IMBALANCE
RANDOM UNDERSAMPLING
set.seed(16)
down_train <- downSample(x = moklas1.train[,-10],y
= moklas1.train$promo)
colnames(down_train)[colnames(down_train)=="Class"] = "promo"
glimpse(down_train)
## Rows: 192
## Columns: 10
## $ cabang <fct> 9, 13, 4, 1, 12, 1, 3, 6, 2, 12, 9, 6, 3, 3, 14, 4, …
## $ jenis.kelamin <fct> 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2…
## $ usia <fct> 2, 3, 1, 3, 4, 3, 1, 1, 2, 2, 2, 3, 2, 3, 1, 2, 4, 4…
## $ pendidikan <fct> 4, 4, 4, 4, 4, 4, 4, 3, 2, 3, 3, 2, 2, 3, 4, 3, 4, 4…
## $ jumlah.fashion <fct> 2, 2, 2, 1, 1, 4, 4, 1, 3, 4, 4, 3, 1, 1, 1, 1, 4, 4…
## $ jumlah.footwear <fct> 1, 4, 4, 4, 3, 2, 3, 2, 2, 1, 3, 1, 1, 3, 1, 2, 2, 1…
## $ jumlah.lainnya <fct> 2, 2, 4, 1, 1, 1, 4, 4, 4, 4, 4, 2, 1, 2, 3, 1, 4, 3…
## $ total.nilai.tunai <fct> 1, 3, 3, 2, 1, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1…
## $ lama.member <fct> 2, 4, 1, 2, 4, 2, 3, 4, 4, 1, 4, 2, 1, 4, 3, 3, 2, 3…
## $ promo <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
table(moklas1.train$promo)
##
## 0 1
## 192 96
##
## 0 1
## 96 96
RANDOM OVERSAMPLING
set.seed(16)
up_train <- upSample(x = moklas1.train,y
= moklas1.train$promo)
colnames(up_train)[colnames(up_train)=="Class"] = "promo"
glimpse(up_train)
## Rows: 384
## Columns: 11
## $ cabang <fct> 9, 14, 11, 9, 1, 10, 5, 1, 10, 13, 8, 10, 14, 11, 1,…
## $ jenis.kelamin <fct> 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2…
## $ usia <fct> 1, 3, 2, 4, 3, 4, 3, 3, 4, 3, 2, 2, 1, 3, 3, 3, 2, 3…
## $ pendidikan <fct> 3, 3, 3, 2, 2, 4, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3…
## $ jumlah.fashion <fct> 2, 2, 4, 1, 2, 4, 3, 4, 3, 1, 4, 1, 2, 4, 1, 3, 3, 3…
## $ jumlah.footwear <fct> 4, 2, 1, 1, 1, 1, 2, 2, 2, 3, 4, 3, 4, 4, 4, 2, 4, 2…
## $ jumlah.lainnya <fct> 4, 2, 4, 1, 3, 2, 4, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2…
## $ total.nilai.tunai <fct> 3, 2, 3, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 2, 2, 3, 2, 1…
## $ lama.member <fct> 1, 4, 4, 1, 1, 2, 4, 2, 3, 3, 3, 3, 3, 2, 2, 2, 4, 2…
## $ promo <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ promo <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
table(moklas1.train$promo)
##
## 0 1
## 192 96
##
## 0 1
## 192 192
SMOTE
set.seed(012)
smote_train <- SMOTE(promo ~ ., data = moklas1.train,perc.over=200, perc.under=100)
glimpse(smote_train)
## Rows: 480
## Columns: 10
## $ cabang <fct> 7, 7, 5, 4, 11, 10, 14, 2, 3, 10, 8, 9, 10, 3, 10, 6…
## $ jenis.kelamin <fct> 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1…
## $ usia <fct> 1, 2, 1, 3, 3, 2, 3, 2, 1, 2, 3, 1, 1, 3, 4, 1, 2, 4…
## $ pendidikan <fct> 4, 4, 3, 3, 3, 4, 3, 2, 3, 3, 2, 2, 4, 3, 4, 3, 4, 2…
## $ jumlah.fashion <fct> 2, 3, 4, 1, 4, 4, 3, 3, 2, 2, 2, 3, 4, 4, 4, 1, 1, 1…
## $ jumlah.footwear <fct> 4, 1, 3, 1, 4, 1, 3, 2, 1, 4, 1, 4, 2, 4, 1, 2, 2, 1…
## $ jumlah.lainnya <fct> 1, 2, 1, 2, 1, 4, 3, 4, 4, 3, 4, 3, 4, 4, 2, 4, 4, 1…
## $ total.nilai.tunai <fct> 3, 1, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 3, 1, 3, 3, 1, 1…
## $ lama.member <fct> 3, 2, 1, 1, 2, 3, 2, 4, 2, 1, 1, 3, 3, 3, 2, 4, 4, 1…
## $ promo <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
table(moklas1.train$promo)
##
## 0 1
## 192 96
##
## 0 1
## 192 288
XTREME GRADIENT BOOSTING
# Basic Parameter Tuning
fitControl <- trainControl(## 5-fold CV
method = "repeatedcv",
number = 5,
## repeated ten times
repeats = 5)
# Alternate Tuning Grids
xgbGrid <- expand.grid(nrounds = c(300, 500, 1000, 1500),
max_depth = 2,
eta = c(0.01, 0.02, 0.03),
gamma = 0,
colsample_bytree = 1,
min_child_weight = 1,
subsample = 1
)
set.seed(16)
xgbFit <- train(promo~ ., data = moklas1.train,
method = "xgbTree",
trControl = fitControl,
verbose = FALSE,
tuneGrid = xgbGrid,
objective="reg:squarederror")
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:36] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:36] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:36] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:41] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:41] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:41] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:48] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:48] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:48] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:50] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:50] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:50] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:27:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:27:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:41] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:41] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:41] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:50] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:50] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:50] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:52] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:52] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:52] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:28:57] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:57] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:28:57] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:11] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:11] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:11] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:55] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:29:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:29:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [23:30:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [23:30:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## eXtreme Gradient Boosting
##
## 288 samples
## 9 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times)
## Summary of sample sizes: 231, 231, 231, 230, 229, 231, ...
## Resampling results across tuning parameters:
##
## eta nrounds Accuracy Kappa
## 0.01 300 0.7319280 0.3080092
## 0.01 500 0.7298820 0.3220357
## 0.01 1000 0.7250419 0.3287622
## 0.01 1500 0.7167535 0.3162639
## 0.02 300 0.7270875 0.3205561
## 0.02 500 0.7250661 0.3262722
## 0.02 1000 0.7042425 0.2924492
## 0.02 1500 0.6965728 0.2841711
## 0.03 300 0.7243289 0.3219649
## 0.03 500 0.7174553 0.3166680
## 0.03 1000 0.6972988 0.2865659
## 0.03 1500 0.6861675 0.2636921
##
## Tuning parameter 'max_depth' was held constant at a value of 2
## Tuning
##
## Tuning parameter 'min_child_weight' was held constant at a value of 1
##
## Tuning parameter 'subsample' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were nrounds = 300, max_depth = 2, eta
## = 0.01, gamma = 0, colsample_bytree = 1, min_child_weight = 1 and subsample
## = 1.
xgbFit.best<-xgbFit$bestTune
set.seed(16)
xgbFit1 <- train(promo~ ., data = moklas1.train,
method = "xgbTree",
trControl = fitControl,
verbose = FALSE,
tuneGrid = xgbFit.best,
objective="reg:squarederror")
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## eXtreme Gradient Boosting
##
## 288 samples
## 9 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times)
## Summary of sample sizes: 231, 231, 231, 230, 229, 231, ...
## Resampling results:
##
## Accuracy Kappa
## 0.731928 0.3080092
##
## Tuning parameter 'nrounds' was held constant at a value of 300
## Tuning
## held constant at a value of 1
## Tuning parameter 'subsample' was held
## constant at a value of 1
confusionMatrix(xgbFit1$trainingData$.outcome,moklas1.train$promo, positive="1")
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 192 0
## 1 0 96
##
## Accuracy : 1
## 95% CI : (0.9873, 1)
## No Information Rate : 0.6667
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.3333
## Detection Rate : 0.3333
## Detection Prevalence : 0.3333
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : 1
##
## Generate predictions
y_hats_x1 <- predict(
## Random forest object
object=xgbFit1,
## Data to use for predictions; remove the Species
newdata=moklas1.test[, -10])
confusionMatrix(y_hats_x1,moklas1.test$promo, positive="1")
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 44 13
## 1 3 11
##
## Accuracy : 0.7746
## 95% CI : (0.66, 0.8654)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.02706
##
## Kappa : 0.4393
##
## Mcnemar's Test P-Value : 0.02445
##
## Sensitivity : 0.4583
## Specificity : 0.9362
## Pos Pred Value : 0.7857
## Neg Pred Value : 0.7719
## Prevalence : 0.3380
## Detection Rate : 0.1549
## Detection Prevalence : 0.1972
## Balanced Accuracy : 0.6973
##
## 'Positive' Class : 1
##
library(xgboost)
moklas1.train.matrix<-data.matrix(moklas1.train[,-10])
promo<-as.matrix(as.factor(as.character(moklas1.train$promo)))
