Praktikum 3 Regresi dengan Peubah Lag
Packages
## Warning: package 'dLagM' was built under R version 4.2.3
## Loading required package: nardl
## Warning: package 'nardl' was built under R version 4.2.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Loading required package: dynlm
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Warning: package 'MLmetrics' was built under R version 4.2.3
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:dLagM':
##
## MAPE
## The following object is masked from 'package:base':
##
## Recall
## Warning: package 'lmtest' was built under R version 4.2.3
## Loading required package: carData
Impor Data
datasales <- rio::import("https://raw.githubusercontent.com/aidara11/mpdw/main/Pertemuan%203/salesmonthly.csv")
str(datasales)## 'data.frame': 70 obs. of 9 variables:
## $ datum: IDate, format: "2014-01-31" "2014-02-28" ...
## $ M01AB: num 128 133 137 113 102 ...
## $ M01AE: num 99.1 126.1 93 89.5 119.9 ...
## $ N02BA: num 152 177 148 131 132 ...
## $ N02BE: num 878 1002 779 698 629 ...
## $ N05B : num 354 347 232 209 270 323 348 420 399 472 ...
## $ N05C : num 50 31 20 18 23 23 21 29 14 30 ...
## $ R03 : num 112 122 112 97 107 57 61 37 115 182 ...
## $ R06 : num 48.2 36.2 85.4 73.7 123.7 ...
## datum M01AB M01AE N02BA N02BE N05B N05C R03 R06
## 1 2014-01-31 127.69 99.090 152.100 878.030 354.0 50 112.00 48.20
## 2 2014-02-28 133.32 126.050 177.000 1001.900 347.0 31 122.00 36.20
## 3 2014-03-31 137.44 92.950 147.655 779.275 232.0 20 112.00 85.40
## 4 2014-04-30 113.10 89.475 130.900 698.500 209.0 18 97.00 73.70
## 5 2014-05-31 101.79 119.933 132.100 628.780 270.0 23 107.00 123.70
## 6 2014-06-30 112.07 94.710 122.900 548.225 323.0 23 57.00 109.30
## 7 2014-07-31 117.06 95.010 129.300 491.900 348.0 21 61.00 69.10
## 8 2014-08-31 134.79 99.780 123.800 583.850 420.0 29 37.00 70.80
## 9 2014-09-30 108.78 109.094 122.100 887.820 399.0 14 115.00 58.80
## 10 2014-10-31 154.75 185.241 191.600 1856.815 472.0 30 182.00 74.50
## 11 2014-11-30 138.08 100.860 142.700 723.800 489.0 19 112.00 45.20
## 12 2014-12-31 131.90 121.401 111.124 1015.660 492.0 25 163.00 33.40
## 13 2015-01-31 135.91 130.349 141.000 1044.240 463.0 24 177.25 42.00
## 14 2015-02-28 115.71 123.740 131.830 953.252 243.0 9 208.00 47.00
## 15 2015-03-31 156.04 129.386 133.800 1084.850 208.0 13 195.00 54.00
## 16 2015-04-30 154.50 101.115 122.100 940.170 192.0 5 97.00 112.00
## 17 2015-05-31 160.02 119.117 136.040 765.900 194.0 10 100.00 159.50
## 18 2015-06-30 151.87 113.690 145.460 746.788 217.0 12 193.00 125.80
## 19 2015-07-31 175.61 113.810 125.500 708.828 203.0 6 60.00 130.30
## 20 2015-08-31 181.69 144.519 133.400 790.788 265.5 15 45.00 83.70
## 21 2015-09-30 166.22 134.122 110.400 852.125 243.5 11 91.00 71.00
## 22 2015-10-31 195.81 127.231 146.200 1574.335 222.0 8 184.00 72.00
## 23 2015-11-30 152.78 128.233 145.900 1277.725 228.0 18 195.00 44.00
## 24 2015-12-31 159.46 131.291 137.000 1258.349 286.0 28 231.00 41.73
## 25 2016-01-31 171.65 