 10 Mc1 Mississippi chilled 1000 21.9
## # ℹ 74 more rows
#menghapus kolom quebec
CO2 %>% filter(Type=="Quebec")
## # A tibble: 42 × 5
## Plant Type Treatment conc uptake
## <ord> <fct> <fct> <dbl> <dbl>
## 1 Qn1 Quebec nonchilled 95 16
## 2 Qn1 Quebec nonchilled 175 30.4
## 3 Qn1 Quebec nonchilled 250 34.8
## 4 Qn1 Quebec nonchilled 350 37.2
## 5 Qn1 Quebec nonchilled 500 35.3
## 6 Qn1 Quebec nonchilled 675 39.2
## 7 Qn1 Quebec nonchilled 1000 39.7
## 8 Qn2 Quebec nonchilled 95 13.6
## 9 Qn2 Quebec nonchilled 175 27.3
## 10 Qn2 Quebec nonchilled 250 37.1
## # ℹ 32 more rows
#memilih kolom plant dan conc
CO2 %>% select(Plant,conc,Treatment)
## # A tibble: 84 × 3
## Plant conc Treatment
## <ord> <dbl> <fct>
## 1 Qn1 95 nonchilled
## 2 Qn1 175 nonchilled
## 3 Qn1 250 nonchilled
## 4 Qn1 350 nonchilled
## 5 Qn1 500 nonchilled
## 6 Qn1 675 nonchilled
## 7 Qn1 1000 nonchilled
## 8 Qn2 95 nonchilled
## 9 Qn2 175 nonchilled
## 10 Qn2 250 nonchilled
## # ℹ 74 more rows
#menghapus kolom conc dan uptake
CO2 %>% select(-conc,-uptake)
## # A tibble: 84 × 3
## Plant Type Treatment
## <ord> <fct> <fct>
## 1 Qn1 Quebec nonchilled
## 2 Qn1 Quebec nonchilled
## 3 Qn1 Quebec nonchilled
## 4 Qn1 Quebec nonchilled
## 5 Qn1 Quebec nonchilled
## 6 Qn1 Quebec nonchilled
## 7 Qn1 Quebec nonchilled
## 8 Qn2 Quebec nonchilled
## 9 Qn2 Quebec nonchilled
## 10 Qn2 Quebec nonchilled
## # ℹ 74 more rows
#Mutasi
CO2 %>% mutate(conup=conc+uptake)
## # A tibble: 84 × 6
## Plant Type Treatment conc uptake conup
## <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 Qn1 Quebec nonchilled 95 16 111
## 2 Qn1 Quebec nonchilled 175 30.4 205.
## 3 Qn1 Quebec nonchilled 250 34.8 285.
## 4 Qn1 Quebec nonchilled 350 37.2 387.
## 5 Qn1 Quebec nonchilled 500 35.3 535.
## 6 Qn1 Quebec nonchilled 675 39.2 714.
## 7 Qn1 Quebec nonchilled 1000 39.7 1040.
## 8 Qn2 Quebec nonchilled 95 13.6 109.
## 9 Qn2 Quebec nonchilled 175 27.3 202.
## 10 Qn2 Quebec nonchilled 250 37.1 287.
## # ℹ 74 more rows
CO2BARU <- CO2 %>% select(-Plant,-Treatment) %>% mutate(conup=conc+uptake)
View(CO2BARU)
#Menghitung rata-rata Sepal Length setiap species
CO2 %>% group_by(Plant) %>% summarize(mean=mean(conc))
## # A tibble: 12 × 2
## Plant mean
## <ord> <dbl>
## 1 Qn1 435
## 2 Qn2 435
## 3 Qn3 435
## 4 Qc1 435
## 5 Qc3 435
## 6 Qc2 435
## 7 Mn3 435
## 8 Mn2 435
## 9 Mn1 435
## 10 Mc2 435
## 11 Mc3 435
## 12 Mc1 435