xgbModel <- xgboost(data = moklas1.train.matrix,
label = promo,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.691055
## [2] train-logloss:0.689002
## [3] train-logloss:0.686987
## [4] train-logloss:0.685008
## [5] train-logloss:0.683067
## [6] train-logloss:0.681160
## [7] train-logloss:0.679289
## [8] train-logloss:0.677450
## [9] train-logloss:0.675646
## [10] train-logloss:0.673873
## [11] train-logloss:0.672133
## [12] train-logloss:0.670423
## [13] train-logloss:0.668744
## [14] train-logloss:0.667094
## [15] train-logloss:0.665474
## [16] train-logloss:0.663882
## [17] train-logloss:0.662318
## [18] train-logloss:0.660782
## [19] train-logloss:0.659272
## [20] train-logloss:0.657789
## [21] train-logloss:0.656331
## [22] train-logloss:0.654899
## [23] train-logloss:0.653491
## [24] train-logloss:0.652108
## [25] train-logloss:0.650748
## [26] train-logloss:0.649411
## [27] train-logloss:0.648098
## [28] train-logloss:0.646807
## [29] train-logloss:0.645537
## [30] train-logloss:0.644209
## [31] train-logloss:0.642977
## [32] train-logloss:0.641688
## [33] train-logloss:0.640423
## [34] train-logloss:0.639242
## [35] train-logloss:0.638014
## [36] train-logloss:0.636867
## [37] train-logloss:0.635673
## [38] train-logloss:0.633674
## [39] train-logloss:0.632514
## [40] train-logloss:0.630563
## [41] train-logloss:0.628648
## [42] train-logloss:0.627591
## [43] train-logloss:0.626487
## [44] train-logloss:0.624631
## [45] train-logloss:0.622809
## [46] train-logloss:0.621746
## [47] train-logloss:0.619966
## [48] train-logloss:0.618218
## [49] train-logloss:0.617257
## [50] train-logloss:0.616244
## [51] train-logloss:0.614549
## [52] train-logloss:0.612885
## [53] train-logloss:0.611908
## [54] train-logloss:0.610282
## [55] train-logloss:0.608685
## [56] train-logloss:0.607742
## [57] train-logloss:0.606182
## [58] train-logloss:0.604650
## [59] train-logloss:0.603805
## [60] train-logloss:0.602903
## [61] train-logloss:0.601417
## [62] train-logloss:0.599957
## [63] train-logloss:0.599086
## [64] train-logloss:0.597659
## [65] train-logloss:0.596257
## [66] train-logloss:0.595473
## [67] train-logloss:0.594102
## [68] train-logloss:0.593278
## [69] train-logloss:0.591938
## [70] train-logloss:0.590621
## [71] train-logloss:0.589824
## [72] train-logloss:0.588536
## [73] train-logloss:0.587271
## [74] train-logloss:0.586498
## [75] train-logloss:0.585260
## [76] train-logloss:0.584044
## [77] train-logloss:0.583295
## [78] train-logloss:0.582106
## [79] train-logloss:0.580938
## [80] train-logloss:0.580258
## [81] train-logloss:0.579114
## [82] train-logloss:0.578400
## [83] train-logloss:0.577282
## [84] train-logloss:0.576182
## [85] train-logloss:0.575489
## [86] train-logloss:0.574414
## [87] train-logloss:0.573355
## [88] train-logloss:0.572727
## [89] train-logloss:0.571689
## [90] train-logloss:0.571028
## [91] train-logloss:0.570012
## [92] train-logloss:0.569409
## [93] train-logloss:0.568412
## [94] train-logloss:0.567775
## [95] train-logloss:0.566799
## [96] train-logloss:0.566194
## [97] train-logloss:0.565619
## [98] train-logloss:0.564666
## [99] train-logloss:0.564080
## [100] train-logloss:0.563149
## [101] train-logloss:0.562547
## [102] train-logloss:0.561633
## [103] train-logloss:0.561069
## [104] train-logloss:0.560175
## [105] train-logloss:0.559623
## [106] train-logloss:0.559087
## [107] train-logloss:0.558212
## [108] train-logloss:0.557676
## [109] train-logloss:0.556821
## [110] train-logloss:0.556300
## [111] train-logloss:0.555776
## [112] train-logloss:0.554939
## [113] train-logloss:0.554426
## [114] train-logloss:0.553605
## [115] train-logloss:0.553101
## [116] train-logloss:0.552296
## [117] train-logloss:0.551801
## [118] train-logloss:0.551311
## [119] train-logloss:0.550523
## [120] train-logloss:0.550043
## [121] train-logloss:0.549270
## [122] train-logloss:0.548798
## [123] train-logloss:0.548324
## [124] train-logloss:0.547569
## [125] train-logloss:0.547108
## [126] train-logloss:0.546367
## [127] train-logloss:0.545912
## [128] train-logloss:0.545455
## [129] train-logloss:0.544728
## [130] train-logloss:0.544285
## [131] train-logloss:0.543839
## [132] train-logloss:0.543127
## [133] train-logloss:0.542694
## [134] train-logloss:0.541995
## [135] train-logloss:0.541568
## [136] train-logloss:0.541137
## [137] train-logloss:0.540660
## [138] train-logloss:0.540243
## [139] train-logloss:0.539775
## [140] train-logloss:0.539355
## [141] train-logloss:0.538894
## [142] train-logloss:0.538487
## [143] train-logloss:0.538077
## [144] train-logloss:0.537625
## [145] train-logloss:0.537167
## [146] train-logloss:0.536770
## [147] train-logloss:0.536326
## [148] train-logloss:0.535889
## [149] train-logloss:0.535442
## [150] train-logloss:0.535053
## [151] train-logloss:0.534664
## [152] train-logloss:0.534235
## [153] train-logloss:0.533855
## [154] train-logloss:0.533422
## [155] train-logloss:0.533001
## [156] train-logloss:0.532627
## [157] train-logloss:0.532213
## [158] train-logloss:0.531839
## [159] train-logloss:0.531431
## [160] train-logloss:0.531064
## [161] train-logloss:0.530646
## [162] train-logloss:0.530245
## [163] train-logloss:0.529885
## [164] train-logloss:0.529475
## [165] train-logloss:0.529081
## [166] train-logloss:0.528725
## [167] train-logloss:0.528336
## [168] train-logloss:0.527983
## [169] train-logloss:0.527586
## [170] train-logloss:0.527204
## [171] train-logloss:0.526857
## [172] train-logloss:0.526514
## [173] train-logloss:0.526137
## [174] train-logloss:0.525797
## [175] train-logloss:0.525426
## [176] train-logloss:0.525040
## [177] train-logloss:0.524705
## [178] train-logloss:0.524340
## [179] train-logloss:0.523963
## [180] train-logloss:0.523603
## [181] train-logloss:0.523274
## [182] train-logloss:0.522946
## [183] train-logloss:0.522591
## [184] train-logloss:0.522267
## [185] train-logloss:0.521898
## [186] train-logloss:0.521549
## [187] train-logloss:0.521229
## [188] train-logloss:0.520913
## [189] train-logloss:0.520342
## [190] train-logloss:0.519982
## [191] train-logloss:0.519669
## [192] train-logloss:0.519327
## [193] train-logloss:0.518991
## [194] train-logloss:0.518681
## [195] train-logloss:0.518375
## [196] train-logloss:0.518043
## [197] train-logloss:0.517693
## [198] train-logloss:0.517391
## [199] train-logloss:0.517064
## [200] train-logloss:0.516763
## [201] train-logloss:0.516467
## [202] train-logloss:0.515921
## [203] train-logloss:0.515580
## [204] train-logloss:0.515260
## [205] train-logloss:0.514968
## [206] train-logloss:0.514652
## [207] train-logloss:0.514360
## [208] train-logloss:0.514073
## [209] train-logloss:0.513741
## [210] train-logloss:0.513429
## [211] train-logloss:0.513146
## [212] train-logloss:0.512839
## [213] train-logloss:0.512555
## [214] train-logloss:0.512276
## [215] train-logloss:0.511754
## [216] train-logloss:0.511475
## [217] train-logloss:0.511174
## [218] train-logloss:0.510899
## [219] train-logloss:0.510579
## [220] train-logloss:0.510281
## [221] train-logloss:0.510011
## [222] train-logloss:0.509696
## [223] train-logloss:0.509402
## [224] train-logloss:0.509135
## [225] train-logloss:0.508846
## [226] train-logloss:0.508577
## [227] train-logloss:0.508314
## [228] train-logloss:0.507814
## [229] train-logloss:0.507506
## [230] train-logloss:0.507223
## [231] train-logloss:0.506962
## [232] train-logloss:0.506702
## [233] train-logloss:0.506212
## [234] train-logloss:0.505934
## [235] train-logloss:0.505679
## [236] train-logloss:0.505377
## [237] train-logloss:0.505103
## [238] train-logloss:0.504849
## [239] train-logloss:0.504598
## [240] train-logloss:0.504327
## [241] train-logloss:0.504060
## [242] train-logloss:0.503764
## [243] train-logloss:0.503516
## [244] train-logloss:0.503268
## [245] train-logloss:0.503004
## [246] train-logloss:0.502760
## [247] train-logloss:0.502473
## [248] train-logloss:0.502211
## [249] train-logloss:0.501970
## [250] train-logloss:0.501712
## [251] train-logloss:0.501469
## [252] train-logloss:0.501231
## [253] train-logloss:0.500976
## [254] train-logloss:0.500693
## [255] train-logloss:0.500458
## [256] train-logloss:0.499997
## [257] train-logloss:0.499760
## [258] train-logloss:0.499509
## [259] train-logloss:0.499278
## [260] train-logloss:0.499031
## [261] train-logloss:0.498797
## [262] train-logloss:0.498568
## [263] train-logloss:0.498293
## [264] train-logloss:0.498048
## [265] train-logloss:0.497822
## [266] train-logloss:0.497580
## [267] train-logloss:0.497350
## [268] train-logloss:0.496849
## [269] train-logloss:0.496627
## [270] train-logloss:0.496390
## [271] train-logloss:0.495900
## [272] train-logloss:0.495534
## [273] train-logloss:0.495314
## [274] train-logloss:0.495089
## [275] train-logloss:0.494729
## [276] train-logloss:0.494251
## [277] train-logloss:0.494036
## [278] train-logloss:0.493684
## [279] train-logloss:0.493457
## [280] train-logloss:0.493245
## [281] train-logloss:0.493023
## [282] train-logloss:0.492812
## [283] train-logloss:0.492588
## [284] train-logloss:0.492127
## [285] train-logloss:0.491783
## [286] train-logloss:0.491520
## [287] train-logloss:0.491182
## [288] train-logloss:0.490978
## [289] train-logloss:0.490757
## [290] train-logloss:0.490541
## [291] train-logloss:0.490090
## [292] train-logloss:0.489759
## [293] train-logloss:0.489559
## [294] train-logloss:0.489301
## [295] train-logloss:0.488976
## [296] train-logloss:0.488760
## [297] train-logloss:0.488562
## [298] train-logloss:0.488243
## [299] train-logloss:0.488028
## [300] train-logloss:0.487817
## [301] train-logloss:0.487622
## [302] train-logloss:0.487187
## [303] train-logloss:0.486874
## [304] train-logloss:0.486682
## [305] train-logloss:0.486471
## [306] train-logloss:0.486220
## [307] train-logloss:0.485911
## [308] train-logloss:0.485703
## [309] train-logloss:0.485280
## [310] train-logloss:0.485090
## [311] train-logloss:0.484884
## [312] train-logloss:0.484581
## [313] train-logloss:0.484395
## [314] train-logloss:0.484190
## [315] train-logloss:0.483776
## [316] train-logloss:0.483574
## [317] train-logloss:0.483389
## [318] train-logloss:0.482982
## [319] train-logloss:0.482686
## [320] train-logloss:0.482503
## [321] train-logloss:0.482212
## [322] train-logloss:0.482014
## [323] train-logloss:0.481813
## [324] train-logloss:0.481569
## [325] train-logloss:0.481370
## [326] train-logloss:0.480973
## [327] train-logloss:0.480686
## [328] train-logloss:0.480507
## [329] train-logloss:0.480331
## [330] train-logloss:0.479940
## [331] train-logloss:0.479658
## [332] train-logloss:0.479465
## [333] train-logloss:0.479270
## [334] train-logloss:0.479096
## [335] train-logloss:0.478722
## [336] train-logloss:0.478446
## [337] train-logloss:0.478078
## [338] train-logloss:0.477887
## [339] train-logloss:0.477717
## [340] train-logloss:0.477523
## [341] train-logloss:0.477285
## [342] train-logloss:0.476922
## [343] train-logloss:0.476651
## [344] train-logloss:0.476294
## [345] train-logloss:0.476124
## [346] train-logloss:0.475859
## [347] train-logloss:0.475508
## [348] train-logloss:0.475323
## [349] train-logloss:0.475156
## [350] train-logloss:0.474810
## [351] train-logloss:0.474618
## [352] train-logloss:0.474436
## [353] train-logloss:0.474271
## [354] train-logloss:0.474082
## [355] train-logloss:0.473740
## [356] train-logloss:0.473481
## [357] train-logloss:0.473146
## [358] train-logloss:0.472982
## [359] train-logloss:0.472803
## [360] train-logloss:0.472549
## [361] train-logloss:0.472218
## [362] train-logloss:0.472058
## [363] train-logloss:0.471732
## [364] train-logloss:0.471556
## [365] train-logloss:0.471397
## [366] train-logloss:0.471209
## [367] train-logloss:0.470976
## [368] train-logloss:0.470727
## [369] train-logloss:0.470542
## [370] train-logloss:0.470295
## [371] train-logloss:0.469974
## [372] train-logloss:0.469817
## [373] train-logloss:0.469645
## [374] train-logloss:0.469328
## [375] train-logloss:0.469173
## [376] train-logloss:0.468989
## [377] train-logloss:0.468761
## [378] train-logloss:0.468520
## [379] train-logloss:0.468339
## [380] train-logloss:0.468025
## [381] train-logloss:0.467787
## [382] train-logloss:0.467480
## [383] train-logloss:0.467327
## [384] train-logloss:0.467158
## [385] train-logloss:0.466978
## [386] train-logloss:0.466828
## [387] train-logloss:0.466651
## [388] train-logloss:0.466426
## [389] train-logloss:0.466192
## [390] train-logloss:0.465888
## [391] train-logloss:0.465753
## [392] train-logloss:0.465453
## [393] train-logloss:0.465222
## [394] train-logloss:0.465073
## [395] train-logloss:0.464898
## [396] train-logloss:0.464732
## [397] train-logloss:0.464598
## [398] train-logloss:0.464302
## [399] train-logloss:0.464155
## [400] train-logloss:0.463982
## [401] train-logloss:0.463818
## [402] train-logloss:0.463685
## [403] train-logloss:0.463394
## [404] train-logloss:0.463166
## [405] train-logloss:0.462995
## [406] train-logloss:0.462850
## [407] train-logloss:0.462629
## [408] train-logloss:0.462406
## [409] train-logloss:0.462237
## [410] train-logloss:0.461914
## [411] train-logloss:0.461783
## [412] train-logloss:0.461563
## [413] train-logloss:0.461420
## [414] train-logloss:0.461134
## [415] train-logloss:0.460973
## [416] train-logloss:0.460843
## [417] train-logloss:0.460676
## [418] train-logloss:0.460535
## [419] train-logloss:0.460253
## [420] train-logloss:0.460036
## [421] train-logloss:0.459871
## [422] train-logloss:0.459557
## [423] train-logloss:0.459398
## [424] train-logloss:0.459257
## [425] train-logloss:0.459129
## [426] train-logloss:0.458916
## [427] train-logloss:0.458753
## [428] train-logloss:0.458444
## [429] train-logloss:0.458306
## [430] train-logloss:0.458148
## [431] train-logloss:0.458022
## [432] train-logloss:0.457812
## [433] train-logloss:0.457537
## [434] train-logloss:0.457400
## [435] train-logloss:0.457239
## [436] train-logloss:0.457083
## [437] train-logloss:0.456958
## [438] train-logloss:0.456823
## [439] train-logloss:0.456552
## [440] train-logloss:0.456344
## [441] train-logloss:0.456184
## [442] train-logloss:0.455885
## [443] train-logloss:0.455730
## [444] train-logloss:0.455596
## [445] train-logloss:0.455473
## [446] train-logloss:0.455269
## [447] train-logloss:0.455111
## [448] train-logloss:0.454816
## [449] train-logloss:0.454615
## [450] train-logloss:0.454325
## [451] train-logloss:0.454193
## [452] train-logloss:0.454040
## [453] train-logloss:0.453917
## [454] train-logloss:0.453762
## [455] train-logloss:0.453476
## [456] train-logloss:0.453278
## [457] train-logloss:0.453146
## [458] train-logloss:0.453026
## [459] train-logloss:0.452874
## [460] train-logloss:0.452745
## [461] train-logloss:0.452626
## [462] train-logloss:0.452471
## [463] train-logloss:0.452189
## [464] train-logloss:0.451994
## [465] train-logloss:0.451842
## [466] train-logloss:0.451692
## [467] train-logloss:0.451564
## [468] train-logloss:0.451287
## [469] train-logloss:0.451094
## [470] train-logloss:0.450977
## [471] train-logloss:0.450849
## [472] train-logloss:0.450733
## [473] train-logloss:0.450476
## [474] train-logloss:0.450328
## [475] train-logloss:0.450177
## [476] train-logloss:0.449987
## [477] train-logloss:0.449775
## [478] train-logloss:0.449626
## [479] train-logloss:0.449355
## [480] train-logloss:0.449168
## [481] train-logloss:0.449043
## [482] train-logloss:0.448776
## [483] train-logloss:0.448651
## [484] train-logloss:0.448536
## [485] train-logloss:0.448352
## [486] train-logloss:0.448239
## [487] train-logloss:0.448091
## [488] train-logloss:0.447944
## [489] train-logloss:0.447693
## [490] train-logloss:0.447511
## [491] train-logloss:0.447388
## [492] train-logloss:0.447242
## [493] train-logloss:0.446981
## [494] train-logloss:0.446836
## [495] train-logloss:0.446714
## [496] train-logloss:0.446602
## [497] train-logloss:0.446422
## [498] train-logloss:0.446312
## [499] train-logloss:0.446066
## [500] train-logloss:0.445888
## [501] train-logloss:0.445744
## [502] train-logloss:0.445623
## [503] train-logloss:0.445479
## [504] train-logloss:0.445336
## [505] train-logloss:0.445080
## [506] train-logloss:0.444905
## [507] train-logloss:0.444785
## [508] train-logloss:0.444643
## [509] train-logloss:0.444533
## [510] train-logloss:0.444281
## [511] train-logloss:0.444162
## [512] train-logloss:0.444021
## [513] train-logloss:0.443912
## [514] train-logloss:0.443771
## [515] train-logloss:0.443522
## [516] train-logloss:0.443349
## [517] train-logloss:0.443231
## [518] train-logloss:0.443091
## [519] train-logloss:0.442984
## [520] train-logloss:0.442844
## [521] train-logloss:0.442598
## [522] train-logloss:0.442481
## [523] train-logloss:0.442310
## [524] train-logloss:0.442205
## [525] train-logloss:0.441967
## [526] train-logloss:0.441828
## [527] train-logloss:0.441711
## [528] train-logloss:0.441575
## [529] train-logloss:0.441340
## [530] train-logloss:0.441171
## [531] train-logloss:0.441032
## [532] train-logloss:0.440927
## [533] train-logloss:0.440722
## [534] train-logloss:0.440555
## [535] train-logloss:0.440418
## [536] train-logloss:0.440179
## [537] train-logloss:0.440062
## [538] train-logloss:0.439898
## [539] train-logloss:0.439795
## [540] train-logloss:0.439658
## [541] train-logloss:0.439522
## [542] train-logloss:0.439286
## [543] train-logloss:0.439171
## [544] train-logloss:0.439008
## [545] train-logloss:0.438776
## [546] train-logloss:0.438641
## [547] train-logloss:0.438526
## [548] train-logloss:0.438423
## [549] train-logloss:0.438263
## [550] train-logloss:0.438129
## [551] train-logloss:0.437899
## [552] train-logloss:0.437765
## [553] train-logloss:0.437651
## [554] train-logloss:0.437550
## [555] train-logloss:0.437451
## [556] train-logloss:0.437292
## [557] train-logloss:0.437159
## [558] train-logloss:0.437027
## [559] train-logloss:0.436798
## [560] train-logloss:0.436685
## [561] train-logloss:0.436554
## [562] train-logloss:0.436455
## [563] train-logloss:0.436230
## [564] train-logloss:0.436073
## [565] train-logloss:0.435941
## [566] train-logloss:0.435810
## [567] train-logloss:0.435698
## [568] train-logloss:0.435498
## [569] train-logloss:0.435343
## [570] train-logloss:0.435120
## [571] train-logloss:0.434966
## [572] train-logloss:0.434835
## [573] train-logloss:0.434738
## [574] train-logloss:0.434518
## [575] train-logloss:0.434367
## [576] train-logloss:0.434237
## [577] train-logloss:0.434125
## [578] train-logloss:0.433996
## [579] train-logloss:0.433774
## [580] train-logloss:0.433624
## [581] train-logloss:0.433496
## [582] train-logloss:0.433385
## [583] train-logloss:0.433289
## [584] train-logloss:0.433072
## [585] train-logloss:0.432945