128.402 172.500 1476.324 248.0 24 174.00 56.50
## 26 2016-02-29 173.81 137.528 134.200 1224.862 239.0 20 245.00 58.00
## 27 2016-03-31 156.64 180.589 148.400 1150.700 250.0 13 253.00 97.84
## 28 2016-04-30 166.61 146.526 147.700 998.337 318.0 18 216.00 162.40
## 29 2016-05-31 167.36 120.861 130.550 997.150 275.0 18 131.00 137.10
## 30 2016-06-30 169.67 114.961 117.750 760.050 311.0 20 127.00 134.80
## 31 2016-07-31 203.97 141.019 137.900 652.362 240.0 8 109.00 116.83
## 32 2016-08-31 211.13 114.375 132.700 753.050 275.5 12 116.00 85.30
## 33 2016-09-30 172.96 126.218 116.700 1118.699 307.0 18 121.00 69.30
## 34 2016-10-31 186.76 142.056 160.150 1617.275 312.0 11 220.00 60.90
## 35 2016-11-30 175.18 116.850 133.850 1062.686 246.0 27 150.00 51.20
## 36 2016-12-31 169.32 135.056 132.400 1624.335 257.0 18 275.00 34.90
## 37 2017-01-31 0.00 0.000 0.000 0.000 1.0 0 0.00 0.00
## 38 2017-02-28 139.69 103.517 97.000 526.350 144.0 7 117.00 30.60
## 39 2017-03-31 162.85 111.055 107.350 612.500 165.0 9 139.00 100.10
## 40 2017-04-30 155.61 101.215 100.500 540.200 132.0 9 209.00 122.40
## 41 2017-05-31 143.66 118.125 98.950 547.940 148.0 23 128.00 161.81
## 42 2017-06-30 122.33 103.006 119.600 496.100 163.0 8 163.00 151.90
## 43 2017-07-31 159.67 116.206 75.200 479.350 219.0 15 115.00 81.10
## 44 2017-08-31 170.15 112.470 84.400 549.300 239.0 12 75.00 60.10
## 45 2017-09-30 138.33 118.711 88.150 863.750 223.0 23 139.00 66.90
## 46 2017-10-31 137.64 88.737 100.400 1184.350 226.0 15 247.00 51.00
## 47 2017-11-30 163.85 119.780 104.450 867.899 192.0 15 196.00 46.60
## 48 2017-12-31 160.01 121.663 115.150 1007.180 226.0 6 204.00 47.10
## 49 2018-01-31 132.28 109.446 101.150 1134.325 229.0 11 219.00 49.50
## 50 2018-02-28 128.36 132.804 114.650 1255.374 268.0 12 253.00 39.06
## 51 2018-03-31 146.16 111.764 122.300 999.123 381.0 42 269.00 85.50
## 52 2018-04-30 170.02 107.723 84.600 836.037 289.0 21 229.00 197.10
## 53 2018-05-31 160.52 103.522 89.400 644.648 259.0 13 192.00 213.04
## 54 2018-06-30 141.18 114.226 86.800 584.343 248.0 18 101.00 120.80
## 55 2018-07-31 150.18 132.549 87.200 679.350 283.0 19 90.00 122.20
## 56 2018-08-31 140.00 114.719 88.250 733.838 253.0 20 159.00 103.10
## 57 2018-09-30 153.52 114.992 86.500 1058.262 263.0 12 205.00 88.10
## 58 2018-10-31 144.71 129.400 76.050 1129.275 287.0 25 353.00 76.90
## 59 2018-11-30 172.29 105.487 102.150 995.150 252.2 22 311.00 48.40
## 60 2018-12-31 147.71 113.024 84.750 1213.950 254.0 27 384.00 53.10
## 61 2019-01-31 179.70 222.351 99.700 1660.612 295.2 23 386.00 41.30
## 62 2019-02-28 133.73 142.155 110.200 1001.212 249.4 12 226.00 69.50
## 63 2019-03-31 154.52 113.118 83.350 941.050 301.4 19 257.00 169.50
## 64 2019-04-30 161.39 100.165 88.100 647.650 299.4 22 259.00 179.10
## 65 2019-05-31 168.04 97.258 104.100 703.562 265.8 26 322.00 135.40
## 66 2019-06-30 151.54 101.627 103.200 610.000 193.0 25 142.00 156.04
## 67 2019-07-31 181.00 103.541 92.800 649.800 250.6 20 115.00 105.20
## 68 2019-08-31 181.91 88.269 84.200 518.100 237.0 26 145.00 97.30
## 69 2019-09-30 161.07 111.437 93.500 984.480 227.8 16 161.00 109.10
## 70 2019-10-31 44.37 37.300 20.650 295.150 86.0 7 37.00 11.13
Pembagian Data