## [586] train-logloss:0.432796
## [587] train-logloss:0.432668
## [588] train-logloss:0.432450
## [589] train-logloss:0.432340
## [590] train-logloss:0.432214
## [591] train-logloss:0.432119
## [592] train-logloss:0.432010
## [593] train-logloss:0.431814
## [594] train-logloss:0.431720
## [595] train-logloss:0.431507
## [596] train-logloss:0.431360
## [597] train-logloss:0.431232
## [598] train-logloss:0.431107
## [599] train-logloss:0.430962
## [600] train-logloss:0.430836
## [601] train-logloss:0.430622
## [602] train-logloss:0.430514
## [603] train-logloss:0.430421
## [604] train-logloss:0.430297
## [605] train-logloss:0.430086
## [606] train-logloss:0.429943
## [607] train-logloss:0.429835
## [608] train-logloss:0.429710
## [609] train-logloss:0.429501
## [610] train-logloss:0.429378
## [611] train-logloss:0.429236
## [612] train-logloss:0.429128
## [613] train-logloss:0.429036
## [614] train-logloss:0.428914
## [615] train-logloss:0.428708
## [616] train-logloss:0.428567
## [617] train-logloss:0.428443
## [618] train-logloss:0.428250
## [619] train-logloss:0.428160
## [620] train-logloss:0.428021
## [621] train-logloss:0.427899
## [622] train-logloss:0.427694
## [623] train-logloss:0.427586
## [624] train-logloss:0.427464
## [625] train-logloss:0.427375
## [626] train-logloss:0.427238
## [627] train-logloss:0.427035
## [628] train-logloss:0.426928
## [629] train-logloss:0.426808
## [630] train-logloss:0.426720
## [631] train-logloss:0.426584
## [632] train-logloss:0.426462
## [633] train-logloss:0.426262
## [634] train-logloss:0.426156
## [635] train-logloss:0.426037
## [636] train-logloss:0.425950
## [637] train-logloss:0.425780
## [638] train-logloss:0.425659
## [639] train-logloss:0.425462
## [640] train-logloss:0.425356
## [641] train-logloss:0.425238
## [642] train-logloss:0.425104
## [643] train-logloss:0.424904
## [644] train-logloss:0.424786
## [645] train-logloss:0.424681
## [646] train-logloss:0.424548
## [647] train-logloss:0.424462
## [648] train-logloss:0.424295
## [649] train-logloss:0.424176
## [650] train-logloss:0.424059
## [651] train-logloss:0.423866
## [652] train-logloss:0.423761
## [653] train-logloss:0.423573
## [654] train-logloss:0.423442
## [655] train-logloss:0.423323
## [656] train-logloss:0.423239
## [657] train-logloss:0.423042
## [658] train-logloss:0.422912
## [659] train-logloss:0.422796
## [660] train-logloss:0.422692
## [661] train-logloss:0.422528
## [662] train-logloss:0.422445
## [663] train-logloss:0.422330
## [664] train-logloss:0.422135
## [665] train-logloss:0.422007
## [666] train-logloss:0.421889
## [667] train-logloss:0.421786
## [668] train-logloss:0.421671
## [669] train-logloss:0.421483
## [670] train-logloss:0.421380
## [671] train-logloss:0.421267
## [672] train-logloss:0.421140
## [673] train-logloss:0.421023
## [674] train-logloss:0.420837
## [675] train-logloss:0.420735
## [676] train-logloss:0.420622
## [677] train-logloss:0.420496
## [678] train-logloss:0.420306
## [679] train-logloss:0.420122
## [680] train-logloss:0.420040
## [681] train-logloss:0.419879
## [682] train-logloss:0.419778
## [683] train-logloss:0.419666
## [684] train-logloss:0.419549
## [685] train-logloss:0.419425
## [686] train-logloss:0.419310
## [687] train-logloss:0.419127
## [688] train-logloss:0.419027
## [689] train-logloss:0.418915
## [690] train-logloss:0.418834
## [691] train-logloss:0.418674
## [692] train-logloss:0.418551
## [693] train-logloss:0.418371
## [694] train-logloss:0.418261
## [695] train-logloss:0.418161
## [696] train-logloss:0.418081
## [697] train-logloss:0.417967
## [698] train-logloss:0.417857
## [699] train-logloss:0.417679
## [700] train-logloss:0.417557
## [701] train-logloss:0.417458
## [702] train-logloss:0.417300
## [703] train-logloss:0.417191
## [704] train-logloss:0.417112
## [705] train-logloss:0.416999
## [706] train-logloss:0.416824
## [707] train-logloss:0.416703
## [708] train-logloss:0.416604
## [709] train-logloss:0.416424
## [710] train-logloss:0.416312
## [711] train-logloss:0.416139
## [712] train-logloss:0.416019
## [713] train-logloss:0.415942
## [714] train-logloss:0.415833
## [715] train-logloss:0.415735
## [716] train-logloss:0.415580
## [717] train-logloss:0.415503
## [718] train-logloss:0.415351
## [719] train-logloss:0.415243
## [720] train-logloss:0.415167
## [721] train-logloss:0.415016
## [722] train-logloss:0.414904
## [723] train-logloss:0.414797
## [724] train-logloss:0.414626
## [725] train-logloss:0.414528
## [726] train-logloss:0.414410
## [727] train-logloss:0.414300
## [728] train-logloss:0.414131
## [729] train-logloss:0.414034
## [730] train-logloss:0.413927
## [731] train-logloss:0.413810
## [732] train-logloss:0.413736
## [733] train-logloss:0.413587
## [734] train-logloss:0.413481
## [735] train-logloss:0.413384
## [736] train-logloss:0.413203
## [737] train-logloss:0.413087
## [738] train-logloss:0.412977
## [739] train-logloss:0.412872
## [740] train-logloss:0.412707
## [741] train-logloss:0.412610
## [742] train-logloss:0.412537
## [743] train-logloss:0.412432
## [744] train-logloss:0.412317
## [745] train-logloss:0.412142
## [746] train-logloss:0.412032
## [747] train-logloss:0.411937
## [748] train-logloss:0.411774
## [749] train-logloss:0.411661
## [750] train-logloss:0.411557
## [751] train-logloss:0.411449
## [752] train-logloss:0.411287
## [753] train-logloss:0.411192
## [754] train-logloss:0.411080
## [755] train-logloss:0.411008
## [756] train-logloss:0.410860
## [757] train-logloss:0.410757
## [758] train-logloss:0.410686
## [759] train-logloss:0.410508
## [760] train-logloss:0.410406
## [761] train-logloss:0.410312
## [762] train-logloss:0.410200
## [763] train-logloss:0.410093
## [764] train-logloss:0.409991
## [765] train-logloss:0.409897
## [766] train-logloss:0.409721
## [767] train-logloss:0.409549
## [768] train-logloss:0.409438
## [769] train-logloss:0.409332
## [770] train-logloss:0.409187
## [771] train-logloss:0.409117
## [772] train-logloss:0.409015
## [773] train-logloss:0.408910
## [774] train-logloss:0.408752
## [775] train-logloss:0.408659
## [776] train-logloss:0.408550
## [777] train-logloss:0.408485
## [778] train-logloss:0.408385
## [779] train-logloss:0.408241
## [780] train-logloss:0.408086
## [781] train-logloss:0.407993
## [782] train-logloss:0.407893
## [783] train-logloss:0.407785
## [784] train-logloss:0.407680
## [785] train-logloss:0.407617
## [786] train-logloss:0.407475
## [787] train-logloss:0.407376
## [788] train-logloss:0.407221
## [789] train-logloss:0.407129
## [790] train-logloss:0.407025
## [791] train-logloss:0.406926
## [792] train-logloss:0.406834
## [793] train-logloss:0.406665
## [794] train-logloss:0.406559
## [795] train-logloss:0.406456
## [796] train-logloss:0.406303
## [797] train-logloss:0.406197
## [798] train-logloss:0.406135
## [799] train-logloss:0.405996
## [800] train-logloss:0.405897
## [801] train-logloss:0.405727
## [802] train-logloss:0.405636
## [803] train-logloss:0.405538
## [804] train-logloss:0.405476
## [805] train-logloss:0.405339
## [806] train-logloss:0.405236
## [807] train-logloss:0.405139
## [808] train-logloss:0.405034
## [809] train-logloss:0.404944
## [810] train-logloss:0.404775
## [811] train-logloss:0.404678
## [812] train-logloss:0.404574
## [813] train-logloss:0.404472
## [814] train-logloss:0.404323
## [815] train-logloss:0.404233
## [816] train-logloss:0.404137
## [817] train-logloss:0.404036
## [818] train-logloss:0.403889
## [819] train-logloss:0.403723
## [820] train-logloss:0.403620
## [821] train-logloss:0.403531
## [822] train-logloss:0.403435
## [823] train-logloss:0.403335
## [824] train-logloss:0.403275
## [825] train-logloss:0.403139
## [826] train-logloss:0.402993
## [827] train-logloss:0.402903
## [828] train-logloss:0.402808
## [829] train-logloss:0.402706
## [830] train-logloss:0.402542
## [831] train-logloss:0.402448
## [832] train-logloss:0.402346
## [833] train-logloss:0.402258
## [834] train-logloss:0.402159
## [835] train-logloss:0.402064
## [836] train-logloss:0.401966
## [837] train-logloss:0.401823
## [838] train-logloss:0.401735
## [839] train-logloss:0.401635
## [840] train-logloss:0.401541
## [841] train-logloss:0.401481
## [842] train-logloss:0.401338
## [843] train-logloss:0.401251
## [844] train-logloss:0.401158
## [845] train-logloss:0.400995
## [846] train-logloss:0.400896
## [847] train-logloss:0.400799
## [848] train-logloss:0.400702
## [849] train-logloss:0.400561
## [850] train-logloss:0.400475
## [851] train-logloss:0.400416
## [852] train-logloss:0.400323
## [853] train-logloss:0.400189
## [854] train-logloss:0.400131
## [855] train-logloss:0.400033
## [856] train-logloss:0.399901
## [857] train-logloss:0.399808
## [858] train-logloss:0.399648
## [859] train-logloss:0.399561
## [860] train-logloss:0.399470
## [861] train-logloss:0.399374
## [862] train-logloss:0.399277
## [863] train-logloss:0.399137
## [864] train-logloss:0.399042
## [865] train-logloss:0.398951
## [866] train-logloss:0.398865
## [867] train-logloss:0.398705
## [868] train-logloss:0.398609
## [869] train-logloss:0.398451
## [870] train-logloss:0.398355
## [871] train-logloss:0.398261
## [872] train-logloss:0.398170
## [873] train-logloss:0.398085
## [874] train-logloss:0.398028
## [875] train-logloss:0.397897
## [876] train-logloss:0.397807
## [877] train-logloss:0.397714
## [878] train-logloss:0.397577
## [879] train-logloss:0.397492
## [880] train-logloss:0.397403
## [881] train-logloss:0.397310
## [882] train-logloss:0.397174
## [883] train-logloss:0.397079
## [884] train-logloss:0.396995
## [885] train-logloss:0.396906
## [886] train-logloss:0.396751
## [887] train-logloss:0.396657
## [888] train-logloss:0.396569
## [889] train-logloss:0.396485
## [890] train-logloss:0.396429
## [891] train-logloss:0.396300
## [892] train-logloss:0.396208
## [893] train-logloss:0.396050
## [894] train-logloss:0.395996
## [895] train-logloss:0.395868
## [896] train-logloss:0.395780
## [897] train-logloss:0.395688
## [898] train-logloss:0.395555
## [899] train-logloss:0.395462
## [900] train-logloss:0.395378
## [901] train-logloss:0.395291
## [902] train-logloss:0.395138
## [903] train-logloss:0.395046
## [904] train-logloss:0.394963
## [905] train-logloss:0.394876
## [906] train-logloss:0.394785
## [907] train-logloss:0.394654
## [908] train-logloss:0.394567
## [909] train-logloss:0.394437
## [910] train-logloss:0.394354
## [911] train-logloss:0.394263
## [912] train-logloss:0.394176
## [913] train-logloss:0.394086
## [914] train-logloss:0.394004
## [915] train-logloss:0.393850
## [916] train-logloss:0.393795
## [917] train-logloss:0.393705
## [918] train-logloss:0.393616
## [919] train-logloss:0.393487
## [920] train-logloss:0.393398
## [921] train-logloss:0.393312
## [922] train-logloss:0.393184
## [923] train-logloss:0.393102
## [924] train-logloss:0.393013
## [925] train-logloss:0.392959
## [926] train-logloss:0.392833
## [927] train-logloss:0.392748
## [928] train-logloss:0.392667
## [929] train-logloss:0.392582
## [930] train-logloss:0.392433
## [931] train-logloss:0.392344
## [932] train-logloss:0.392257
## [933] train-logloss:0.392172
## [934] train-logloss:0.392091
## [935] train-logloss:0.392038
## [936] train-logloss:0.391892
## [937] train-logloss:0.391804
## [938] train-logloss:0.391719
## [939] train-logloss:0.391640
## [940] train-logloss:0.391488
## [941] train-logloss:0.391400
## [942] train-logloss:0.391276
## [943] train-logloss:0.391192
## [944] train-logloss:0.391106
## [945] train-logloss:0.390980
## [946] train-logloss:0.390893
## [947] train-logloss:0.390810
## [948] train-logloss:0.390665
## [949] train-logloss:0.390586
## [950] train-logloss:0.390499
## [951] train-logloss:0.390413
## [952] train-logloss:0.390330
## [953] train-logloss:0.390244
## [954] train-logloss:0.390165
## [955] train-logloss:0.390016
## [956] train-logloss:0.389872
## [957] train-logloss:0.389787
## [958] train-logloss:0.389735
## [959] train-logloss:0.389611
## [960] train-logloss:0.389527
## [961] train-logloss:0.389444
## [962] train-logloss:0.389365
## [963] train-logloss:0.389243
## [964] train-logloss:0.389192
## [965] train-logloss:0.389110
## [966] train-logloss:0.389025
## [967] train-logloss:0.388883
## [968] train-logloss:0.388799
## [969] train-logloss:0.388717
## [970] train-logloss:0.388577
## [971] train-logloss:0.388499
## [972] train-logloss:0.388448
## [973] train-logloss:0.388327
## [974] train-logloss:0.388246
## [975] train-logloss:0.388162
## [976] train-logloss:0.388022
## [977] train-logloss:0.387939
## [978] train-logloss:0.387858
## [979] train-logloss:0.387780
## [980] train-logloss:0.387697
## [981] train-logloss:0.387576
## [982] train-logloss:0.387498
## [983] train-logloss:0.387418
## [984] train-logloss:0.387368
## [985] train-logloss:0.387248
## [986] train-logloss:0.387168
## [987] train-logloss:0.387085
## [988] train-logloss:0.386965
## [989] train-logloss:0.386916
## [990] train-logloss:0.386778
## [991] train-logloss:0.386696
## [992] train-logloss:0.386615
## [993] train-logloss:0.386533
## [994] train-logloss:0.386414
## [995] train-logloss:0.386337
## [996] train-logloss:0.386257
## [997] train-logloss:0.386181
## [998] train-logloss:0.386062
## [999] train-logloss:0.385981
## [1000] train-logloss:0.385902
## Plot Train error.
plot(xgbModel$evaluation_log, type = "l")

## Plot feature importance
importance <- xgb.importance(model = xgbModel)
xgb.plot.importance(importance)

## Make predictions on test data
moklas1.test.matrix<-data.matrix(moklas1.test[,-10])
promo.test<-as.matrix(as.factor(as.character(moklas1.test$promo)))
predicted <- predict(xgbModel,moklas1.test.matrix )
predicted <- ifelse(predicted > 0.5 , 1,0)
## Create confusion matrix
confusionMatrix(table(predicted = predicted, actual = promo.test))
## Confusion Matrix and Statistics
##
## actual
## predicted 0 1
## 0 43 11
## 1 4 13
##
## Accuracy : 0.7887
## 95% CI : (0.6756, 0.8767)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.01404
##
## Kappa : 0.4916
##
## Mcnemar's Test P-Value : 0.12134
##
## Sensitivity : 0.9149
## Specificity : 0.5417
## Pos Pred Value : 0.7963
## Neg Pred Value : 0.7647
## Prevalence : 0.6620
## Detection Rate : 0.6056
## Detection Prevalence : 0.7606
## Balanced Accuracy : 0.7283
##
## 'Positive' Class : 0
##
RUS
library(xgboost)
down.train.matrix<-data.matrix(down_train[,-10])
promo1<-as.matrix(as.factor(as.character(down_train$promo)))
xgbModel1 <- xgboost(data = down.train.matrix,
label = promo1,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.691789
## [2] train-logloss:0.690704
## [3] train-logloss:0.689380
## [4] train-logloss:0.688323
## [5] train-logloss:0.687283
## [6] train-logloss:0.686000
## [7] train-logloss:0.684986
## [8] train-logloss:0.683734
## [9] train-logloss:0.682745
## [10] train-logloss:0.681524
## [11] train-logloss:0.680550
## [12] train-logloss:0.679357
## [13] train-logloss:0.678185
## [14] train-logloss:0.677243
## [15] train-logloss:0.676097
## [16] train-logloss:0.675169
## [17] train-logloss:0.674051
## [18] train-logloss:0.673142
## [19] train-logloss:0.672049
## [20] train-logloss:0.670975
## [21] train-logloss:0.670089
## [22] train-logloss:0.669040
## [23] train-logloss:0.668170
## [24] train-logloss:0.667144
## [25] train-logloss:0.666291
## [26] train-logloss:0.665290
## [27] train-logloss:0.664450
## [28] train-logloss:0.663471
## [29] train-logloss:0.662648
## [30] train-logloss:0.661692
## [31] train-logloss:0.660881
## [32] train-logloss:0.659945
## [33] train-logloss:0.659024
## [34] train-logloss:0.658236
## [35] train-logloss:0.657336
## [36] train-logloss:0.656558
## [37] train-logloss:0.655679
## [38] train-logloss:0.654917
## [39] train-logloss:0.654056
## [40] train-logloss:0.652603
## [41] train-logloss:0.651858
## [42] train-logloss:0.650437
## [43] train-logloss:0.649603
## [44] train-logloss:0.648211
## [45] train-logloss:0.646844
## [46] train-logloss:0.646130
## [47] train-logloss:0.644793
## [48] train-logloss:0.643479
## [49] train-logloss:0.642786
## [50] train-logloss:0.641498
## [51] train-logloss:0.640231
## [52] train-logloss:0.639441
## [53] train-logloss:0.638199
## [54] train-logloss:0.637533
## [55] train-logloss:0.636314
## [56] train-logloss:0.635660
## [57] train-logloss:0.634464
## [58] train-logloss:0.633703
## [59] train-logloss:0.633063
## [60] train-logloss:0.631890
## [61] train-logloss:0.630737
## [62] train-logloss:0.630110
## [63] train-logloss:0.629490
## [64] train-logloss:0.628363
## [65] train-logloss:0.627752
## [66] train-logloss:0.627023
## [67] train-logloss:0.625918
## [68] train-logloss:0.625319
## [69] train-logloss:0.624235
## [70] train-logloss:0.623169
## [71] train-logloss:0.622584
## [72] train-logloss:0.621880
## [73] train-logloss:0.620833
## [74] train-logloss:0.620259
## [75] train-logloss:0.619232
## [76] train-logloss:0.618668
## [77] train-logloss:0.617986
## [78] train-logloss:0.616979
## [79] train-logloss:0.616426
## [80] train-logloss:0.615437
## [81] train-logloss:0.614465
## [82] train-logloss:0.613925
## [83] train-logloss:0.613389
## [84] train-logloss:0.612436
## [85] train-logloss:0.611911
## [86] train-logloss:0.610975
## [87] train-logloss:0.610055
## [88] train-logloss:0.609538
## [89] train-logloss:0.608890
## [90] train-logloss:0.607985
## [91] train-logloss:0.607476
## [92] train-logloss:0.606586
## [93] train-logloss:0.606084
## [94] train-logloss:0.605451
## [95] train-logloss:0.604576
## [96] train-logloss:0.604083
## [97] train-logloss:0.603222
## [98] train-logloss:0.602376
## [99] train-logloss:0.601889
## [100] train-logloss:0.601270
## [101] train-logloss:0.600436
## [102] train-logloss:0.599616
## [103] train-logloss:0.599139
## [104] train-logloss:0.598330
## [105] train-logloss:0.597860
## [106] train-logloss:0.597256
## [107] train-logloss:0.596460
## [108] train-logloss:0.595677
## [109] train-logloss:0.595216
## [110] train-logloss:0.594445
## [111] train-logloss:0.593991
## [112] train-logloss:0.593469
## [113] train-logloss:0.592708
## [114] train-logloss:0.592195
## [115] train-logloss:0.591447
## [116] train-logloss:0.591002
## [117] train-logloss:0.590265
## [118] train-logloss:0.589761
## [119] train-logloss:0.589266
## [120] train-logloss:0.588539
## [121] train-logloss:0.588052
## [122] train-logloss:0.587336
## [123] train-logloss:0.586902
## [124] train-logloss:0.586425
## [125] train-logloss:0.585718
## [126] train-logloss:0.585248
## [127] train-logloss:0.584552
## [128] train-logloss:0.584089
## [129] train-logloss:0.583404
## [130] train-logloss:0.582949
## [131] train-logloss:0.582272
## [132] train-logloss:0.581849
## [133] train-logloss:0.581403
## [134] train-logloss:0.580736
## [135] train-logloss:0.580297
## [136] train-logloss:0.579640
## [137] train-logloss:0.579207
## [138] train-logloss:0.578560
## [139] train-logloss:0.578145
## [140] train-logloss:0.577719
## [141] train-logloss:0.577081
## [142] train-logloss:0.576672
## [143] train-logloss:0.576253
## [144] train-logloss:0.575622
## [145] train-logloss:0.575207
## [146] train-logloss:0.574586
## [147] train-logloss:0.574184
## [148] train-logloss:0.573774
## [149] train-logloss:0.573159
## [150] train-logloss:0.572763
## [151] train-logloss:0.572359
## [152] train-logloss:0.571752
## [153] train-logloss:0.571361
## [154] train-logloss:0.570961
## [155] train-logloss:0.570362
## [156] train-logloss:0.569967
## [157] train-logloss:0.569583
## [158] train-logloss:0.568990
## [159] train-logloss:0.568600
## [160] train-logloss:0.568221
## [161] train-logloss:0.567636
## [162] train-logloss:0.567250
## [163] train-logloss:0.566673
## [164] train-logloss:0.566300
## [165] train-logloss:0.565918
## [166] train-logloss:0.565550
## [167] train-logloss:0.564978
## [168] train-logloss:0.564602
## [169] train-logloss:0.564039
## [170] train-logloss:0.563675
## [171] train-logloss:0.563304
## [172] train-logloss:0.562936
## [173] train-logloss:0.562379
## [174] train-logloss:0.562021
## [175] train-logloss:0.561470
## [176] train-logloss:0.561107
## [177] train-logloss:0.560754
## [178] train-logloss:0.560396
## [179] train-logloss:0.559852
## [180] train-logloss:0.559504
## [181] train-logloss:0.559150
## [182] train-logloss:0.558612
## [183] train-logloss:0.558269
## [184] train-logloss:0.557919
## [185] train-logloss:0.557387
## [186] train-logloss:0.557049
## [187] train-logloss:0.556704
## [188] train-logloss:0.556179
## [189] train-logloss:0.555844
## [190] train-logloss:0.555503
## [191] train-logloss:0.554984
## [192] train-logloss:0.554646
## [193] train-logloss:0.554134
## [194] train-logloss:0.553804
## [195] train-logloss:0.553471
## [196] train-logloss:0.553147
## [197] train-logloss:0.552639
## [198] train-logloss:0.552310
## [199] train-logloss:0.551809
## [200] train-logloss:0.551483
## [201] train-logloss:0.551163
## [202] train-logloss:0.550668
## [203] train-logloss:0.550352
## [204] train-logloss:0.550030
## [205] train-logloss:0.549541
## [206] train-logloss:0.549229
## [207] train-logloss:0.548911
## [208] train-logloss:0.548428
## [209] train-logloss:0.548112
## [210] train-logloss:0.547805
## [211] train-logloss:0.547327
## [212] train-logloss:0.547016
## [213] train-logloss:0.546713
## [214] train-logloss:0.546406
## [215] train-logloss:0.545935
## [216] train-logloss:0.545635
## [217] train-logloss:0.545169
## [218] train-logloss:0.544865
## [219] train-logloss:0.544405
## [220] train-logloss:0.544109
## [221] train-logloss:0.543808
## [222] train-logloss:0.543353
## [223] train-logloss:0.543054
## [224] train-logloss:0.542763
## [225] train-logloss:0.542313
## [226] train-logloss:0.542018
## [227] train-logloss:0.541731
## [228] train-logloss:0.541440
## [229] train-logloss:0.540994
## [230] train-logloss:0.540711
## [231] train-logloss:0.540271
## [232] train-logloss:0.539982
## [233] train-logloss:0.539703
## [234] train-logloss:0.539419
## [235] train-logloss:0.538983
## [236] train-logloss:0.538707
## [237] train-logloss:0.538426
## [238] train-logloss:0.537995
## [239] train-logloss:0.537717
## [240] train-logloss:0.537445
## [241] train-logloss:0.537019
## [242] train-logloss:0.536749
## [243] train-logloss:0.536475
## [244] train-logloss:0.536054
## [245] train-logloss:0.535788
## [246] train-logloss:0.535517
## [247] train-logloss:0.535101
## [248] train-logloss:0.534832
## [249] train-logloss:0.534570
## [250] train-logloss:0.534158
## [251] train-logloss:0.533892
## [252] train-logloss:0.533633
## [253] train-logloss:0.533226
## [254] train-logloss:0.532969
## [255] train-logloss:0.532708
## [256] train-logloss:0.532305
## [257] train-logloss:0.532052
## [258] train-logloss:0.531793
## [259] train-logloss:0.531395
## [260] train-logloss:0.531138
## [261] train-logloss:0.530888
## [262] train-logloss:0.530495
## [263] train-logloss:0.530247
## [264] train-logloss:0.529995
## [265] train-logloss:0.529605
## [266] train-logloss:0.529355
## [267] train-logloss:0.528971
## [268] train-logloss:0.528726
## [269] train-logloss:0.528478
## [270] train-logloss:0.528098
## [271] train-logloss:0.527856
## [272] train-logloss:0.527612
## [273] train-logloss:0.527374
## [274] train-logloss:0.526996
## [275] train-logloss:0.526755
## [276] train-logloss:0.526383
## [277] train-logloss:0.526146
## [278] train-logloss:0.525907
## [279] train-logloss:0.525675
## [280] train-logloss:0.525306
## [281] train-logloss:0.525070
## [282] train-logloss:0.524705
## [283] train-logloss:0.524475
## [284] train-logloss:0.524241
## [285] train-logloss:0.523881
## [286] train-logloss:0.523649
## [287] train-logloss:0.523422
## [288] train-logloss:0.523065
## [289] train-logloss:0.522836
## [290] train-logloss:0.522613
## [291] train-logloss:0.522260
## [292] train-logloss:0.522033
## [293] train-logloss:0.521808
## [294] train-logloss:0.521459
## [295] train-logloss:0.521239
## [296] train-logloss:0.521017
## [297] train-logloss:0.520670
## [298] train-logloss:0.520453
## [299] train-logloss:0.520232
## [300] train-logloss:0.519890
## [301] train-logloss:0.519672
## [302] train-logloss:0.519305
## [303] train-logloss:0.519090
## [304] train-logloss:0.518751
## [305] train-logloss:0.518392
## [306] train-logloss:0.518178
## [307] train-logloss:0.517965
## [308] train-logloss:0.517612
## [309] train-logloss:0.517400
## [310] train-logloss:0.517191
## [311] train-logloss:0.516858
## [312] train-logloss:0.516511
## [313] train-logloss:0.516304
## [314] train-logloss:0.516096
## [315] train-logloss:0.515890
## [316] train-logloss:0.515548
## [317] train-logloss:0.515333
## [318] train-logloss:0.515128
## [319] train-logloss:0.514924
## [320] train-logloss:0.514589
## [321] train-logloss:0.514387
## [322] train-logloss:0.514064
## [323] train-logloss:0.513734
## [324] train-logloss:0.513534
## [325] train-logloss:0.513325
## [326] train-logloss:0.513123
## [327] train-logloss:0.512917
## [328] train-logloss:0.512718
## [329] train-logloss:0.512397
## [330] train-logloss:0.512195
## [331] train-logloss:0.511997
## [332] train-logloss:0.511797
## [333] train-logloss:0.511602
## [334] train-logloss:0.511287
## [335] train-logloss:0.511088
## [336] train-logloss:0.510894
## [337] train-logloss:0.510697
## [338] train-logloss:0.510389
## [339] train-logloss:0.510196
## [340] train-logloss:0.510002
## [341] train-logloss:0.509698
## [342] train-logloss:0.509508
## [343] train-logloss:0.509317
## [344] train-logloss:0.509121
## [345] train-logloss:0.508933
## [346] train-logloss:0.508634
## [347] train-logloss:0.508446
## [348] train-logloss:0.508259
## [349] train-logloss:0.508072
## [350] train-logloss:0.507779
## [351] train-logloss:0.507594
## [352] train-logloss:0.507410
## [353] train-logloss:0.507228
## [354] train-logloss:0.506939
## [355] train-logloss:0.506757
## [356] train-logloss:0.506576
## [357] train-logloss:0.506384
## [358] train-logloss:0.506101
## [359] train-logloss:0.505922
## [360] train-logloss:0.505742
## [361] train-logloss:0.505463
## [362] train-logloss:0.505285
## [363] train-logloss:0.505109
## [364] train-logloss:0.504934
## [365] train-logloss:0.504658
## [366] train-logloss:0.504484
## [367] train-logloss:0.504310
## [368] train-logloss:0.504121
## [369] train-logloss:0.503948
## [370] train-logloss:0.503776
## [371] train-logloss:0.503507
## [372] train-logloss:0.503335
## [373] train-logloss:0.503166
## [374] train-logloss:0.502902
## [375] train-logloss:0.502734
## [376] train-logloss:0.502563
## [377] train-logloss:0.502377
## [378] train-logloss:0.502211
## [379] train-logloss:0.502043
## [380] train-logloss:0.501784
## [381] train-logloss:0.501617
## [382] train-logloss:0.501453
## [383] train-logloss:0.501198
## [384] train-logloss:0.501037
## [385] train-logloss:0.500871
## [386] train-logloss:0.500620
## [387] train-logloss:0.500460
## [388] train-logloss:0.500296
## [389] train-logloss:0.500049
## [390] train-logloss:0.499892
## [391] train-logloss:0.499730
## [392] train-logloss:0.499546
## [393] train-logloss:0.499386
## [394] train-logloss:0.499230
## [395] train-logloss:0.498989
## [396] train-logloss:0.498829
## [397] train-logloss:0.498675
## [398] train-logloss:0.498436
## [399] train-logloss:0.498279
## [400] train-logloss:0.498127
## [401] train-logloss:0.497946
## [402] train-logloss:0.497789
## [403] train-logloss:0.497640
## [404] train-logloss:0.497406
## [405] train-logloss:0.497258
## [406] train-logloss:0.497102
## [407] train-logloss:0.496923
## [408] train-logloss:0.496769
## [409] train-logloss:0.496539
## [410] train-logloss:0.496387
## [411] train-logloss:0.496103
## [412] train-logloss:0.495876
## [413] train-logloss:0.495725
## [414] train-logloss:0.495580
## [415] train-logloss:0.495356
## [416] train-logloss:0.495214
## [417] train-logloss:0.495064
## [418] train-logloss:0.494844
## [419] train-logloss:0.494702
## [420] train-logloss:0.494526
## [421] train-logloss:0.494385
## [422] train-logloss:0.494238
## [423] train-logloss:0.494099
## [424] train-logloss:0.493883
## [425] train-logloss:0.493745
## [426] train-logloss:0.493599
## [427] train-logloss:0.493322
## [428] train-logloss:0.493109
## [429] train-logloss:0.492935
## [430] train-logloss:0.492660
## [431] train-logloss:0.492451
## [432] train-logloss:0.492307
## [433] train-logloss:0.492172
## [434] train-logloss:0.492029
## [435] train-logloss:0.491857
## [436] train-logloss:0.491723
## [437] train-logloss:0.491517
## [438] train-logloss:0.491384
## [439] train-logloss:0.491243
## [440] train-logloss:0.490973
## [441] train-logloss:0.490769
## [442] train-logloss:0.490568
## [443] train-logloss:0.490436
## [444] train-logloss:0.490296
## [445] train-logloss:0.490165
## [446] train-logloss:0.489994
## [447] train-logloss:0.489855
## [448] train-logloss:0.489727
## [449] train-logloss:0.489529
## [450] train-logloss:0.489402
## [451] train-logloss:0.489276
## [452] train-logloss:0.489107
## [453] train-logloss:0.488838
## [454] train-logloss:0.488644
## [455] train-logloss:0.488505
## [456] train-logloss:0.488380
## [457] train-logloss:0.488188
## [458] train-logloss:0.488064
## [459] train-logloss:0.487927
## [460] train-logloss:0.487662
## [461] train-logloss:0.487473
## [462] train-logloss:0.487305
## [463] train-logloss:0.487044
## [464] train-logloss:0.486857
## [465] train-logloss:0.486721
## [466] train-logloss:0.486536
## [467] train-logloss:0.486413
## [468] train-logloss:0.486291
## [469] train-logloss:0.486125
## [470] train-logloss:0.485991
## [471] train-logloss:0.485869
## [472] train-logloss:0.485611
## [473] train-logloss:0.485429
## [474] train-logloss:0.485266
## [475] train-logloss:0.485133
## [476] train-logloss:0.484952
## [477] train-logloss:0.484832
## [478] train-logloss:0.484713
## [479] train-logloss:0.484551
## [480] train-logloss:0.484419
## [481] train-logloss:0.484163
## [482] train-logloss:0.483984
## [483] train-logloss:0.483853
## [484] train-logloss:0.483693
## [485] train-logloss:0.483575
## [486] train-logloss:0.483398
## [487] train-logloss:0.483282
## [488] train-logloss:0.483167
## [489] train-logloss:0.483008
## [490] train-logloss:0.482877
## [491] train-logloss:0.482625
## [492] train-logloss:0.482450
## [493] train-logloss:0.482276
## [494] train-logloss:0.482147
## [495] train-logloss:0.481990
## [496] train-logloss:0.481876
## [497] train-logloss:0.481622
## [498] train-logloss:0.481494
## [499] train-logloss:0.481323
## [500] train-logloss:0.481209
## [501] train-logloss:0.480959
## [502] train-logloss:0.480791
## [503] train-logloss:0.480635
## [504] train-logloss:0.480507
## [505] train-logloss:0.480261
## [506] train-logloss:0.480094
## [507] train-logloss:0.479966
## [508] train-logloss:0.479723
## [509] train-logloss:0.479558
## [510] train-logloss:0.479404
## [511] train-logloss:0.479278
## [512] train-logloss:0.479126
## [513] train-logloss:0.479013
## [514] train-logloss:0.478772
## [515] train-logloss:0.478647
## [516] train-logloss:0.478446
## [517] train-logloss:0.478335
## [518] train-logloss:0.478097
## [519] train-logloss:0.477898
## [520] train-logloss:0.477747
## [521] train-logloss:0.477511
## [522] train-logloss:0.477360
## [523] train-logloss:0.477164
## [524] train-logloss:0.476930
## [525] train-logloss:0.476820
## [526] train-logloss:0.476627
## [527] train-logloss:0.476396
## [528] train-logloss:0.476247
## [529] train-logloss:0.476122
## [530] train-logloss:0.475932
## [531] train-logloss:0.475701
## [532] train-logloss:0.475553
## [533] train-logloss:0.475445
## [534] train-logloss:0.475257
## [535] train-logloss:0.475029
## [536] train-logloss:0.474882
## [537] train-logloss:0.474775
## [538] train-logloss:0.474590
## [539] train-logloss:0.474365
## [540] train-logloss:0.474181
## [541] train-logloss:0.473958
## [542] train-logloss:0.473811
## [543] train-logloss:0.473706
## [544] train-logloss:0.473525
## [545] train-logloss:0.473304
## [546] train-logloss:0.473158
## [547] train-logloss:0.472979
## [548] train-logloss:0.472875
## [549] train-logloss:0.472656
## [550] train-logloss:0.472480
## [551] train-logloss:0.472261
## [552] train-logloss:0.472117
## [553] train-logloss:0.471943
## [554] train-logloss:0.471841
## [555] train-logloss:0.471624
## [556] train-logloss:0.471481
## [557] train-logloss:0.471309
## [558] train-logloss:0.471093
## [559] train-logloss:0.470993
## [560] train-logloss:0.470823
## [561] train-logloss:0.470609
## [562] train-logloss:0.470468
## [563] train-logloss:0.470300
## [564] train-logloss:0.470088
## [565] train-logloss:0.469947
## [566] train-logloss:0.469865
## [567] train-logloss:0.469654
## [568] train-logloss:0.469488
## [569] train-logloss:0.469349
## [570] train-logloss:0.469268
## [571] train-logloss:0.469105
## [572] train-logloss:0.468896
## [573] train-logloss:0.468757
## [574] train-logloss:0.468633
## [575] train-logloss:0.468471
## [576] train-logloss:0.468263
## [577] train-logloss:0.468126
## [578] train-logloss:0.467967
## [579] train-logloss:0.467887
## [580] train-logloss:0.467680
## [581] train-logloss:0.467543
## [582] train-logloss:0.467385
## [583] train-logloss:0.467180
## [584] train-logloss:0.467101
## [585] train-logloss:0.466966
## [586] train-logloss:0.466810
## [587] train-logloss:0.466606
## [588] train-logloss:0.466451
## [589] train-logloss:0.466374
## [590] train-logloss:0.466240
## [591] train-logloss:0.466037
## [592] train-logloss:0.465884
## [593] train-logloss:0.465751
## [594] train-logloss:0.465549
## [595] train-logloss:0.465398
## [596] train-logloss:0.465321
## [597] train-logloss:0.465121
## [598] train-logloss:0.464990
## [599] train-logloss:0.464840
## [600] train-logloss:0.464709
## [601] train-logloss:0.464484
## [602] train-logloss:0.464336
## [603] train-logloss:0.464206
## [604] train-logloss:0.463984
## [605] train-logloss:0.463837
## [606] train-logloss:0.463708
## [607] train-logloss:0.463563
## [608] train-logloss:0.463487
## [609] train-logloss:0.463267
## [610] train-logloss:0.463124
## [611] train-logloss:0.462995
## [612] train-logloss:0.462778
## [613] train-logloss:0.462636
## [614] train-logloss:0.462508
## [615] train-logloss:0.462367
## [616] train-logloss:0.462152
## [617] train-logloss:0.462025
## [618] train-logloss:0.461886
## [619] train-logloss:0.461811
## [620] train-logloss:0.461685
## [621] train-logloss:0.461472
## [622] train-logloss:0.461334
## [623] train-logloss:0.461209
## [624] train-logloss:0.460998
## [625] train-logloss:0.460862
## [626] train-logloss:0.460737
## [627] train-logloss:0.460602
## [628] train-logloss:0.460394
## [629] train-logloss:0.460260
## [630] train-logloss:0.460136
## [631] train-logloss:0.459931
## [632] train-logloss:0.459798
## [633] train-logloss:0.459675
## [634] train-logloss:0.459599
## [635] train-logloss:0.459467
## [636] train-logloss:0.459264
## [637] train-logloss:0.459141
## [638] train-logloss:0.459011
## [639] train-logloss:0.458889
## [640] train-logloss:0.458688
## [641] train-logloss:0.458558
## [642] train-logloss:0.458393
## [643] train-logloss:0.458264
## [644] train-logloss:0.458144
## [645] train-logloss:0.458068
## [646] train-logloss:0.457941
## [647] train-logloss:0.457778
## [648] train-logloss:0.457652
## [649] train-logloss:0.457532
## [650] train-logloss:0.457458
## [651] train-logloss:0.457339
## [652] train-logloss:0.457214
## [653] train-logloss:0.457013
## [654] train-logloss:0.456889
## [655] train-logloss:0.456728
## [656] train-logloss:0.456610
## [657] train-logloss:0.456411
## [658] train-logloss:0.456288
## [659] train-logloss:0.456171
## [660] train-logloss:0.455975
## [661] train-logloss:0.455853
## [662] train-logloss:0.455693
## [663] train-logloss:0.455576
## [664] train-logloss:0.455502
## [665] train-logloss:0.455381
## [666] train-logloss:0.455265
## [667] train-logloss:0.455145
## [668] train-logloss:0.454950
## [669] train-logloss:0.454835
## [670] train-logloss:0.454716
## [671] train-logloss:0.454558
## [672] train-logloss:0.454483
## [673] train-logloss:0.454369
## [674] train-logloss:0.454252
## [675] train-logloss:0.454059
## [676] train-logloss:0.453945
## [677] train-logloss:0.453828
## [678] train-logloss:0.453671
## [679] train-logloss:0.453555
## [680] train-logloss:0.453443
## [681] train-logloss:0.453369
## [682] train-logloss:0.453254
## [683] train-logloss:0.453062
## [684] train-logloss:0.452950
## [685] train-logloss:0.452836
## [686] train-logloss:0.452681
## [687] train-logloss:0.452492
## [688] train-logloss:0.452381
## [689] train-logloss:0.452267
## [690] train-logloss:0.452157
## [691] train-logloss:0.451969
## [692] train-logloss:0.451857
## [693] train-logloss:0.451702
## [694] train-logloss:0.451591
## [695] train-logloss:0.451481
## [696] train-logloss:0.451408
## [697] train-logloss:0.451297
## [698] train-logloss:0.451189
## [699] train-logloss:0.451002
## [700] train-logloss:0.450850
## [701] train-logloss:0.450740
## [702] train-logloss:0.450632
## [703] train-logloss:0.450523
## [704] train-logloss:0.450450
## [705] train-logloss:0.450343
## [706] train-logloss:0.450236
## [707] train-logloss:0.450050
## [708] train-logloss:0.449899
## [709] train-logloss:0.449793
## [710] train-logloss:0.449685
## [711] train-logloss:0.449613
## [712] train-logloss:0.449507
## [713] train-logloss:0.449226
## [714] train-logloss:0.449155
## [715] train-logloss:0.449006
## [716] train-logloss:0.448900
## [717] train-logloss:0.448795
## [718] train-logloss:0.448725
## [719] train-logloss:0.448540
## [720] train-logloss:0.448435