## datum M01AB M01AE N02BA N02BE N05B N05C R03 R06
## 1 2014-01-31 127.69 99.090 152.100 878.030 354.0 50 112.00 48.20
## 2 2014-02-28 133.32 126.050 177.000 1001.900 347.0 31 122.00 36.20
## 3 2014-03-31 137.44 92.950 147.655 779.275 232.0 20 112.00 85.40
## 4 2014-04-30 113.10 89.475 130.900 698.500 209.0 18 97.00 73.70
## 5 2014-05-31 101.79 119.933 132.100 628.780 270.0 23 107.00 123.70
## 6 2014-06-30 112.07 94.710 122.900 548.225 323.0 23 57.00 109.30
## 7 2014-07-31 117.06 95.010 129.300 491.900 348.0 21 61.00 69.10
## 8 2014-08-31 134.79 99.780 123.800 583.850 420.0 29 37.00 70.80
## 9 2014-09-30 108.78 109.094 122.100 887.820 399.0 14 115.00 58.80
## 10 2014-10-31 154.75 185.241 191.600 1856.815 472.0 30 182.00 74.50
## 11 2014-11-30 138.08 100.860 142.700 723.800 489.0 19 112.00 45.20
## 12 2014-12-31 131.90 121.401 111.124 1015.660 492.0 25 163.00 33.40
## 13 2015-01-31 135.91 130.349 141.000 1044.240 463.0 24 177.25 42.00
## 14 2015-02-28 115.71 123.740 131.830 953.252 243.0 9 208.00 47.00
## 15 2015-03-31 156.04 129.386 133.800 1084.850 208.0 13 195.00 54.00
## 16 2015-04-30 154.50 101.115 122.100 940.170 192.0 5 97.00 112.00
## 17 2015-05-31 160.02 119.117 136.040 765.900 194.0 10 100.00 159.50
## 18 2015-06-30 151.87 113.690 145.460 746.788 217.0 12 193.00 125.80
## 19 2015-07-31 175.61 113.810 125.500 708.828 203.0 6 60.00 130.30
## 20 2015-08-31 181.69 144.519 133.400 790.788 265.5 15 45.00 83.70
## 21 2015-09-30 166.22 134.122 110.400 852.125 243.5 11 91.00 71.00
## 22 2015-10-31 195.81 127.231 146.200 1574.335 222.0 8 184.00 72.00
## 23 2015-11-30 152.78 128.233 145.900 1277.725 228.0 18 195.00 44.00
## 24 2015-12-31 159.46 131.291 137.000 1258.349 286.0 28 231.00 41.73
## 25 2016-01-31 171.65 128.402 172.500 1476.324 248.0 24 174.00 56.50
## 26 2016-02-29 173.81 137.528 134.200 1224.862 239.0 20 245.00 58.00
## 27 2016-03-31 156.64 180.589 148.400 1150.700 250.0 13 253.00 97.84
## 28 2016-04-30 166.61 146.526 147.700 998.337 318.0 18 216.00 162.40
## 29 2016-05-31 167.36 120.861 130.550 997.150 275.0 18 131.00 137.10
## 30 2016-06-30 169.67 114.961 117.750 760.050 311.0 20 127.00 134.80
## 31 2016-07-31 203.97 141.019 137.900 652.362 240.0 8 109.00 116.83
## 32 2016-08-31 211.13 114.375 132.700 753.050 275.5 12 116.00 85.30
## 33 2016-09-30 172.96 126.218 116.700 1118.699 307.0 18 121.00 69.30
## 34 2016-10-31 186.76 142.056 160.150 1617.275 312.0 11 220.00 60.90
## 35 2016-11-30 175.18 116.850 133.850 1062.686 246.0 27 150.00 51.20
## 36 2016-12-31 169.32 135.056 132.400 1624.335 257.0 18 275.00 34.90
## 37 2017-01-31 0.00 0.000 0.000 0.000 1.0 0 0.00 0.00
## 38 2017-02-28 139.69 103.517 97.000 526.350 144.0 7 117.00 30.60
## 39 2017-03-31 162.85 111.055 107.350 612.500 165.0 9 139.00 100.10
## 40 2017-04-30 155.61 