## [721] train-logloss:0.448330
## [722] train-logloss:0.448182
## [723] train-logloss:0.448078
## [724] train-logloss:0.447896
## [725] train-logloss:0.447791
## [726] train-logloss:0.447688
## [727] train-logloss:0.447411
## [728] train-logloss:0.447230
## [729] train-logloss:0.447083
## [730] train-logloss:0.446979
## [731] train-logloss:0.446876
## [732] train-logloss:0.446806
## [733] train-logloss:0.446704
## [734] train-logloss:0.446601
## [735] train-logloss:0.446422
## [736] train-logloss:0.446276
## [737] train-logloss:0.446175
## [738] train-logloss:0.446105
## [739] train-logloss:0.446003
## [740] train-logloss:0.445902
## [741] train-logloss:0.445834
## [742] train-logloss:0.445690
## [743] train-logloss:0.445589
## [744] train-logloss:0.445489
## [745] train-logloss:0.445300
## [746] train-logloss:0.445199
## [747] train-logloss:0.445100
## [748] train-logloss:0.445033
## [749] train-logloss:0.444847
## [750] train-logloss:0.444667
## [751] train-logloss:0.444567
## [752] train-logloss:0.444469
## [753] train-logloss:0.444292
## [754] train-logloss:0.444192
## [755] train-logloss:0.444095
## [756] train-logloss:0.443821
## [757] train-logloss:0.443678
## [758] train-logloss:0.443611
## [759] train-logloss:0.443514
## [760] train-logloss:0.443448
## [761] train-logloss:0.443307
## [762] train-logloss:0.443208
## [763] train-logloss:0.443112
## [764] train-logloss:0.442928
## [765] train-logloss:0.442830
## [766] train-logloss:0.442654
## [767] train-logloss:0.442559
## [768] train-logloss:0.442385
## [769] train-logloss:0.442287
## [770] train-logloss:0.442192
## [771] train-logloss:0.442127
## [772] train-logloss:0.441986
## [773] train-logloss:0.441892
## [774] train-logloss:0.441795
## [775] train-logloss:0.441701
## [776] train-logloss:0.441637
## [777] train-logloss:0.441456
## [778] train-logloss:0.441359
## [779] train-logloss:0.441181
## [780] train-logloss:0.441009
## [781] train-logloss:0.440912
## [782] train-logloss:0.440819
## [783] train-logloss:0.440649
## [784] train-logloss:0.440553
## [785] train-logloss:0.440461
## [786] train-logloss:0.440322
## [787] train-logloss:0.440230
## [788] train-logloss:0.440167
## [789] train-logloss:0.440071
## [790] train-logloss:0.440008
## [791] train-logloss:0.439917
## [792] train-logloss:0.439781
## [793] train-logloss:0.439685
## [794] train-logloss:0.439510
## [795] train-logloss:0.439341
## [796] train-logloss:0.439250
## [797] train-logloss:0.439156
## [798] train-logloss:0.438887
## [799] train-logloss:0.438721
## [800] train-logloss:0.438631
## [801] train-logloss:0.438495
## [802] train-logloss:0.438432
## [803] train-logloss:0.438343
## [804] train-logloss:0.438248
## [805] train-logloss:0.438083
## [806] train-logloss:0.437989
## [807] train-logloss:0.437900
## [808] train-logloss:0.437839
## [809] train-logloss:0.437704
## [810] train-logloss:0.437616
## [811] train-logloss:0.437443
## [812] train-logloss:0.437350
## [813] train-logloss:0.437289
## [814] train-logloss:0.437201
## [815] train-logloss:0.437031
## [816] train-logloss:0.436867
## [817] train-logloss:0.436774
## [818] train-logloss:0.436687
## [819] train-logloss:0.436526
## [820] train-logloss:0.436433
## [821] train-logloss:0.436347
## [822] train-logloss:0.436287
## [823] train-logloss:0.436153
## [824] train-logloss:0.436062
## [825] train-logloss:0.435975
## [826] train-logloss:0.435807
## [827] train-logloss:0.435716
## [828] train-logloss:0.435657
## [829] train-logloss:0.435491
## [830] train-logloss:0.435331
## [831] train-logloss:0.435245
## [832] train-logloss:0.435155
## [833] train-logloss:0.434995
## [834] train-logloss:0.434862
## [835] train-logloss:0.434777
## [836] train-logloss:0.434687
## [837] train-logloss:0.434481
## [838] train-logloss:0.434391
## [839] train-logloss:0.434333
## [840] train-logloss:0.434248
## [841] train-logloss:0.434117
## [842] train-logloss:0.433914
## [843] train-logloss:0.433830
## [844] train-logloss:0.433665
## [845] train-logloss:0.433608
## [846] train-logloss:0.433518
## [847] train-logloss:0.433317
## [848] train-logloss:0.433155
## [849] train-logloss:0.433066
## [850] train-logloss:0.432983
## [851] train-logloss:0.432926
## [852] train-logloss:0.432765
## [853] train-logloss:0.432676
## [854] train-logloss:0.432477
## [855] train-logloss:0.432318
## [856] train-logloss:0.432229
## [857] train-logloss:0.432147
## [858] train-logloss:0.431949
## [859] train-logloss:0.431893
## [860] train-logloss:0.431805
## [861] train-logloss:0.431647
## [862] train-logloss:0.431452
## [863] train-logloss:0.431369
## [864] train-logloss:0.431314
## [865] train-logloss:0.431158
## [866] train-logloss:0.431070
## [867] train-logloss:0.430876
## [868] train-logloss:0.430789
## [869] train-logloss:0.430734
## [870] train-logloss:0.430579
## [871] train-logloss:0.430497
## [872] train-logloss:0.430305
## [873] train-logloss:0.430218
## [874] train-logloss:0.430088
## [875] train-logloss:0.429934
## [876] train-logloss:0.429853
## [877] train-logloss:0.429663
## [878] train-logloss:0.429576
## [879] train-logloss:0.429522
## [880] train-logloss:0.429369
## [881] train-logloss:0.429283
## [882] train-logloss:0.429202
## [883] train-logloss:0.429013
## [884] train-logloss:0.428862
## [885] train-logloss:0.428776
## [886] train-logloss:0.428723
## [887] train-logloss:0.428536
## [888] train-logloss:0.428408
## [889] train-logloss:0.428321
## [890] train-logloss:0.428268
## [891] train-logloss:0.428118
## [892] train-logloss:0.427933
## [893] train-logloss:0.427848
## [894] train-logloss:0.427699
## [895] train-logloss:0.427619
## [896] train-logloss:0.427534
## [897] train-logloss:0.427351
## [898] train-logloss:0.427299
## [899] train-logloss:0.427151
## [900] train-logloss:0.427066
## [901] train-logloss:0.426885
## [902] train-logloss:0.426833
## [903] train-logloss:0.426749
## [904] train-logloss:0.426602
## [905] train-logloss:0.426422
## [906] train-logloss:0.426339
## [907] train-logloss:0.426210
## [908] train-logloss:0.426065
## [909] train-logloss:0.426013
## [910] train-logloss:0.425933
## [911] train-logloss:0.425850
## [912] train-logloss:0.425771
## [913] train-logloss:0.425720
## [914] train-logloss:0.425470
## [915] train-logloss:0.425392
## [916] train-logloss:0.425309
## [917] train-logloss:0.425156
## [918] train-logloss:0.425029
## [919] train-logloss:0.424978
## [920] train-logloss:0.424898
## [921] train-logloss:0.424754
## [922] train-logloss:0.424671
## [923] train-logloss:0.424545
## [924] train-logloss:0.424368
## [925] train-logloss:0.424288
## [926] train-logloss:0.424145
## [927] train-logloss:0.424062
## [928] train-logloss:0.424011
## [929] train-logloss:0.423929
## [930] train-logloss:0.423852
## [931] train-logloss:0.423802
## [932] train-logloss:0.423660
## [933] train-logloss:0.423535
## [934] train-logloss:0.423453
## [935] train-logloss:0.423277
## [936] train-logloss:0.423136
## [937] train-logloss:0.423060
## [938] train-logloss:0.422978
## [939] train-logloss:0.422829
## [940] train-logloss:0.422750
## [941] train-logloss:0.422625
## [942] train-logloss:0.422576
## [943] train-logloss:0.422403
## [944] train-logloss:0.422322
## [945] train-logloss:0.422181
## [946] train-logloss:0.422010
## [947] train-logloss:0.421935
## [948] train-logloss:0.421854
## [949] train-logloss:0.421805
## [950] train-logloss:0.421665
## [951] train-logloss:0.421591
## [952] train-logloss:0.421510
## [953] train-logloss:0.421387
## [954] train-logloss:0.421308
## [955] train-logloss:0.421259
## [956] train-logloss:0.421180
## [957] train-logloss:0.421040
## [958] train-logloss:0.420992
## [959] train-logloss:0.420912
## [960] train-logloss:0.420743
## [961] train-logloss:0.420670
## [962] train-logloss:0.420532
## [963] train-logloss:0.420385
## [964] train-logloss:0.420262
## [965] train-logloss:0.420183
## [966] train-logloss:0.420105
## [967] train-logloss:0.419860
## [968] train-logloss:0.419782
## [969] train-logloss:0.419645
## [970] train-logloss:0.419478
## [971] train-logloss:0.419399
## [972] train-logloss:0.419278
## [973] train-logloss:0.419229
## [974] train-logloss:0.419064
## [975] train-logloss:0.418986
## [976] train-logloss:0.418913
## [977] train-logloss:0.418776
## [978] train-logloss:0.418698
## [979] train-logloss:0.418626
## [980] train-logloss:0.418579
## [981] train-logloss:0.418508
## [982] train-logloss:0.418387
## [983] train-logloss:0.418309
## [984] train-logloss:0.418173
## [985] train-logloss:0.418096
## [986] train-logloss:0.418049
## [987] train-logloss:0.417905
## [988] train-logloss:0.417827
## [989] train-logloss:0.417757
## [990] train-logloss:0.417614
## [991] train-logloss:0.417494
## [992] train-logloss:0.417417
## [993] train-logloss:0.417339
## [994] train-logloss:0.417292
## [995] train-logloss:0.417158
## [996] train-logloss:0.417081
## [997] train-logloss:0.417034
## [998] train-logloss:0.416892
## [999] train-logloss:0.416773
## [1000] train-logloss:0.416697
## Make predictions on test data
moklas1.test.matrix<-data.matrix(moklas1.test[,-10])
promo.test<-as.matrix(as.factor(as.character(moklas1.test$promo)))
predicted <- predict(xgbModel1,moklas1.test.matrix )
predicted <- ifelse(predicted > 0.5 , 1,0)
## Create confusion matrix
confusionMatrix(table(predicted = predicted, actual = promo.test))
## Confusion Matrix and Statistics
##
## actual
## predicted 0 1
## 0 33 7
## 1 14 17
##
## Accuracy : 0.7042
## 95% CI : (0.5841, 0.8067)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.2681
##
## Kappa : 0.3831
##
## Mcnemar's Test P-Value : 0.1904
##
## Sensitivity : 0.7021
## Specificity : 0.7083
## Pos Pred Value : 0.8250
## Neg Pred Value : 0.5484
## Prevalence : 0.6620
## Detection Rate : 0.4648
## Detection Prevalence : 0.5634
## Balanced Accuracy : 0.7052
##
## 'Positive' Class : 0
##
ROS
library(xgboost)
up.train.matrix<-data.matrix(up_train[,-10])
promo2<-as.matrix(as.factor(as.character(up_train$promo)))
xgbModel2 <- xgboost(data = up.train.matrix,
label = promo2,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.683399
## [2] train-logloss:0.673840
## [3] train-logloss:0.664465
## [4] train-logloss:0.655269
## [5] train-logloss:0.646246
## [6] train-logloss:0.637392
## [7] train-logloss:0.628701
## [8] train-logloss:0.620171
## [9] train-logloss:0.611796
## [10] train-logloss:0.603573
## [11] train-logloss:0.595496
## [12] train-logloss:0.587564
## [13] train-logloss:0.579772
## [14] train-logloss:0.572115
## [15] train-logloss:0.564592
## [16] train-logloss:0.557199
## [17] train-logloss:0.549933
## [18] train-logloss:0.542790
## [19] train-logloss:0.535767
## [20] train-logloss:0.528862
## [21] train-logloss:0.522072
## [22] train-logloss:0.515395
## [23] train-logloss:0.508827
## [24] train-logloss:0.502367
## [25] train-logloss:0.496011
## [26] train-logloss:0.489757
## [27] train-logloss:0.483604
## [28] train-logloss:0.477549
## [29] train-logloss:0.471589
## [30] train-logloss:0.465724
## [31] train-logloss:0.459949
## [32] train-logloss:0.454265
## [33] train-logloss:0.448669
## [34] train-logloss:0.443159
## [35] train-logloss:0.437733
## [36] train-logloss:0.432389
## [37] train-logloss:0.427127
## [38] train-logloss:0.421943
## [39] train-logloss:0.416837
## [40] train-logloss:0.411808
## [41] train-logloss:0.406852
## [42] train-logloss:0.401970
## [43] train-logloss:0.397160
## [44] train-logloss:0.392420
## [45] train-logloss:0.387749
## [46] train-logloss:0.383145
## [47] train-logloss:0.378608
## [48] train-logloss:0.374136
## [49] train-logloss:0.369727
## [50] train-logloss:0.365382
## [51] train-logloss:0.361098
## [52] train-logloss:0.356874
## [53] train-logloss:0.352710
## [54] train-logloss:0.348603
## [55] train-logloss:0.344554
## [56] train-logloss:0.340561
## [57] train-logloss:0.336624
## [58] train-logloss:0.332740
## [59] train-logloss:0.328910
## [60] train-logloss:0.325132
## [61] train-logloss:0.321405
## [62] train-logloss:0.317729
## [63] train-logloss:0.314102
## [64] train-logloss:0.310525
## [65] train-logloss:0.306995
## [66] train-logloss:0.303512
## [67] train-logloss:0.300076
## [68] train-logloss:0.296685
## [69] train-logloss:0.293340
## [70] train-logloss:0.290038
## [71] train-logloss:0.286780
## [72] train-logloss:0.283564
## [73] train-logloss:0.280390
## [74] train-logloss:0.277258
## [75] train-logloss:0.274166
## [76] train-logloss:0.271114
## [77] train-logloss:0.268102
## [78] train-logloss:0.265128
## [79] train-logloss:0.262192
## [80] train-logloss:0.259294
## [81] train-logloss:0.256433
## [82] train-logloss:0.253608
## [83] train-logloss:0.250819
## [84] train-logloss:0.248065
## [85] train-logloss:0.245346
## [86] train-logloss:0.242661
## [87] train-logloss:0.240009
## [88] train-logloss:0.237391
## [89] train-logloss:0.234805
## [90] train-logloss:0.232252
## [91] train-logloss:0.229730
## [92] train-logloss:0.227239
## [93] train-logloss:0.224780
## [94] train-logloss:0.222350
## [95] train-logloss:0.219950
## [96] train-logloss:0.217580
## [97] train-logloss:0.215239
## [98] train-logloss:0.212926
## [99] train-logloss:0.210641
## [100] train-logloss:0.208384
## [101] train-logloss:0.206154
## [102] train-logloss:0.203952
## [103] train-logloss:0.201776
## [104] train-logloss:0.199626
## [105] train-logloss:0.197501
## [106] train-logloss:0.195403
## [107] train-logloss:0.193329
## [108] train-logloss:0.191280
## [109] train-logloss:0.189256
## [110] train-logloss:0.187255
## [111] train-logloss:0.185278
## [112] train-logloss:0.183325
## [113] train-logloss:0.181395
## [114] train-logloss:0.179487
## [115] train-logloss:0.177602
## [116] train-logloss:0.175739
## [117] train-logloss:0.173898
## [118] train-logloss:0.172079
## [119] train-logloss:0.170280
## [120] train-logloss:0.168503
## [121] train-logloss:0.166746
## [122] train-logloss:0.165010
## [123] train-logloss:0.163294
## [124] train-logloss:0.161597
## [125] train-logloss:0.159921
## [126] train-logloss:0.158263
## [127] train-logloss:0.156625
## [128] train-logloss:0.155006
## [129] train-logloss:0.153405
## [130] train-logloss:0.151822
## [131] train-logloss:0.150258
## [132] train-logloss:0.148712
## [133] train-logloss:0.147183
## [134] train-logloss:0.145671
## [135] train-logloss:0.144177
## [136] train-logloss:0.142700
## [137] train-logloss:0.141239
## [138] train-logloss:0.139795
## [139] train-logloss:0.138368
## [140] train-logloss:0.136956
## [141] train-logloss:0.135560
## [142] train-logloss:0.134180
## [143] train-logloss:0.132816
## [144] train-logloss:0.131467
## [145] train-logloss:0.130133
## [146] train-logloss:0.128814
## [147] train-logloss:0.127509
## [148] train-logloss:0.126220
## [149] train-logloss:0.124944
## [150] train-logloss:0.123683
## [151] train-logloss:0.122436
## [152] train-logloss:0.121203
## [153] train-logloss:0.119983
## [154] train-logloss:0.118777
## [155] train-logloss:0.117584
## [156] train-logloss:0.116405
## [157] train-logloss:0.115238
## [158] train-logloss:0.114084
## [159] train-logloss:0.112944
## [160] train-logloss:0.111815
## [161] train-logloss:0.110699
## [162] train-logloss:0.109595
## [163] train-logloss:0.108504
## [164] train-logloss:0.107424
## [165] train-logloss:0.106356
## [166] train-logloss:0.105300
## [167] train-logloss:0.104255
## [168] train-logloss:0.103222
## [169] train-logloss:0.102200
## [170] train-logloss:0.101189
## [171] train-logloss:0.100189
## [172] train-logloss:0.099200
## [173] train-logloss:0.098221
## [174] train-logloss:0.097253
## [175] train-logloss:0.096296
## [176] train-logloss:0.095349
## [177] train-logloss:0.094412
## [178] train-logloss:0.093486
## [179] train-logloss:0.092569
## [180] train-logloss:0.091662
## [181] train-logloss:0.090765
## [182] train-logloss:0.089878
## [183] train-logloss:0.089000
## [184] train-logloss:0.088132
## [185] train-logloss:0.087273
## [186] train-logloss:0.086423
## [187] train-logloss:0.085582
## [188] train-logloss:0.084750
## [189] train-logloss:0.083927
## [190] train-logloss:0.083113
## [191] train-logloss:0.082308
## [192] train-logloss:0.081511
## [193] train-logloss:0.080723
## [194] train-logloss:0.079942
## [195] train-logloss:0.079171
## [196] train-logloss:0.078407
## [197] train-logloss:0.077652
## [198] train-logloss:0.076904
## [199] train-logloss:0.076165
## [200] train-logloss:0.075433
## [201] train-logloss:0.074709
## [202] train-logloss:0.073993
## [203] train-logloss:0.073284
## [204] train-logloss:0.072583
## [205] train-logloss:0.071889
## [206] train-logloss:0.071203
## [207] train-logloss:0.070523
## [208] train-logloss:0.069851
## [209] train-logloss:0.069186
## [210] train-logloss:0.068528
## [211] train-logloss:0.067877
## [212] train-logloss:0.067232
## [213] train-logloss:0.066595
## [214] train-logloss:0.065964
## [215] train-logloss:0.065340
## [216] train-logloss:0.064722
## [217] train-logloss:0.064110
## [218] train-logloss:0.063505
## [219] train-logloss:0.062907
## [220] train-logloss:0.062314
## [221] train-logloss:0.061728
## [222] train-logloss:0.061148
## [223] train-logloss:0.060574
## [224] train-logloss:0.060006
## [225] train-logloss:0.059444
## [226] train-logloss:0.058887
## [227] train-logloss:0.058337
## [228] train-logloss:0.057792
## [229] train-logloss:0.057252
## [230] train-logloss:0.056719
## [231] train-logloss:0.056191
## [232] train-logloss:0.055668
## [233] train-logloss:0.055151
## [234] train-logloss:0.054639
## [235] train-logloss:0.054132
## [236] train-logloss:0.053631
## [237] train-logloss:0.053134
## [238] train-logloss:0.052643
## [239] train-logloss:0.052157
## [240] train-logloss:0.051676
## [241] train-logloss:0.051200
## [242] train-logloss:0.050729
## [243] train-logloss:0.050262
## [244] train-logloss:0.049801
## [245] train-logloss:0.049344
## [246] train-logloss:0.048892
## [247] train-logloss:0.048444
## [248] train-logloss:0.048001
## [249] train-logloss:0.047563
## [250] train-logloss:0.047129
## [251] train-logloss:0.046700
## [252] train-logloss:0.046274
## [253] train-logloss:0.045854
## [254] train-logloss:0.045437
## [255] train-logloss:0.045025
## [256] train-logloss:0.044617
## [257] train-logloss:0.044213
## [258] train-logloss:0.043813
## [259] train-logloss:0.043418
## [260] train-logloss:0.043026
## [261] train-logloss:0.042639
## [262] train-logloss:0.042255
## [263] train-logloss:0.041875
## [264] train-logloss:0.041499
## [265] train-logloss:0.041127
## [266] train-logloss:0.040758
## [267] train-logloss:0.040394
## [268] train-logloss:0.040033
## [269] train-logloss:0.039676
## [270] train-logloss:0.039322
## [271] train-logloss:0.038972
## [272] train-logloss:0.038625
## [273] train-logloss:0.038282
## [274] train-logloss:0.037942
## [275] train-logloss:0.037606