101.215 100.500 540.200 132.0 9 209.00 122.40
## 41 2017-05-31 143.66 118.125 98.950 547.940 148.0 23 128.00 161.81
## 42 2017-06-30 122.33 103.006 119.600 496.100 163.0 8 163.00 151.90
## 43 2017-07-31 159.67 116.206 75.200 479.350 219.0 15 115.00 81.10
## 44 2017-08-31 170.15 112.470 84.400 549.300 239.0 12 75.00 60.10
## 45 2017-09-30 138.33 118.711 88.150 863.750 223.0 23 139.00 66.90
## 46 2017-10-31 137.64 88.737 100.400 1184.350 226.0 15 247.00 51.00
## 47 2017-11-30 163.85 119.780 104.450 867.899 192.0 15 196.00 46.60
## 48 2017-12-31 160.01 121.663 115.150 1007.180 226.0 6 204.00 47.10
## 49 2018-01-31 132.28 109.446 101.150 1134.325 229.0 11 219.00 49.50
## 50 2018-02-28 128.36 132.804 114.650 1255.374 268.0 12 253.00 39.06
## 51 2018-03-31 146.16 111.764 122.300 999.123 381.0 42 269.00 85.50
## 52 2018-04-30 170.02 107.723 84.600 836.037 289.0 21 229.00 197.10
## 53 2018-05-31 160.52 103.522 89.400 644.648 259.0 13 192.00 213.04
## 54 2018-06-30 141.18 114.226 86.800 584.343 248.0 18 101.00 120.80
## 55 2018-07-31 150.18 132.549 87.200 679.350 283.0 19 90.00 122.20
## 56 2018-08-31 140.00 114.719 88.250 733.838 253.0 20 159.00 103.10
## datum M01AB M01AE N02BA N02BE N05B N05C R03 R06
## 57 2018-09-30 153.52 114.992 86.50 1058.262 263.0 12 205 88.10
## 58 2018-10-31 144.71 129.400 76.05 1129.275 287.0 25 353 76.90
## 59 2018-11-30 172.29 105.487 102.15 995.150 252.2 22 311 48.40
## 60 2018-12-31 147.71 113.024 84.75 1213.950 254.0 27 384 53.10
## 61 2019-01-31 179.70 222.351 99.70 1660.612 295.2 23 386 41.30
## 62 2019-02-28 133.73 142.155 110.20 1001.212 249.4 12 226 69.50
## 63 2019-03-31 154.52 113.118 83.35 941.050 301.4 19 257 169.50
## 64 2019-04-30 161.39 100.165 88.10 647.650 299.4 22 259 179.10
## 65 2019-05-31 168.04 97.258 104.10 703.562 265.8 26 322 135.40
## 66 2019-06-30 151.54 101.627 103.20 610.000 193.0 25 142 156.04
## 67 2019-07-31 181.00 103.541 92.80 649.800 250.6 20 115 105.20
## 68 2019-08-31 181.91 88.269 84.20 518.100 237.0 26 145 97.30
## 69 2019-09-30 161.07 111.437 93.50 984.480 227.8 16 161 109.10
## 70 2019-10-31 44.37 37.300 20.65 295.150 86.0 7 37 11.13
Model Koyck
Model Koyck didasarkan pada asumsi bahwa semakin jauh jarak lag peubah independen (x) dari periode sekarang maka semakin kecil pengaruh peubah lag terhadap peubah dependen (y).
Koyck mengusulkan suatu metode untuk menduga model dinamis distributed lag dengan mengasumsikan bahwa semua koefisien \(\beta\) mempunyai tanda sama.
Model kyock merupakan jenis paling umum dari model infinite distributed lag dan juga dikenal sebagai geometric lag
\[ y_t=a(1-\lambda)+\beta_0X_t+\beta_1Z_t+\lambda Y_{t-1}+V_t \]
dengan \[V_t=u_t-\lambda u_{t-1}\]
Pemodelan
Pemodelan model Koyck dengan R dapat menggunakan
dLagM::koyckDlm() .
Fungsi koyckDlm() akan menerapkan model lag
terdistribusi dengan transformasi Koyck satu prediktor. Nilai
x dan y tidak perlu sebagai objek time
series (ts). intercept dapat dibuat
TRUE untuk memasukkan intersep ke dalam model.