## [276] train-logloss:0.037273
## [277] train-logloss:0.036944
## [278] train-logloss:0.036618
## [279] train-logloss:0.036295
## [280] train-logloss:0.035976
## [281] train-logloss:0.035659
## [282] train-logloss:0.035346
## [283] train-logloss:0.035036
## [284] train-logloss:0.034729
## [285] train-logloss:0.034425
## [286] train-logloss:0.034124
## [287] train-logloss:0.033826
## [288] train-logloss:0.033532
## [289] train-logloss:0.033240
## [290] train-logloss:0.032951
## [291] train-logloss:0.032665
## [292] train-logloss:0.032382
## [293] train-logloss:0.032101
## [294] train-logloss:0.031824
## [295] train-logloss:0.031549
## [296] train-logloss:0.031277
## [297] train-logloss:0.031007
## [298] train-logloss:0.030741
## [299] train-logloss:0.030477
## [300] train-logloss:0.030215
## [301] train-logloss:0.029957
## [302] train-logloss:0.029700
## [303] train-logloss:0.029447
## [304] train-logloss:0.029195
## [305] train-logloss:0.028947
## [306] train-logloss:0.028701
## [307] train-logloss:0.028457
## [308] train-logloss:0.028215
## [309] train-logloss:0.027977
## [310] train-logloss:0.027740
## [311] train-logloss:0.027506
## [312] train-logloss:0.027274
## [313] train-logloss:0.027044
## [314] train-logloss:0.026817
## [315] train-logloss:0.026592
## [316] train-logloss:0.026369
## [317] train-logloss:0.026148
## [318] train-logloss:0.025929
## [319] train-logloss:0.025713
## [320] train-logloss:0.025499
## [321] train-logloss:0.025286
## [322] train-logloss:0.025076
## [323] train-logloss:0.024868
## [324] train-logloss:0.024662
## [325] train-logloss:0.024458
## [326] train-logloss:0.024256
## [327] train-logloss:0.024056
## [328] train-logloss:0.023858
## [329] train-logloss:0.023662
## [330] train-logloss:0.023468
## [331] train-logloss:0.023276
## [332] train-logloss:0.023085
## [333] train-logloss:0.022897
## [334] train-logloss:0.022710
## [335] train-logloss:0.022525
## [336] train-logloss:0.022342
## [337] train-logloss:0.022161
## [338] train-logloss:0.021981
## [339] train-logloss:0.021803
## [340] train-logloss:0.021627
## [341] train-logloss:0.021453
## [342] train-logloss:0.021280
## [343] train-logloss:0.021109
## [344] train-logloss:0.020940
## [345] train-logloss:0.020772
## [346] train-logloss:0.020606
## [347] train-logloss:0.020442
## [348] train-logloss:0.020279
## [349] train-logloss:0.020117
## [350] train-logloss:0.019958
## [351] train-logloss:0.019799
## [352] train-logloss:0.019643
## [353] train-logloss:0.019487
## [354] train-logloss:0.019334
## [355] train-logloss:0.019181
## [356] train-logloss:0.019031
## [357] train-logloss:0.018881
## [358] train-logloss:0.018733
## [359] train-logloss:0.018587
## [360] train-logloss:0.018442
## [361] train-logloss:0.018298
## [362] train-logloss:0.018156
## [363] train-logloss:0.018015
## [364] train-logloss:0.017875
## [365] train-logloss:0.017737
## [366] train-logloss:0.017600
## [367] train-logloss:0.017464
## [368] train-logloss:0.017330
## [369] train-logloss:0.017197
## [370] train-logloss:0.017065
## [371] train-logloss:0.016935
## [372] train-logloss:0.016805
## [373] train-logloss:0.016677
## [374] train-logloss:0.016550
## [375] train-logloss:0.016424
## [376] train-logloss:0.016300
## [377] train-logloss:0.016177
## [378] train-logloss:0.016054
## [379] train-logloss:0.015933
## [380] train-logloss:0.015814
## [381] train-logloss:0.015695
## [382] train-logloss:0.015577
## [383] train-logloss:0.015461
## [384] train-logloss:0.015345
## [385] train-logloss:0.015231
## [386] train-logloss:0.015118
## [387] train-logloss:0.015005
## [388] train-logloss:0.014894
## [389] train-logloss:0.014784
## [390] train-logloss:0.014675
## [391] train-logloss:0.014567
## [392] train-logloss:0.014460
## [393] train-logloss:0.014354
## [394] train-logloss:0.014249
## [395] train-logloss:0.014145
## [396] train-logloss:0.014041
## [397] train-logloss:0.013939
## [398] train-logloss:0.013838
## [399] train-logloss:0.013738
## [400] train-logloss:0.013638
## [401] train-logloss:0.013540
## [402] train-logloss:0.013442
## [403] train-logloss:0.013346
## [404] train-logloss:0.013250
## [405] train-logloss:0.013155
## [406] train-logloss:0.013061
## [407] train-logloss:0.012968
## [408] train-logloss:0.012876
## [409] train-logloss:0.012784
## [410] train-logloss:0.012694
## [411] train-logloss:0.012604
## [412] train-logloss:0.012515
## [413] train-logloss:0.012427
## [414] train-logloss:0.012340
## [415] train-logloss:0.012253
## [416] train-logloss:0.012167
## [417] train-logloss:0.012082
## [418] train-logloss:0.011998
## [419] train-logloss:0.011915
## [420] train-logloss:0.011832
## [421] train-logloss:0.011750
## [422] train-logloss:0.011669
## [423] train-logloss:0.011589
## [424] train-logloss:0.011509
## [425] train-logloss:0.011430
## [426] train-logloss:0.011352
## [427] train-logloss:0.011274
## [428] train-logloss:0.011197
## [429] train-logloss:0.011121
## [430] train-logloss:0.011045
## [431] train-logloss:0.010971
## [432] train-logloss:0.010896
## [433] train-logloss:0.010823
## [434] train-logloss:0.010750
## [435] train-logloss:0.010678
## [436] train-logloss:0.010606
## [437] train-logloss:0.010536
## [438] train-logloss:0.010465
## [439] train-logloss:0.010396
## [440] train-logloss:0.010327
## [441] train-logloss:0.010258
## [442] train-logloss:0.010190
## [443] train-logloss:0.010123
## [444] train-logloss:0.010057
## [445] train-logloss:0.009990
## [446] train-logloss:0.009925
## [447] train-logloss:0.009860
## [448] train-logloss:0.009796
## [449] train-logloss:0.009732
## [450] train-logloss:0.009669
## [451] train-logloss:0.009606
## [452] train-logloss:0.009544
## [453] train-logloss:0.009483
## [454] train-logloss:0.009422
## [455] train-logloss:0.009361
## [456] train-logloss:0.009301
## [457] train-logloss:0.009242
## [458] train-logloss:0.009183
## [459] train-logloss:0.009125
## [460] train-logloss:0.009067
## [461] train-logloss:0.009009
## [462] train-logloss:0.008952
## [463] train-logloss:0.008896
## [464] train-logloss:0.008840
## [465] train-logloss:0.008785
## [466] train-logloss:0.008730
## [467] train-logloss:0.008675
## [468] train-logloss:0.008621
## [469] train-logloss:0.008568
## [470] train-logloss:0.008515
## [471] train-logloss:0.008462
## [472] train-logloss:0.008410
## [473] train-logloss:0.008358
## [474] train-logloss:0.008307
## [475] train-logloss:0.008256
## [476] train-logloss:0.008206
## [477] train-logloss:0.008156
## [478] train-logloss:0.008106
## [479] train-logloss:0.008057
## [480] train-logloss:0.008008
## [481] train-logloss:0.007960
## [482] train-logloss:0.007912
## [483] train-logloss:0.007864
## [484] train-logloss:0.007817
## [485] train-logloss:0.007770
## [486] train-logloss:0.007724
## [487] train-logloss:0.007678
## [488] train-logloss:0.007633
## [489] train-logloss:0.007587
## [490] train-logloss:0.007542
## [491] train-logloss:0.007498
## [492] train-logloss:0.007454
## [493] train-logloss:0.007410
## [494] train-logloss:0.007367
## [495] train-logloss:0.007324
## [496] train-logloss:0.007281
## [497] train-logloss:0.007239
## [498] train-logloss:0.007197
## [499] train-logloss:0.007155
## [500] train-logloss:0.007114
## [501] train-logloss:0.007073
## [502] train-logloss:0.007033
## [503] train-logloss:0.006992
## [504] train-logloss:0.006952
## [505] train-logloss:0.006913
## [506] train-logloss:0.006874
## [507] train-logloss:0.006835
## [508] train-logloss:0.006796
## [509] train-logloss:0.006758
## [510] train-logloss:0.006720
## [511] train-logloss:0.006682
## [512] train-logloss:0.006645
## [513] train-logloss:0.006607
## [514] train-logloss:0.006571
## [515] train-logloss:0.006534
## [516] train-logloss:0.006498
## [517] train-logloss:0.006462
## [518] train-logloss:0.006426
## [519] train-logloss:0.006391
## [520] train-logloss:0.006356
## [521] train-logloss:0.006321
## [522] train-logloss:0.006287
## [523] train-logloss:0.006252
## [524] train-logloss:0.006218
## [525] train-logloss:0.006185
## [526] train-logloss:0.006151
## [527] train-logloss:0.006118
## [528] train-logloss:0.006085
## [529] train-logloss:0.006052
## [530] train-logloss:0.006020
## [531] train-logloss:0.005988
## [532] train-logloss:0.005956
## [533] train-logloss:0.005924
## [534] train-logloss:0.005893
## [535] train-logloss:0.005862
## [536] train-logloss:0.005831
## [537] train-logloss:0.005800
## [538] train-logloss:0.005770
## [539] train-logloss:0.005740
## [540] train-logloss:0.005710
## [541] train-logloss:0.005680
## [542] train-logloss:0.005650
## [543] train-logloss:0.005621
## [544] train-logloss:0.005592
## [545] train-logloss:0.005563
## [546] train-logloss:0.005534
## [547] train-logloss:0.005506
## [548] train-logloss:0.005478
## [549] train-logloss:0.005450
## [550] train-logloss:0.005422
## [551] train-logloss:0.005395
## [552] train-logloss:0.005367
## [553] train-logloss:0.005340
## [554] train-logloss:0.005313
## [555] train-logloss:0.005286
## [556] train-logloss:0.005260
## [557] train-logloss:0.005234
## [558] train-logloss:0.005234
## [559] train-logloss:0.005234
## [560] train-logloss:0.005234
## [561] train-logloss:0.005234
## [562] train-logloss:0.005234
## [563] train-logloss:0.005234
## [564] train-logloss:0.005234
## [565] train-logloss:0.005234
## [566] train-logloss:0.005234
## [567] train-logloss:0.005234
## [568] train-logloss:0.005234
## [569] train-logloss:0.005234
## [570] train-logloss:0.005234
## [571] train-logloss:0.005234
## [572] train-logloss:0.005234
## [573] train-logloss:0.005234
## [574] train-logloss:0.005234
## [575] train-logloss:0.005234
## [576] train-logloss:0.005234
## [577] train-logloss:0.005234
## [578] train-logloss:0.005234
## [579] train-logloss:0.005234
## [580] train-logloss:0.005234
## [581] train-logloss:0.005234
## [582] train-logloss:0.005234
## [583] train-logloss:0.005234
## [584] train-logloss:0.005234
## [585] train-logloss:0.005234
## [586] train-logloss:0.005234
## [587] train-logloss:0.005234
## [588] train-logloss:0.005234
## [589] train-logloss:0.005234
## [590] train-logloss:0.005234
## [591] train-logloss:0.005234
## [592] train-logloss:0.005234
## [593] train-logloss:0.005234
## [594] train-logloss:0.005234
## [595] train-logloss:0.005234
## [596] train-logloss:0.005234
## [597] train-logloss:0.005234
## [598] train-logloss:0.005234
## [599] train-logloss:0.005234
## [600] train-logloss:0.005234
## [601] train-logloss:0.005234
## [602] train-logloss:0.005234
## [603] train-logloss:0.005234
## [604] train-logloss:0.005234
## [605] train-logloss:0.005234
## [606] train-logloss:0.005234
## [607] train-logloss:0.005234
## [608] train-logloss:0.005234
## [609] train-logloss:0.005234
## [610] train-logloss:0.005234
## [611] train-logloss:0.005234
## [612] train-logloss:0.005234
## [613] train-logloss:0.005234
## [614] train-logloss:0.005234
## [615] train-logloss:0.005234
## [616] train-logloss:0.005234
## [617] train-logloss:0.005234
## [618] train-logloss:0.005234
## [619] train-logloss:0.005234
## [620] train-logloss:0.005234
## [621] train-logloss:0.005234
## [622] train-logloss:0.005234
## [623] train-logloss:0.005234
## [624] train-logloss:0.005234
## [625] train-logloss:0.005234
## [626] train-logloss:0.005234
## [627] train-logloss:0.005234
## [628] train-logloss:0.005234
## [629] train-logloss:0.005234
## [630] train-logloss:0.005234
## [631] train-logloss:0.005234
## [632] train-logloss:0.005234
## [633] train-logloss:0.005234
## [634] train-logloss:0.005234
## [635] train-logloss:0.005234
## [636] train-logloss:0.005234
## [637] train-logloss:0.005234
## [638] train-logloss:0.005234
## [639] train-logloss:0.005234
## [640] train-logloss:0.005234
## [641] train-logloss:0.005234
## [642] train-logloss:0.005234
## [643] train-logloss:0.005234
## [644] train-logloss:0.005234
## [645] train-logloss:0.005234
## [646] train-logloss:0.005234
## [647] train-logloss:0.005234
## [648] train-logloss:0.005234
## [649] train-logloss:0.005234
## [650] train-logloss:0.005234
## [651] train-logloss:0.005234
## [652] train-logloss:0.005234
## [653] train-logloss:0.005234
## [654] train-logloss:0.005234
## [655] train-logloss:0.005234
## [656] train-logloss:0.005234
## [657] train-logloss:0.005234
## [658] train-logloss:0.005234
## [659] train-logloss:0.005234
## [660] train-logloss:0.005234
## [661] train-logloss:0.005234
## [662] train-logloss:0.005234
## [663] train-logloss:0.005234
## [664] train-logloss:0.005234
## [665] train-logloss:0.005234
## [666] train-logloss:0.005234
## [667] train-logloss:0.005234
## [668] train-logloss:0.005234
## [669] train-logloss:0.005234
## [670] train-logloss:0.005234
## [671] train-logloss:0.005234
## [672] train-logloss:0.005234
## [673] train-logloss:0.005234
## [674] train-logloss:0.005234
## [675] train-logloss:0.005234
## [676] train-logloss:0.005234
## [677] train-logloss:0.005234
## [678] train-logloss:0.005234
## [679] train-logloss:0.005234
## [680] train-logloss:0.005234
## [681] train-logloss:0.005234
## [682] train-logloss:0.005234
## [683] train-logloss:0.005234
## [684] train-logloss:0.005234
## [685] train-logloss:0.005234
## [686] train-logloss:0.005234
## [687] train-logloss:0.005234
## [688] train-logloss:0.005234
## [689] train-logloss:0.005234
## [690] train-logloss:0.005234
## [691] train-logloss:0.005234
## [692] train-logloss:0.005234
## [693] train-logloss:0.005234
## [694] train-logloss:0.005234
## [695] train-logloss:0.005234
## [696] train-logloss:0.005234
## [697] train-logloss:0.005234
## [698] train-logloss:0.005234
## [699] train-logloss:0.005234
## [700] train-logloss:0.005234
## [701] train-logloss:0.005234
## [702] train-logloss:0.005234
## [703] train-logloss:0.005234
## [704] train-logloss:0.005234
## [705] train-logloss:0.005234
## [706] train-logloss:0.005234
## [707] train-logloss:0.005234
## [708] train-logloss:0.005234
## [709] train-logloss:0.005234
## [710] train-logloss:0.005234
## [711] train-logloss:0.005234
## [712] train-logloss:0.005234
## [713] train-logloss:0.005234
## [714] train-logloss:0.005234
## [715] train-logloss:0.005234
## [716] train-logloss:0.005234
## [717] train-logloss:0.005234
## [718] train-logloss:0.005234
## [719] train-logloss:0.005234
## [720] train-logloss:0.005234
## [721] train-logloss:0.005234
## [722] train-logloss:0.005234
## [723] train-logloss:0.005234
## [724] train-logloss:0.005234
## [725] train-logloss:0.005234
## [726] train-logloss:0.005234
## [727] train-logloss:0.005234
## [728] train-logloss:0.005234
## [729] train-logloss:0.005234
## [730] train-logloss:0.005234
## [731] train-logloss:0.005234
## [732] train-logloss:0.005234
## [733] train-logloss:0.005234
## [734] train-logloss:0.005234
## [735] train-logloss:0.005234
## [736] train-logloss:0.005234
## [737] train-logloss:0.005234
## [738] train-logloss:0.005234
## [739] train-logloss:0.005234
## [740] train-logloss:0.005234
## [741] train-logloss:0.005234
## [742] train-logloss:0.005234
## [743] train-logloss:0.005234
## [744] train-logloss:0.005234
## [745] train-logloss:0.005234
## [746] train-logloss:0.005234
## [747] train-logloss:0.005234
## [748] train-logloss:0.005234
## [749] train-logloss:0.005234
## [750] train-logloss:0.005234
## [751] train-logloss:0.005234
## [752] train-logloss:0.005234
## [753] train-logloss:0.005234
## [754] train-logloss:0.005234
## [755] train-logloss:0.005234
## [756] train-logloss:0.005234
## [757] train-logloss:0.005234
## [758] train-logloss:0.005234
## [759] train-logloss:0.005234
## [760] train-logloss:0.005234
## [761] train-logloss:0.005234
## [762] train-logloss:0.005234
## [763] train-logloss:0.005234
## [764] train-logloss:0.005234
## [765] train-logloss:0.005234
## [766] train-logloss:0.005234
## [767] train-logloss:0.005234
## [768] train-logloss:0.005234
## [769] train-logloss:0.005234
## [770] train-logloss:0.005234
## [771] train-logloss:0.005234
## [772] train-logloss:0.005234
## [773] train-logloss:0.005234
## [774] train-logloss:0.005234
## [775] train-logloss:0.005234
## [776] train-logloss:0.005234
## [777] train-logloss:0.005234
## [778] train-logloss:0.005234
## [779] train-logloss:0.005234
## [780] train-logloss:0.005234
## [781] train-logloss:0.005234
## [782] train-logloss:0.005234
## [783] train-logloss:0.005234
## [784] train-logloss:0.005234
## [785] train-logloss:0.005234
## [786] train-logloss:0.005234
## [787] train-logloss:0.005234
## [788] train-logloss:0.005234
## [789] train-logloss:0.005234
## [790] train-logloss:0.005234
## [791] train-logloss:0.005234
## [792] train-logloss:0.005234
## [793] train-logloss:0.005234
## [794] train-logloss:0.005234
## [795] train-logloss:0.005234
## [796] train-logloss:0.005234
## [797] train-logloss:0.005234
## [798] train-logloss:0.005234
## [799] train-logloss:0.005234
## [800] train-logloss:0.005234
## [801] train-logloss:0.005234
## [802] train-logloss:0.005234
## [803] train-logloss:0.005234
## [804] train-logloss:0.005234
## [805] train-logloss:0.005234
## [806] train-logloss:0.005234
## [807] train-logloss:0.005234
## [808] train-logloss:0.005234
## [809] train-logloss:0.005234
## [810] train-logloss:0.005234
## [811] train-logloss:0.005234
## [812] train-logloss:0.005234
## [813] train-logloss:0.005234
## [814] train-logloss:0.005234
## [815] train-logloss:0.005234
## [816] train-logloss:0.005234
## [817] train-logloss:0.005234
## [818] train-logloss:0.005234
## [819] train-logloss:0.005234
## [820] train-logloss:0.005234
## [821] train-logloss:0.005234
## [822] train-logloss:0.005234
## [823] train-logloss:0.005234
## [824] train-logloss:0.005234
## [825] train-logloss:0.005234
## [826] train-logloss:0.005234
## [827] train-logloss:0.005234
## [828] train-logloss:0.005234
## [829] train-logloss:0.005234
## [830] train-logloss:0.005234
## [831] train-logloss:0.005234
## [832] train-logloss:0.005234
## [833] train-logloss:0.005234
## [834] train-logloss:0.005234
## [835] train-logloss:0.005234
## [836] train-logloss:0.005234
## [837] train-logloss:0.005234
## [838] train-logloss:0.005234
## [839] train-logloss:0.005234
## [840] train-logloss:0.005234
## [841] train-logloss:0.005234
## [842] train-logloss:0.005234
## [843] train-logloss:0.005234
## [844] train-logloss:0.005234
## [845] train-logloss:0.005234
## [846] train-logloss:0.005234
## [847] train-logloss:0.005234
## [848] train-logloss:0.005234
## [849] train-logloss:0.005234
## [850] train-logloss:0.005234
## [851] train-logloss:0.005234
## [852] train-logloss:0.005234
## [853] train-logloss:0.005234
## [854] train-logloss:0.005234
## [855] train-logloss:0.005234
## [856] train-logloss:0.005234
## [857] train-logloss:0.005234
## [858] train-logloss:0.005234
## [859] train-logloss:0.005234
## [860] train-logloss:0.005234