##
## Call:
## "Y ~ (Intercept) + Y.1 + X.t"
##
## Residuals:
## Min 1Q Median 3Q Max
## -366.77 -31.68 -4.25 46.64 201.12
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 176.2521 68.7616 2.563 0.0133 *
## Y.1 0.7452 0.1222 6.098 1.35e-07 ***
## X.t -0.7289 0.4028 -1.809 0.0762 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 82.42 on 52 degrees of freedom
## Multiple R-Squared: 0.2113, Adjusted R-squared: 0.181
## Wald test: 19.79 on 2 and 52 DF, p-value: 4.056e-07
##
## Diagnostic tests:
## NULL
##
## alpha beta phi
## Geometric coefficients: 691.77 -0.7289469 0.7452158
## [1] 646.2944
## [1] 654.3238
Dari hasil tersebut, didapat bahwa peubah x_t memiliki
nilai P-Value > 0.05 dan y_{t-1} memiliki
nilai P-Value<0.05. Hal ini menunjukkan bahwa peubah
x_t tidak berpengaruh signifikan pada taraf nyata 5% (namun
berpengaruh signifikan pada taraf nyata 10%) dan peubah
y_{t-1} berpengaruh signifikan terhadap y pada
taraf nyata 5%. Adapun model keseluruhannya adalah sebagai berikut
\[ \hat{Y_t}=176.2521+0.7452X_t-0.7289Y_{t-1} \]
Peramalan dan Akurasi
Berikut adalah hasil peramalan y untuk 14 periode kedepan menggunakan model koyck
## $forecasts
## [1] 215.357534 79.421627 8.735812 -97.153501 -177.521784 -120.781988
## [7] -101.095951 -87.883499 -123.961028 -19.636124 77.790010 128.525097
## [13] 154.670535 264.543948
##
## $call
## forecast.koyckDlm(model = model.koyck, x = test$R03, h = 14)
##
## attr(,"class")
## [1] "forecast.koyckDlm" "dLagM"
## n MAE MPE MAPE sMAPE MASE MSE MRAE
## model.koyck 55 53.96828 -6.666903 6.85131 0.2241851 1.215806 6421.947 3.419882
## GMRAE
## model.koyck 1.186783
Pada perhitungan keakuratan model menggunakan metode Koyck didapatkan nilai MAPE 6,85%. Nilai akurasi model ini kurang dari 10% sehingga dapat dikategorikan sangat baik.
Regression with Distributed Lag
Pemodelan model Regression with Distributed Lag dengan R
dapat menggunakan dLagM::dlm() .
Fungsi dlm() akan menerapkan model lag terdistribusi
dengan satu atau lebih prediktor. Nilai x dan
y tidak perlu sebagai objek time series
(ts). \(q\) adalah integer
yang mewakili panjang lag yang terbatas.
Pemodelan (Lag=2)
##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -183.62 -46.80 -15.87 35.00 241.15
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 284.5485 39.8756 7.136 3.68e-09 ***
## x.t 0.2829 0.2115 1.337 0.187
## x.1 -0.2855 0.2258 -1.264 0.212
## x.2 -0.1429 0.2131 -0.670 0.506
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90.77 on 50 degrees of freedom
## Multiple R-squared: 0.06547, Adjusted R-squared: 0.0094
## F-statistic: 1.168 on 3 and 50 DF, p-value: 0.3314
##
## AIC and BIC values for the model:
## AIC BIC
## 1 645.9927 655.9377
## [1] 645.9927
## [1] 655.9377
Dari hasil diatas, didapat bahwa \(P-value\) dari intercept < 0.05. Hal ini menunjukkan bahwa intercept berpengaruh signifikan terhadap \(y\). Adapun model keseluruhan yang terbentuk adalah sebagai berikut
\[ \hat{Y_t}=284.5485+0.2829X_t-0.2855X_{t-1}-0.1429X_{t-2} \]
Peramalan dan Akurasi
Berikut merupakan hasil peramalan \(y\) untuk 14 periode kedepan
## $forecasts
## [1] 284.2924 303.1688 242.4675 253.9589 239.6881 183.4244 237.5805 252.1602
## [9] 264.9814 195.7928 230.5342 272.4488 272.2695 228.3377
##
## $call
## forecast.dlm(model = model.dlm, x = test$R03, h = 14)
##
## attr(,"class")
## [1] "forecast.dlm" "dLagM"
## n MAE MPE MAPE sMAPE MASE MSE MRAE
## model.dlm 54 65.42553 -3.47443 3.642495 0.2626092 1.519524 7629.412 4.846577
## GMRAE
## model.dlm 1.517162
Pada perhitungan keakuratan model menggunakan metode Regression with Distributed Lag didapatkan nilai MAPE 3.64%. Nilai akurasi model ini kurang dari 10% sehingga dapat dikategorikan sangat baik.
Lag Optimum
#penentuan lag optimum
finiteDLMauto(formula = N05B ~ R06,
data = data.frame(train), q.min = 1, q.max = 6,
model.type = "dlm", error.type = "AIC", trace = FALSE)## q - k MASE AIC BIC GMRAE MBRAE R.Adj.Sq Ljung-Box
## 6 6 1.51882 611.0544 628.2627 1.47196 1.37676 -0.11642 4.593417e-08
Berdasarkan output tersebut, lag optimum didapatkan ketika lag = 6. Selanjutnya dilakukan pemodelan untuk lag=6
#model dlm dengan lag optimum
model.dlm2 <- dlm(x = train$R03,y = train$N05B, q = 6) # q = lag
summary(model.dlm2)##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -188.75 -60.24 -10.03 58.38 204.51
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.472e+02 6.088e+01 5.703 1.06e-06 ***
## x.t 2.781e-01 2.344e-01 1.187 0.242
## x.1 -3.311e-01 2.503e-01 -1.323 0.193
## x.2 -9.296e-04 2.513e-01 -0.004 0.997
## x.3 -7.038e-02 2.518e-01 -0.279 0.781
## x.4 -2.758e-01 2.539e-01 -1.086 0.283
## x.5 -5.309e-02 2.543e-01 -0.209 0.836
## x.6 -1.032e-01 2.417e-01 -0.427 0.672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 94.47 on 42 degrees of freedom
## Multiple R-squared: 0.1349, Adjusted R-squared: -0.009237
## F-statistic: 0.9359 on 7 and 42 DF, p-value: 0.4894
##
## AIC and BIC values for the model:
## AIC BIC
## 1 606.0077 623.2159
## [1] 606.0077
## [1] 623.2159
Dari hasil tersebut tidak terdapat peubah yang berpengaruh signifikan terhadap taraf nyata 5%. Adapun keseluruhan model yang terbentuk adalah
\[ \hat{Y_t}=347.2+0.2781X_t+...-0.1032X_{t-6} \]
Adapun hasil peramalan 14 periode kedepan menggunakan model tersebut adalah sebagai berikut
#peramalan dan akurasi
fore.dlm2 <- forecast(model = model.dlm2, x=test$R03, h=14)
mape.dlm2<- MAPE(fore.dlm2$forecasts, test$N05B)
#akurasi data training
GoF(model.dlm2)## n MAE MPE MAPE sMAPE MASE MSE MRAE
## model.dlm2 50 70.35149 -3.847603 4.039386 0.2859447 1.626049 7497.145 4.920313
## GMRAE
## model.dlm2 1.900647
Didapatkan nilai MAPE sebesar 4.03%. Model tersebut merupakan model yang sangat baik dengan nilai MAPE yang kurang dari 10%.
Model Autoregressive
Peubah dependen (y) dipengaruhi oleh peubah independen (x) pada waktu sekarang, serta dipengaruhi juga oleh peubah dependen (y) itu sendiri pada satu waktu yang lalu maka model tersebut disebut autoregressive (Gujarati 2004).
Pemodelan
Pemodelan Autoregressive dilakukan menggunakan fungsi
dLagM::ardlDlm() . Fungsi tersebut akan menerapkan
autoregressive berordo \((p,q)\) dengan satu prediktor. Fungsi umum
dari ardlDlm() adalah sebagai berikut.
Dengan \(p\) adalah integer yang mewakili panjang lag yang terbatas dan \(q\) adalah integer yang merepresentasikan ordo dari proses autoregressive.