## [861] train-logloss:0.005234
## [862] train-logloss:0.005234
## [863] train-logloss:0.005234
## [864] train-logloss:0.005234
## [865] train-logloss:0.005234
## [866] train-logloss:0.005234
## [867] train-logloss:0.005234
## [868] train-logloss:0.005234
## [869] train-logloss:0.005234
## [870] train-logloss:0.005234
## [871] train-logloss:0.005234
## [872] train-logloss:0.005234
## [873] train-logloss:0.005234
## [874] train-logloss:0.005234
## [875] train-logloss:0.005234
## [876] train-logloss:0.005234
## [877] train-logloss:0.005234
## [878] train-logloss:0.005234
## [879] train-logloss:0.005234
## [880] train-logloss:0.005234
## [881] train-logloss:0.005234
## [882] train-logloss:0.005234
## [883] train-logloss:0.005234
## [884] train-logloss:0.005234
## [885] train-logloss:0.005234
## [886] train-logloss:0.005234
## [887] train-logloss:0.005234
## [888] train-logloss:0.005234
## [889] train-logloss:0.005234
## [890] train-logloss:0.005234
## [891] train-logloss:0.005234
## [892] train-logloss:0.005234
## [893] train-logloss:0.005234
## [894] train-logloss:0.005234
## [895] train-logloss:0.005234
## [896] train-logloss:0.005234
## [897] train-logloss:0.005234
## [898] train-logloss:0.005234
## [899] train-logloss:0.005234
## [900] train-logloss:0.005234
## [901] train-logloss:0.005234
## [902] train-logloss:0.005234
## [903] train-logloss:0.005234
## [904] train-logloss:0.005234
## [905] train-logloss:0.005234
## [906] train-logloss:0.005234
## [907] train-logloss:0.005234
## [908] train-logloss:0.005234
## [909] train-logloss:0.005234
## [910] train-logloss:0.005234
## [911] train-logloss:0.005234
## [912] train-logloss:0.005234
## [913] train-logloss:0.005234
## [914] train-logloss:0.005234
## [915] train-logloss:0.005234
## [916] train-logloss:0.005234
## [917] train-logloss:0.005234
## [918] train-logloss:0.005234
## [919] train-logloss:0.005234
## [920] train-logloss:0.005234
## [921] train-logloss:0.005234
## [922] train-logloss:0.005234
## [923] train-logloss:0.005234
## [924] train-logloss:0.005234
## [925] train-logloss:0.005234
## [926] train-logloss:0.005234
## [927] train-logloss:0.005234
## [928] train-logloss:0.005234
## [929] train-logloss:0.005234
## [930] train-logloss:0.005234
## [931] train-logloss:0.005234
## [932] train-logloss:0.005234
## [933] train-logloss:0.005234
## [934] train-logloss:0.005234
## [935] train-logloss:0.005234
## [936] train-logloss:0.005234
## [937] train-logloss:0.005234
## [938] train-logloss:0.005234
## [939] train-logloss:0.005234
## [940] train-logloss:0.005234
## [941] train-logloss:0.005234
## [942] train-logloss:0.005234
## [943] train-logloss:0.005234
## [944] train-logloss:0.005234
## [945] train-logloss:0.005234
## [946] train-logloss:0.005234
## [947] train-logloss:0.005234
## [948] train-logloss:0.005234
## [949] train-logloss:0.005234
## [950] train-logloss:0.005234
## [951] train-logloss:0.005234
## [952] train-logloss:0.005234
## [953] train-logloss:0.005234
## [954] train-logloss:0.005234
## [955] train-logloss:0.005234
## [956] train-logloss:0.005234
## [957] train-logloss:0.005234
## [958] train-logloss:0.005234
## [959] train-logloss:0.005234
## [960] train-logloss:0.005234
## [961] train-logloss:0.005234
## [962] train-logloss:0.005234
## [963] train-logloss:0.005234
## [964] train-logloss:0.005234
## [965] train-logloss:0.005234
## [966] train-logloss:0.005234
## [967] train-logloss:0.005234
## [968] train-logloss:0.005234
## [969] train-logloss:0.005234
## [970] train-logloss:0.005234
## [971] train-logloss:0.005234
## [972] train-logloss:0.005234
## [973] train-logloss:0.005234
## [974] train-logloss:0.005234
## [975] train-logloss:0.005234
## [976] train-logloss:0.005234
## [977] train-logloss:0.005234
## [978] train-logloss:0.005234
## [979] train-logloss:0.005234
## [980] train-logloss:0.005234
## [981] train-logloss:0.005234
## [982] train-logloss:0.005234
## [983] train-logloss:0.005234
## [984] train-logloss:0.005234
## [985] train-logloss:0.005234
## [986] train-logloss:0.005234
## [987] train-logloss:0.005234
## [988] train-logloss:0.005234
## [989] train-logloss:0.005234
## [990] train-logloss:0.005234
## [991] train-logloss:0.005234
## [992] train-logloss:0.005234
## [993] train-logloss:0.005234
## [994] train-logloss:0.005234
## [995] train-logloss:0.005234
## [996] train-logloss:0.005234
## [997] train-logloss:0.005234
## [998] train-logloss:0.005234
## [999] train-logloss:0.005234
## [1000] train-logloss:0.005234
SMOTE
library(xgboost)
smote.train.matrix<-data.matrix(smote_train[,-10])
promo3<-as.matrix(as.factor(as.character(smote_train$promo)))
xgbModel3 <- xgboost(data = smote.train.matrix,
label = promo3,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.690731
## [2] train-logloss:0.688362
## [3] train-logloss:0.686039
## [4] train-logloss:0.683759
## [5] train-logloss:0.681523
## [6] train-logloss:0.679330
## [7] train-logloss:0.677178
## [8] train-logloss:0.675066
## [9] train-logloss:0.672994
## [10] train-logloss:0.670960
## [11] train-logloss:0.668962
## [12] train-logloss:0.667000
## [13] train-logloss:0.665071
## [14] train-logloss:0.663176
## [15] train-logloss:0.661314
## [16] train-logloss:0.659484
## [17] train-logloss:0.657686
## [18] train-logloss:0.655919
## [19] train-logloss:0.654182
## [20] train-logloss:0.652475
## [21] train-logloss:0.650797
## [22] train-logloss:0.649147
## [23] train-logloss:0.647526
## [24] train-logloss:0.645931
## [25] train-logloss:0.644364
## [26] train-logloss:0.642823
## [27] train-logloss:0.641308
## [28] train-logloss:0.639818
## [29] train-logloss:0.638353
## [30] train-logloss:0.636912
## [31] train-logloss:0.635496
## [32] train-logloss:0.634103
## [33] train-logloss:0.632733
## [34] train-logloss:0.631571
## [35] train-logloss:0.630430
## [36] train-logloss:0.629310
## [37] train-logloss:0.628003
## [38] train-logloss:0.626918
## [39] train-logloss:0.625852
## [40] train-logloss:0.624805
## [41] train-logloss:0.623778
## [42] train-logloss:0.622544
## [43] train-logloss:0.621548
## [44] train-logloss:0.620569
## [45] train-logloss:0.619609
## [46] train-logloss:0.618665
## [47] train-logloss:0.617500
## [48] train-logloss:0.616585
## [49] train-logloss:0.615686
## [50] train-logloss:0.614712
## [51] train-logloss:0.613840
## [52] train-logloss:0.612893
## [53] train-logloss:0.612047
## [54] train-logloss:0.611125
## [55] train-logloss:0.610304
## [56] train-logloss:0.609456
## [57] train-logloss:0.608567
## [58] train-logloss:0.607743
## [59] train-logloss:0.606706
## [60] train-logloss:0.605933
## [61] train-logloss:0.605137
## [62] train-logloss:0.604385
## [63] train-logloss:0.603609
## [64] train-logloss:0.602848
## [65] train-logloss:0.601863
## [66] train-logloss:0.601145
## [67] train-logloss:0.600406
## [68] train-logloss:0.599707
## [69] train-logloss:0.599021
## [70] train-logloss:0.598306
## [71] train-logloss:0.597530
## [72] train-logloss:0.596958
## [73] train-logloss:0.596358
## [74] train-logloss:0.595704
## [75] train-logloss:0.595149
## [76] train-logloss:0.594564
## [77] train-logloss:0.593880
## [78] train-logloss:0.592979
## [79] train-logloss:0.592407
## [80] train-logloss:0.591784
## [81] train-logloss:0.591254
## [82] train-logloss:0.590697
## [83] train-logloss:0.590178
## [84] train-logloss:0.589304
## [85] train-logloss:0.588759
## [86] train-logloss:0.588163
## [87] train-logloss:0.587661
## [88] train-logloss:0.587128
## [89] train-logloss:0.586494
## [90] train-logloss:0.585916
## [91] train-logloss:0.585431
## [92] train-logloss:0.584913
## [93] train-logloss:0.584078
## [94] train-logloss:0.583521
## [95] train-logloss:0.583013
## [96] train-logloss:0.582544
## [97] train-logloss:0.582083
## [98] train-logloss:0.581587
## [99] train-logloss:0.580776
## [100] train-logloss:0.580242
## [101] train-logloss:0.579611
## [102] train-logloss:0.579126
## [103] train-logloss:0.578606
## [104] train-logloss:0.578166
## [105] train-logloss:0.577552
## [106] train-logloss:0.577080
## [107] train-logloss:0.576650
## [108] train-logloss:0.576049
## [109] train-logloss:0.575553
## [110] train-logloss:0.575091
## [111] train-logloss:0.574504
## [112] train-logloss:0.574020
## [113] train-logloss:0.573569
## [114] train-logloss:0.573158
## [115] train-logloss:0.572586
## [116] train-logloss:0.572145
## [117] train-logloss:0.571676
## [118] train-logloss:0.571278
## [119] train-logloss:0.570721
## [120] train-logloss:0.570289
## [121] train-logloss:0.569900
## [122] train-logloss:0.569354
## [123] train-logloss:0.568904
## [124] train-logloss:0.568483
## [125] train-logloss:0.567949
## [126] train-logloss:0.567573
## [127] train-logloss:0.567049
## [128] train-logloss:0.566615
## [129] train-logloss:0.566204
## [130] train-logloss:0.565839
## [131] train-logloss:0.565327
## [132] train-logloss:0.564925
## [133] train-logloss:0.564505
## [134] train-logloss:0.564004
## [135] train-logloss:0.563610
## [136] train-logloss:0.563258
## [137] train-logloss:0.562850
## [138] train-logloss:0.562361
## [139] train-logloss:0.561976
## [140] train-logloss:0.561633
## [141] train-logloss:0.561154
## [142] train-logloss:0.560760
## [143] train-logloss:0.560383
## [144] train-logloss:0.560050
## [145] train-logloss:0.559582
## [146] train-logloss:0.559213
## [147] train-logloss:0.558831
## [148] train-logloss:0.558372
## [149] train-logloss:0.558049
## [150] train-logloss:0.557687
## [151] train-logloss:0.557314
## [152] train-logloss:0.556865
## [153] train-logloss:0.556551
## [154] train-logloss:0.556197
## [155] train-logloss:0.555755
## [156] train-logloss:0.555394
## [157] train-logloss:0.555086
## [158] train-logloss:0.554617
## [159] train-logloss:0.554183
## [160] train-logloss:0.553828
## [161] train-logloss:0.553485
## [162] train-logloss:0.553185
## [163] train-logloss:0.552835
## [164] train-logloss:0.552377
## [165] train-logloss:0.551953
## [166] train-logloss:0.551658
## [167] train-logloss:0.551207
## [168] train-logloss:0.550789
## [169] train-logloss:0.550448
## [170] train-logloss:0.550004
## [171] train-logloss:0.549716
## [172] train-logloss:0.549306
## [173] train-logloss:0.548981
## [174] train-logloss:0.548648
## [175] train-logloss:0.548365
## [176] train-logloss:0.547963
## [177] train-logloss:0.547528
## [178] train-logloss:0.547201
## [179] train-logloss:0.546925
## [180] train-logloss:0.546530
## [181] train-logloss:0.546103
## [182] train-logloss:0.545782
## [183] train-logloss:0.545470
## [184] train-logloss:0.545082
## [185] train-logloss:0.544767
## [186] train-logloss:0.544347
## [187] train-logloss:0.544078
## [188] train-logloss:0.543664
## [189] train-logloss:0.543283
## [190] train-logloss:0.543020
## [191] train-logloss:0.542717
## [192] train-logloss:0.542343
## [193] train-logloss:0.542038
## [194] train-logloss:0.541631
## [195] train-logloss:0.541374
## [196] train-logloss:0.541004
## [197] train-logloss:0.540703
## [198] train-logloss:0.540304
## [199] train-logloss:0.540051
## [200] train-logloss:0.539656
## [201] train-logloss:0.539407
## [202] train-logloss:0.539045
## [203] train-logloss:0.538756
## [204] train-logloss:0.538463
## [205] train-logloss:0.538109
## [206] train-logloss:0.537719
## [207] train-logloss:0.537474
## [208] train-logloss:0.537187
## [209] train-logloss:0.536806
## [210] train-logloss:0.536566
## [211] train-logloss:0.536216
## [212] train-logloss:0.535934
## [213] train-logloss:0.535559
## [214] train-logloss:0.535214
## [215] train-logloss:0.534938
## [216] train-logloss:0.534702
## [217] train-logloss:0.534364
## [218] train-logloss:0.533995
## [219] train-logloss:0.533718
## [220] train-logloss:0.533487
## [221] train-logloss:0.533215
## [222] train-logloss:0.532852
## [223] train-logloss:0.532520
## [224] train-logloss:0.532293
## [225] train-logloss:0.532025
## [226] train-logloss:0.531698
## [227] train-logloss:0.531341
## [228] train-logloss:0.531076
## [229] train-logloss:0.530852
## [230] train-logloss:0.530502
## [231] train-logloss:0.530179
## [232] train-logloss:0.529918
## [233] train-logloss:0.529699
## [234] train-logloss:0.529353
## [235] train-logloss:0.529036
## [236] train-logloss:0.528820
## [237] train-logloss:0.528564
## [238] train-logloss:0.528308
## [239] train-logloss:0.527997
## [240] train-logloss:0.527657
## [241] train-logloss:0.527445
## [242] train-logloss:0.527109
## [243] train-logloss:0.526617
## [244] train-logloss:0.526311
## [245] train-logloss:0.526104
## [246] train-logloss:0.525856
## [247] train-logloss:0.525608
## [248] train-logloss:0.525280
## [249] train-logloss:0.524979
## [250] train-logloss:0.524776
## [251] train-logloss:0.524533
## [252] train-logloss:0.524210
## [253] train-logloss:0.523738
## [254] train-logloss:0.523443
## [255] train-logloss:0.523126
## [256] train-logloss:0.522928
## [257] train-logloss:0.522688
## [258] train-logloss:0.522397
## [259] train-logloss:0.522162
## [260] train-logloss:0.521849
## [261] train-logloss:0.521655
## [262] train-logloss:0.521369
## [263] train-logloss:0.521060
## [264] train-logloss:0.520870
## [265] train-logloss:0.520418
## [266] train-logloss:0.520138
## [267] train-logloss:0.519834
## [268] train-logloss:0.519648
## [269] train-logloss:0.519418
## [270] train-logloss:0.519141
## [271] train-logloss:0.518914
## [272] train-logloss:0.518615
## [273] train-logloss:0.518432
## [274] train-logloss:0.517998
## [275] train-logloss:0.517726
## [276] train-logloss:0.517434
## [277] train-logloss:0.517212
## [278] train-logloss:0.517033
## [279] train-logloss:0.516810
## [280] train-logloss:0.516543
## [281] train-logloss:0.516255
## [282] train-logloss:0.516079
## [283] train-logloss:0.515660
## [284] train-logloss:0.515398
## [285] train-logloss:0.515115
## [286] train-logloss:0.514943
## [287] train-logloss:0.514684
## [288] train-logloss:0.514471
## [289] train-logloss:0.514191
## [290] train-logloss:0.514023
## [291] train-logloss:0.513619
## [292] train-logloss:0.513403
## [293] train-logloss:0.513149
## [294] train-logloss:0.512941
## [295] train-logloss:0.512668
## [296] train-logloss:0.512502
## [297] train-logloss:0.512233
## [298] train-logloss:0.511841
## [299] train-logloss:0.511591
## [300] train-logloss:0.511386
## [301] train-logloss:0.511176
## [302] train-logloss:0.510930
## [303] train-logloss:0.510768
## [304] train-logloss:0.510505
## [305] train-logloss:0.510122
## [306] train-logloss:0.509964
## [307] train-logloss:0.509721
## [308] train-logloss:0.509463
## [309] train-logloss:0.509087
## [310] train-logloss:0.508884
## [311] train-logloss:0.508643
## [312] train-logloss:0.508444
## [313] train-logloss:0.508290
## [314] train-logloss:0.508037
## [315] train-logloss:0.507671
## [316] train-logloss:0.507434
## [317] train-logloss:0.507282
## [318] train-logloss:0.507034
## [319] train-logloss:0.506675
## [320] train-logloss:0.506477
## [321] train-logloss:0.506244
## [322] train-logloss:0.506095
## [323] train-logloss:0.505742
## [324] train-logloss:0.505500
## [325] train-logloss:0.505270
## [326] train-logloss:0.504923
## [327] train-logloss:0.504730
## [328] train-logloss:0.504538
## [329] train-logloss:0.504311
## [330] train-logloss:0.504166
## [331] train-logloss:0.503931
## [332] train-logloss:0.503591
## [333] train-logloss:0.503449
## [334] train-logloss:0.503216
## [335] train-logloss:0.502884
## [336] train-logloss:0.502660
## [337] train-logloss:0.502473
## [338] train-logloss:0.502144
## [339] train-logloss:0.501924
## [340] train-logloss:0.501784
## [341] train-logloss:0.501559
## [342] train-logloss:0.501237
## [343] train-logloss:0.501019
## [344] train-logloss:0.500882
## [345] train-logloss:0.500660
## [346] train-logloss:0.500524
## [347] train-logloss:0.500309
## [348] train-logloss:0.499995
## [349] train-logloss:0.499813
## [350] train-logloss:0.499679
## [351] train-logloss:0.499462
## [352] train-logloss:0.499250
## [353] train-logloss:0.498941
## [354] train-logloss:0.498763
## [355] train-logloss:0.498632
## [356] train-logloss:0.498423
## [357] train-logloss:0.498211
## [358] train-logloss:0.497909
## [359] train-logloss:0.497701
## [360] train-logloss:0.497572
## [361] train-logloss:0.497364
## [362] train-logloss:0.497068
## [363] train-logloss:0.496895
## [364] train-logloss:0.496691
## [365] train-logloss:0.496564
## [366] train-logloss:0.496272
## [367] train-logloss:0.496068
## [368] train-logloss:0.495867
## [369] train-logloss:0.495581
## [370] train-logloss:0.495456
## [371] train-logloss:0.495287
## [372] train-logloss:0.495088
## [373] train-logloss:0.494965
## [374] train-logloss:0.494843
## [375] train-logloss:0.494562
## [376] train-logloss:0.494364
## [377] train-logloss:0.494169
## [378] train-logloss:0.493892
## [379] train-logloss:0.493726
## [380] train-logloss:0.493533
## [381] train-logloss:0.493413
## [382] train-logloss:0.493219
## [383] train-logloss:0.492948
## [384] train-logloss:0.492830
## [385] train-logloss:0.492639
## [386] train-logloss:0.492477
## [387] train-logloss:0.492361
## [388] train-logloss:0.492173
## [389] train-logloss:0.492058
## [390] train-logloss:0.491867
## [391] train-logloss:0.491602
## [392] train-logloss:0.491416
## [393] train-logloss:0.491302
## [394] train-logloss:0.491115
## [395] train-logloss:0.490855
## [396] train-logloss:0.490672
## [397] train-logloss:0.490514
## [398] train-logloss:0.490402
## [399] train-logloss:0.490221
## [400] train-logloss:0.489965
## [401] train-logloss:0.489783
## [402] train-logloss:0.489532
## [403] train-logloss:0.489353
## [404] train-logloss:0.489198
## [405] train-logloss:0.489088
## [406] train-logloss:0.488840
## [407] train-logloss:0.488662
## [408] train-logloss:0.488554
## [409] train-logloss:0.488377
## [410] train-logloss:0.488225
## [411] train-logloss:0.488050
## [412] train-logloss:0.487942
## [413] train-logloss:0.487836
## [414] train-logloss:0.487663
## [415] train-logloss:0.487421
## [416] train-logloss:0.487247
## [417] train-logloss:0.487009
## [418] train-logloss:0.486904
## [419] train-logloss:0.486733
## [420] train-logloss:0.486585
## [421] train-logloss:0.486481
## [422] train-logloss:0.486247
## [423] train-logloss:0.486079
## [424] train-logloss:0.485976
## [425] train-logloss:0.485813
## [426] train-logloss:0.485668
## [427] train-logloss:0.485567
## [428] train-logloss:0.485400
## [429] train-logloss:0.485171
## [430] train-logloss:0.485004
## [431] train-logloss:0.484778
## [432] train-logloss:0.484613
## [433] train-logloss:0.484513
## [434] train-logloss:0.484290
## [435] train-logloss:0.484148
## [436] train-logloss:0.484049
## [437] train-logloss:0.483887
## [438] train-logloss:0.483722
## [439] train-logloss:0.483625
## [440] train-logloss:0.483465
## [441] train-logloss:0.483246