##
## Time series regression with "ts" data:
## Start = 2, End = 56
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -173.74 -26.44 5.52 28.66 126.83
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 86.65801 31.05817 2.790 0.00739 **
## X.t 0.27744 0.13164 2.108 0.04000 *
## X.1 -0.43069 0.13151 -3.275 0.00190 **
## Y.1 0.75316 0.08437 8.927 5.33e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.81 on 51 degrees of freedom
## Multiple R-squared: 0.6325, Adjusted R-squared: 0.6109
## F-statistic: 29.26 on 3 and 51 DF, p-value: 3.819e-11
## [1] 606.2956
## [1] 616.3323
Dari hasil tersebut, didapat bahwa peubah \(x_t\) , \(x_{t-1}\) , dan \(y_{t-1}\) memiliki nilai
P-Value < 0.05 Hal ini menunjukkan bahwa ketiga peubah
tersebut berpengaruh signifikan terhadap \(y_t\) pada taraf nyata 5%. Model
keseluruhannya adalah sebagai berikut:
\[ \hat{Y}=86.65801-0.43069X_t+1,4557X_{t-1}+0.75316Y_{t-1} \]
Peramalan dan Akurasi
## $forecasts
## [1] 265.6047 296.3481 244.1082 243.1054 211.4646 142.3815 167.8618 174.2561
## [9] 195.6897 134.7592 158.9018 197.0371 217.2776 191.2279
##
## $call
## forecast.ardlDlm(model = model.ardl, x = test$R03, h = 14)
##
## attr(,"class")
## [1] "forecast.ardlDlm" "dLagM"
Data di atas merupakan hasil peramalan untuk 14 periode ke depan menggunakan Model Autoregressive dengan \(p=1\) dan \(q=1\).
## [1] 0.2900784
## n MAE MPE MAPE sMAPE MASE MSE MRAE
## model.ardl 55 40.79747 -2.938051 3.068268 0.1763384 0.9190919 2992.491 1.818713
## GMRAE
## model.ardl 0.9112162
Berdasarkan akurasi di atas, terlihat bahwa nilai MAPE keduanya tidak
jauh berbeda. Artinya, model regresi dengan distribusi lag ini tidak
overfitted atau underfitted
Lag Optimum
#penentuan lag optimum
model.ardl.opt <- ardlBoundOrders(data = data.frame(datasales), ic = "AIC",
formula = N05B ~ R03 )
min_p=c()
for(i in 1:6){
min_p[i]=min(model.ardl.opt$Stat.table[[i]])
}
q_opt=which(min_p==min(min_p, na.rm = TRUE))
p_opt=which(model.ardl.opt$Stat.table[[q_opt]] ==
min(model.ardl.opt$Stat.table[[q_opt]], na.rm = TRUE))
data.frame("q_optimum" = q_opt, "p_optimum" = p_opt,
"AIC"=model.ardl.opt$min.Stat)## q_optimum p_optimum AIC
## 1 5 15 556.9577
Dari tabel di atas, dapat terlihat bahwa nilai AIC terendah didapat
ketika \(p=15\) dan \(q=5\), yaitu sebesar 556.9577.
Artinya, model autoregressive optimum didapat ketika \(p=15\) dan \(q=5\).
Selanjutnya dapat dilakukan pemodelan dengan nilai \(p\) dan \(q\) optimum seperti inisialisasi di langkah sebelumnya.
Pemodelan DLM & ARDL dengan Library dynlm
Pemodelan regresi dengan peubah lag tidak hanya dapat
dilakukan dengan fungsi pada packages dLagM ,
tetapi terdapat packages dynlm yang dapat
digunakan. Fungsi dynlm secara umum adalah sebagai
berikut.
dynlm(formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, start = NULL, end = NULL, ...)Untuk menentukan formula model yang akan digunakan,
tersedia fungsi tambahan yang memungkinkan spesifikasi dinamika (melalui
d() dan L()) atau pola linier/siklus dengan
mudah (melalui trend(), season(), dan
harmon()). Semua fungsi formula baru mengharuskan
argumennya berupa objek deret waktu (yaitu, "ts" atau
"zoo").