## [442] train-logloss:0.483106
## [443] train-logloss:0.483010
## [444] train-logloss:0.482852
## [445] train-logloss:0.482690
## [446] train-logloss:0.482532
## [447] train-logloss:0.482437
## [448] train-logloss:0.482282
## [449] train-logloss:0.482122
## [450] train-logloss:0.481906
## [451] train-logloss:0.481750
## [452] train-logloss:0.481657
## [453] train-logloss:0.481503
## [454] train-logloss:0.481367
## [455] train-logloss:0.481212
## [456] train-logloss:0.481119
## [457] train-logloss:0.480907
## [458] train-logloss:0.480748
## [459] train-logloss:0.480656
## [460] train-logloss:0.480505
## [461] train-logloss:0.480352
## [462] train-logloss:0.480218
## [463] train-logloss:0.480127
## [464] train-logloss:0.479977
## [465] train-logloss:0.479820
## [466] train-logloss:0.479670
## [467] train-logloss:0.479521
## [468] train-logloss:0.479312
## [469] train-logloss:0.479157
## [470] train-logloss:0.479066
## [471] train-logloss:0.478916
## [472] train-logloss:0.478770
## [473] train-logloss:0.478680
## [474] train-logloss:0.478474
## [475] train-logloss:0.478343
## [476] train-logloss:0.478195
## [477] train-logloss:0.478050
## [478] train-logloss:0.477896
## [479] train-logloss:0.477806
## [480] train-logloss:0.477655
## [481] train-logloss:0.477566
## [482] train-logloss:0.477422
## [483] train-logloss:0.477276
## [484] train-logloss:0.477073
## [485] train-logloss:0.476945
## [486] train-logloss:0.476803
## [487] train-logloss:0.476615
## [488] train-logloss:0.476527
## [489] train-logloss:0.476383
## [490] train-logloss:0.476182
## [491] train-logloss:0.476032
## [492] train-logloss:0.475847
## [493] train-logloss:0.475706
## [494] train-logloss:0.475523
## [495] train-logloss:0.475375
## [496] train-logloss:0.475288
## [497] train-logloss:0.475148
## [498] train-logloss:0.474968
## [499] train-logloss:0.474821
## [500] train-logloss:0.474734
## [501] train-logloss:0.474592
## [502] train-logloss:0.474453
## [503] train-logloss:0.474255
## [504] train-logloss:0.474131
## [505] train-logloss:0.474045
## [506] train-logloss:0.473905
## [507] train-logloss:0.473709
## [508] train-logloss:0.473571
## [509] train-logloss:0.473427
## [510] train-logloss:0.473249
## [511] train-logloss:0.473164
## [512] train-logloss:0.473028
## [513] train-logloss:0.472853
## [514] train-logloss:0.472713
## [515] train-logloss:0.472592
## [516] train-logloss:0.472419
## [517] train-logloss:0.472283
## [518] train-logloss:0.472199
## [519] train-logloss:0.472028
## [520] train-logloss:0.471891
## [521] train-logloss:0.471697
## [522] train-logloss:0.471555
## [523] train-logloss:0.471471
## [524] train-logloss:0.471337
## [525] train-logloss:0.471198
## [526] train-logloss:0.471007
## [527] train-logloss:0.470924
## [528] train-logloss:0.470787
## [529] train-logloss:0.470598
## [530] train-logloss:0.470479
## [531] train-logloss:0.470346
## [532] train-logloss:0.470177
## [533] train-logloss:0.470040
## [534] train-logloss:0.469958
## [535] train-logloss:0.469772
## [536] train-logloss:0.469640
## [537] train-logloss:0.469521
## [538] train-logloss:0.469387
## [539] train-logloss:0.469305
## [540] train-logloss:0.469139
## [541] train-logloss:0.469008
## [542] train-logloss:0.468872
## [543] train-logloss:0.468708
## [544] train-logloss:0.468547
## [545] train-logloss:0.468415
## [546] train-logloss:0.468285
## [547] train-logloss:0.468126
## [548] train-logloss:0.468044
## [549] train-logloss:0.467888
## [550] train-logloss:0.467759
## [551] train-logloss:0.467623
## [552] train-logloss:0.467543
## [553] train-logloss:0.467358
## [554] train-logloss:0.467225
## [555] train-logloss:0.467004
## [556] train-logloss:0.466926
## [557] train-logloss:0.466798
## [558] train-logloss:0.466683
## [559] train-logloss:0.466528
## [560] train-logloss:0.466450
## [561] train-logloss:0.466267
## [562] train-logloss:0.466137
## [563] train-logloss:0.466010
## [564] train-logloss:0.465857
## [565] train-logloss:0.465731
## [566] train-logloss:0.465654
## [567] train-logloss:0.465541
## [568] train-logloss:0.465390
## [569] train-logloss:0.465261
## [570] train-logloss:0.465046
## [571] train-logloss:0.464969
## [572] train-logloss:0.464845
## [573] train-logloss:0.464696
## [574] train-logloss:0.464484
## [575] train-logloss:0.464408
## [576] train-logloss:0.464261
## [577] train-logloss:0.464138
## [578] train-logloss:0.463993
## [579] train-logloss:0.463918
## [580] train-logloss:0.463797
## [581] train-logloss:0.463653
## [582] train-logloss:0.463526
## [583] train-logloss:0.463343
## [584] train-logloss:0.463213
## [585] train-logloss:0.463005
## [586] train-logloss:0.462932
## [587] train-logloss:0.462752
## [588] train-logloss:0.462631
## [589] train-logloss:0.462427
## [590] train-logloss:0.462354
## [591] train-logloss:0.462153
## [592] train-logloss:0.462082
## [593] train-logloss:0.461962
## [594] train-logloss:0.461820
## [595] train-logloss:0.461749
## [596] train-logloss:0.461631
## [597] train-logloss:0.461490
## [598] train-logloss:0.461293
## [599] train-logloss:0.461223
## [600] train-logloss:0.461084
## [601] train-logloss:0.461003
## [602] train-logloss:0.460886
## [603] train-logloss:0.460750
## [604] train-logloss:0.460680
## [605] train-logloss:0.460600
## [606] train-logloss:0.460465
## [607] train-logloss:0.460349
## [608] train-logloss:0.460216
## [609] train-logloss:0.460138
## [610] train-logloss:0.460023
## [611] train-logloss:0.459953
## [612] train-logloss:0.459822
## [613] train-logloss:0.459745
## [614] train-logloss:0.459615
## [615] train-logloss:0.459501
## [616] train-logloss:0.459391
## [617] train-logloss:0.459322
## [618] train-logloss:0.459194
## [619] train-logloss:0.459002
## [620] train-logloss:0.458926
## [621] train-logloss:0.458800
## [622] train-logloss:0.458687
## [623] train-logloss:0.458618
## [624] train-logloss:0.458543
## [625] train-logloss:0.458419
## [626] train-logloss:0.458306
## [627] train-logloss:0.458178
## [628] train-logloss:0.458110
## [629] train-logloss:0.457999
## [630] train-logloss:0.457925
## [631] train-logloss:0.457798
## [632] train-logloss:0.457730
## [633] train-logloss:0.457604
## [634] train-logloss:0.457495
## [635] train-logloss:0.457307
## [636] train-logloss:0.457240
## [637] train-logloss:0.457167
## [638] train-logloss:0.457043
## [639] train-logloss:0.456934
## [640] train-logloss:0.456812
## [641] train-logloss:0.456746
## [642] train-logloss:0.456673
## [643] train-logloss:0.456565
## [644] train-logloss:0.456457
## [645] train-logloss:0.456337
## [646] train-logloss:0.456265
## [647] train-logloss:0.456147
## [648] train-logloss:0.456080
## [649] train-logloss:0.455972
## [650] train-logloss:0.455848
## [651] train-logloss:0.455777
## [652] train-logloss:0.455671
## [653] train-logloss:0.455554
## [654] train-logloss:0.455488
## [655] train-logloss:0.455381
## [656] train-logloss:0.455258
## [657] train-logloss:0.455188
## [658] train-logloss:0.455065
## [659] train-logloss:0.454881
## [660] train-logloss:0.454816
## [661] train-logloss:0.454711
## [662] train-logloss:0.454530
## [663] train-logloss:0.454466
## [664] train-logloss:0.454287
## [665] train-logloss:0.454224
## [666] train-logloss:0.454119
## [667] train-logloss:0.453946
## [668] train-logloss:0.453770
## [669] train-logloss:0.453707
## [670] train-logloss:0.453638
## [671] train-logloss:0.453521
## [672] train-logloss:0.453416
## [673] train-logloss:0.453354
## [674] train-logloss:0.453286
## [675] train-logloss:0.453170
## [676] train-logloss:0.453066
## [677] train-logloss:0.452999
## [678] train-logloss:0.452885
## [679] train-logloss:0.452782
## [680] train-logloss:0.452600
## [681] train-logloss:0.452479
## [682] train-logloss:0.452360
## [683] train-logloss:0.452298
## [684] train-logloss:0.452126
## [685] train-logloss:0.452023
## [686] train-logloss:0.451962
## [687] train-logloss:0.451791
## [688] train-logloss:0.451725
## [689] train-logloss:0.451664
## [690] train-logloss:0.451562
## [691] train-logloss:0.451496
## [692] train-logloss:0.451383
## [693] train-logloss:0.451263
## [694] train-logloss:0.451162
## [695] train-logloss:0.451101
## [696] train-logloss:0.451000
## [697] train-logloss:0.450935
## [698] train-logloss:0.450824
## [699] train-logloss:0.450723
## [700] train-logloss:0.450612
## [701] train-logloss:0.450437
## [702] train-logloss:0.450322
## [703] train-logloss:0.450262
## [704] train-logloss:0.450198
## [705] train-logloss:0.450098
## [706] train-logloss:0.449980
## [707] train-logloss:0.449921
## [708] train-logloss:0.449754
## [709] train-logloss:0.449691
## [710] train-logloss:0.449520
## [711] train-logloss:0.449422
## [712] train-logloss:0.449322
## [713] train-logloss:0.449264
## [714] train-logloss:0.449154
## [715] train-logloss:0.449092
## [716] train-logloss:0.448925
## [717] train-logloss:0.448809
## [718] train-logloss:0.448710
## [719] train-logloss:0.448597
## [720] train-logloss:0.448539
## [721] train-logloss:0.448376
## [722] train-logloss:0.448315
## [723] train-logloss:0.448217
## [724] train-logloss:0.448108
## [725] train-logloss:0.447945
## [726] train-logloss:0.447885
## [727] train-logloss:0.447724
## [728] train-logloss:0.447610
## [729] train-logloss:0.447512
## [730] train-logloss:0.447386
## [731] train-logloss:0.447328
## [732] train-logloss:0.447269
## [733] train-logloss:0.447172
## [734] train-logloss:0.447062
## [735] train-logloss:0.447005
## [736] train-logloss:0.446846
## [737] train-logloss:0.446789
## [738] train-logloss:0.446632
## [739] train-logloss:0.446574
## [740] train-logloss:0.446477
## [741] train-logloss:0.446421
## [742] train-logloss:0.446314
## [743] train-logloss:0.446256
## [744] train-logloss:0.446100
## [745] train-logloss:0.446004
## [746] train-logloss:0.445899
## [747] train-logloss:0.445776
## [748] train-logloss:0.445720
## [749] train-logloss:0.445607
## [750] train-logloss:0.445550
## [751] train-logloss:0.445396
## [752] train-logloss:0.445300
## [753] train-logloss:0.445180
## [754] train-logloss:0.445124
## [755] train-logloss:0.444970
## [756] train-logloss:0.444914
## [757] train-logloss:0.444763
## [758] train-logloss:0.444667
## [759] train-logloss:0.444564
## [760] train-logloss:0.444415
## [761] train-logloss:0.444302
## [762] train-logloss:0.444247
## [763] train-logloss:0.444193
## [764] train-logloss:0.444098
## [765] train-logloss:0.443993
## [766] train-logloss:0.443939
## [767] train-logloss:0.443884
## [768] train-logloss:0.443790
## [769] train-logloss:0.443672
## [770] train-logloss:0.443561
## [771] train-logloss:0.443507
## [772] train-logloss:0.443414
## [773] train-logloss:0.443321
## [774] train-logloss:0.443205
## [775] train-logloss:0.443151
## [776] train-logloss:0.443098
## [777] train-logloss:0.442948
## [778] train-logloss:0.442894
## [779] train-logloss:0.442747
## [780] train-logloss:0.442646
## [781] train-logloss:0.442502
## [782] train-logloss:0.442449
## [783] train-logloss:0.442357
## [784] train-logloss:0.442254
## [785] train-logloss:0.442201
## [786] train-logloss:0.442110
## [787] train-logloss:0.442000
## [788] train-logloss:0.441888
## [789] train-logloss:0.441835
## [790] train-logloss:0.441688
## [791] train-logloss:0.441636
## [792] train-logloss:0.441584
## [793] train-logloss:0.441440
## [794] train-logloss:0.441340
## [795] train-logloss:0.441198
## [796] train-logloss:0.441146
## [797] train-logloss:0.441055
## [798] train-logloss:0.440957
## [799] train-logloss:0.440817
## [800] train-logloss:0.440767
## [801] train-logloss:0.440657
## [802] train-logloss:0.440565
## [803] train-logloss:0.440515
## [804] train-logloss:0.440377
## [805] train-logloss:0.440280
## [806] train-logloss:0.440180
## [807] train-logloss:0.440090
## [808] train-logloss:0.440041
## [809] train-logloss:0.439906
## [810] train-logloss:0.439798
## [811] train-logloss:0.439689
## [812] train-logloss:0.439637
## [813] train-logloss:0.439547
## [814] train-logloss:0.439448
## [815] train-logloss:0.439397
## [816] train-logloss:0.439308
## [817] train-logloss:0.439260
## [818] train-logloss:0.439169
## [819] train-logloss:0.439062
## [820] train-logloss:0.439010
## [821] train-logloss:0.438962
## [822] train-logloss:0.438864
## [823] train-logloss:0.438777
## [824] train-logloss:0.438643
## [825] train-logloss:0.438548
## [826] train-logloss:0.438443
## [827] train-logloss:0.438396
## [828] train-logloss:0.438298
## [829] train-logloss:0.438211
## [830] train-logloss:0.438164
## [831] train-logloss:0.438033
## [832] train-logloss:0.437940
## [833] train-logloss:0.437811
## [834] train-logloss:0.437715
## [835] train-logloss:0.437629
## [836] train-logloss:0.437582
## [837] train-logloss:0.437531
## [838] train-logloss:0.437445
## [839] train-logloss:0.437341
## [840] train-logloss:0.437290
## [841] train-logloss:0.437184
## [842] train-logloss:0.437133
## [843] train-logloss:0.437087
## [844] train-logloss:0.436985
## [845] train-logloss:0.436895
## [846] train-logloss:0.436850
## [847] train-logloss:0.436764
## [848] train-logloss:0.436714
## [849] train-logloss:0.436669
## [850] train-logloss:0.436574
## [851] train-logloss:0.436446
## [852] train-logloss:0.436355
## [853] train-logloss:0.436271
## [854] train-logloss:0.436181
## [855] train-logloss:0.436055
## [856] train-logloss:0.435955
## [857] train-logloss:0.435861
## [858] train-logloss:0.435817
## [859] train-logloss:0.435733
## [860] train-logloss:0.435644
## [861] train-logloss:0.435546
## [862] train-logloss:0.435502
## [863] train-logloss:0.435452
## [864] train-logloss:0.435346
## [865] train-logloss:0.435297
## [866] train-logloss:0.435253
## [867] train-logloss:0.435170
## [868] train-logloss:0.435046
## [869] train-logloss:0.434957
## [870] train-logloss:0.434861
## [871] train-logloss:0.434773
## [872] train-logloss:0.434730
## [873] train-logloss:0.434608
## [874] train-logloss:0.434515
## [875] train-logloss:0.434420
## [876] train-logloss:0.434377
## [877] train-logloss:0.434327
## [878] train-logloss:0.434224
## [879] train-logloss:0.434141
## [880] train-logloss:0.434092
## [881] train-logloss:0.434050
## [882] train-logloss:0.433956
## [883] train-logloss:0.433869
## [884] train-logloss:0.433821
## [885] train-logloss:0.433778
## [886] train-logloss:0.433658
## [887] train-logloss:0.433576
## [888] train-logloss:0.433484
## [889] train-logloss:0.433391
## [890] train-logloss:0.433289
## [891] train-logloss:0.433241
## [892] train-logloss:0.433199
## [893] train-logloss:0.433112
## [894] train-logloss:0.432994
## [895] train-logloss:0.432912
## [896] train-logloss:0.432827
## [897] train-logloss:0.432710
## [898] train-logloss:0.432619
## [899] train-logloss:0.432578
## [900] train-logloss:0.432486
## [901] train-logloss:0.432454
## [902] train-logloss:0.432374
## [903] train-logloss:0.432289
## [904] train-logloss:0.432174
## [905] train-logloss:0.432088
## [906] train-logloss:0.431987
## [907] train-logloss:0.431897
## [908] train-logloss:0.431848
## [909] train-logloss:0.431800
## [910] train-logloss:0.431768
## [911] train-logloss:0.431678
## [912] train-logloss:0.431598
## [913] train-logloss:0.431485
## [914] train-logloss:0.431401
## [915] train-logloss:0.431289
## [916] train-logloss:0.431199
## [917] train-logloss:0.431120
## [918] train-logloss:0.431020
## [919] train-logloss:0.430931
## [920] train-logloss:0.430847
## [921] train-logloss:0.430816
## [922] train-logloss:0.430737
## [923] train-logloss:0.430689
## [924] train-logloss:0.430658
## [925] train-logloss:0.430569
## [926] train-logloss:0.430491
## [927] train-logloss:0.430403
## [928] train-logloss:0.430305
## [929] train-logloss:0.430257
## [930] train-logloss:0.430174
## [931] train-logloss:0.430064
## [932] train-logloss:0.429982
## [933] train-logloss:0.429873
## [934] train-logloss:0.429785
## [935] train-logloss:0.429707
## [936] train-logloss:0.429620
## [937] train-logloss:0.429590
## [938] train-logloss:0.429503
## [939] train-logloss:0.429426
## [940] train-logloss:0.429378
## [941] train-logloss:0.429348
## [942] train-logloss:0.429241
## [943] train-logloss:0.429154
## [944] train-logloss:0.429074
## [945] train-logloss:0.428968
## [946] train-logloss:0.428891
## [947] train-logloss:0.428793
## [948] train-logloss:0.428708
## [949] train-logloss:0.428625
## [950] train-logloss:0.428595
## [951] train-logloss:0.428548
## [952] train-logloss:0.428501
## [953] train-logloss:0.428425
## [954] train-logloss:0.428345
## [955] train-logloss:0.428240
## [956] train-logloss:0.428144
## [957] train-logloss:0.428060
## [958] train-logloss:0.428031
## [959] train-logloss:0.427945
## [960] train-logloss:0.427899
## [961] train-logloss:0.427804
## [962] train-logloss:0.427721
## [963] train-logloss:0.427638
## [964] train-logloss:0.427592
## [965] train-logloss:0.427563
## [966] train-logloss:0.427459
## [967] train-logloss:0.427384
## [968] train-logloss:0.427305
## [969] train-logloss:0.427203
## [970] train-logloss:0.427118
## [971] train-logloss:0.427040
## [972] train-logloss:0.427012
## [973] train-logloss:0.426911
## [974] train-logloss:0.426836
## [975] train-logloss:0.426751
## [976] train-logloss:0.426676
## [977] train-logloss:0.426599
## [978] train-logloss:0.426500
## [979] train-logloss:0.426405
## [980] train-logloss:0.426321
## [981] train-logloss:0.426247
## [982] train-logloss:0.426150
## [983] train-logloss:0.426122
## [984] train-logloss:0.426076
## [985] train-logloss:0.426002
## [986] train-logloss:0.425956
## [987] train-logloss:0.425875
## [988] train-logloss:0.425782
## [989] train-logloss:0.425736
## [990] train-logloss:0.425655
## [991] train-logloss:0.425627
## [992] train-logloss:0.425547
## [993] train-logloss:0.425470
## [994] train-logloss:0.425373
## [995] train-logloss:0.425281
## [996] train-logloss:0.425205
## [997] train-logloss:0.425110
## [998] train-logloss:0.425026
## [999] train-logloss:0.424999
## [1000] train-logloss:0.424926
## Make predictions on test data
moklas1.test.matrix<-data.matrix(moklas1.test[,-10])
promo.test<-as.matrix(as.factor(as.character(moklas1.test$promo)))
predicted <- predict(xgbModel3,moklas1.test.matrix )
predicted <- ifelse(predicted > 0.5 , 1,0)
## Create confusion matrix
confusionMatrix(table(predicted = predicted, actual = promo.test))
## Confusion Matrix and Statistics
##
## actual
## predicted 0 1
## 0 33 4
## 1 14 20
##
## Accuracy : 0.7465
## 95% CI : (0.6292, 0.8423)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.08154
##
## Kappa : 0.4859
##
## Mcnemar's Test P-Value : 0.03389
##
## Sensitivity : 0.7021
## Specificity : 0.8333
## Pos Pred Value : 0.8919
## Neg Pred Value : 0.5882
## Prevalence : 0.6620
## Detection Rate : 0.4648
## Detection Prevalence : 0.5211
## Balanced Accuracy : 0.7677
##
## 'Positive' Class : 0
##