#sama dengan model dlm q=1
cons_lm1 <- dynlm(N05B ~ R03+L(R03),data = train.ts)
#sama dengan model ardl p=1 q=0
cons_lm2 <- dynlm(N05B ~ R03+L(N05B),data = train.ts)
#sama dengan ardl p=1 q=1
cons_lm3 <- dynlm(N05B ~ R03+L(R03)+L(N05B),data = train.ts)
#sama dengan dlm p=2
cons_lm4 <- dynlm(N05B ~ R03+L(R03)+L(R03,2),data = train.ts)Ringkasan Model
##
## Time series regression with "ts" data:
## Start = 2, End = 56
##
## Call:
## dynlm(formula = N05B ~ R03 + L(R03), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -179.61 -44.87 -17.64 38.90 246.21
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 277.3904 35.7358 7.762 3.03e-10 ***
## R03 0.2630 0.2087 1.260 0.2132
## L(R03) -0.3519 0.2080 -1.692 0.0967 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90.06 on 52 degrees of freedom
## Multiple R-squared: 0.0582, Adjusted R-squared: 0.02197
## F-statistic: 1.607 on 2 and 52 DF, p-value: 0.2104
##
## Time series regression with "ts" data:
## Start = 2, End = 56
##
## Call:
## dynlm(formula = N05B ~ R03 + L(N05B), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -242.532 -24.849 -6.371 38.192 107.267
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.73205 32.12801 1.704 0.0944 .
## R03 0.09277 0.12960 0.716 0.4773
## L(N05B) 0.73463 0.09171 8.010 1.23e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 61.89 on 52 degrees of freedom
## Multiple R-squared: 0.5552, Adjusted R-squared: 0.5381
## F-statistic: 32.45 on 2 and 52 DF, p-value: 7.121e-10
##
## Time series regression with "ts" data:
## Start = 2, End = 56
##
## Call:
## dynlm(formula = N05B ~ R03 + L(R03) + L(N05B), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -173.74 -26.44 5.52 28.66 126.83
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 86.65801 31.05817 2.790 0.00739 **
## R03 0.27744 0.13164 2.108 0.04000 *
## L(R03) -0.43069 0.13151 -3.275 0.00190 **
## L(N05B) 0.75316 0.08437 8.927 5.33e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.81 on 51 degrees of freedom
## Multiple R-squared: 0.6325, Adjusted R-squared: 0.6109
## F-statistic: 29.26 on 3 and 51 DF, p-value: 3.819e-11
##
## Time series regression with "ts" data:
## Start = 3, End = 56
##
## Call:
## dynlm(formula = N05B ~ R03 + L(R03) + L(R03, 2), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -183.62 -46.80 -15.87 35.00 241.15
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 284.5485 39.8756 7.136 3.68e-09 ***
## R03 0.2829 0.2115 1.337 0.187
## L(R03) -0.2855 0.2258 -1.264 0.212
## L(R03, 2) -0.1429 0.2131 -0.670 0.506
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90.77 on 50 degrees of freedom
## Multiple R-squared: 0.06547, Adjusted R-squared: 0.0094
## F-statistic: 1.168 on 3 and 50 DF, p-value: 0.3314
Perbandingan Model
akurasi <- matrix(c(mape.koyck, mape.dlm, mape.dlm2, mape.ardl))
row.names(akurasi)<- c("Koyck","DLM 1","DLM 2","Autoregressive")
colnames(akurasi) <- c("MAPE")
akurasi## MAPE
## Koyck 1.0770995
## DLM 1 0.2211184
## DLM 2 0.3067633
## Autoregressive 0.2900784
Berdasarkan nilai MAPE, model paling optimum didapat pada Model DLM 1 karena memiliki nilai MAPE yang terkecil.
Plot
par(mfrow=c(1,1))
plot(test$R03, test$N05B, type="b", col="black", ylim=c(120,250))
points(test$R03, fore.koyck$forecasts,col="red")
lines(test$R03, fore.koyck$forecasts,col="red")
points(test$R03, fore.dlm$forecasts,col="blue")
lines(test$R03, fore.dlm$forecasts,col="blue")
points(test$R03, fore.dlm2$forecasts,col="orange")
lines(test$R03, fore.dlm2$forecasts,col="orange")
points(test$R03, fore.ardl$forecasts,col="green")
lines(test$R03, fore.ardl$forecasts,col="green")
legend("topleft",c("aktual", "koyck","DLM 1","DLM 2", "autoregressive"), lty=1, col=c("black","red","blue","orange","green"), cex=0.8)Berdasarkan plot tersebut, terlihat bahwa plot yang paling mendekati data aktualnya adalah Model DLM 1, sehingga dapat disimpulkan model terbaik dalam hal ini adalah model regresi DLM 1
Pengayaan (Regresi Berganda)
DLM
#Run the search over finite DLMs according to AIC values
finiteDLMauto(formula = logprice ~ interest+logm1,
data = data.frame(data1), q.min = 1, q.max = 5,
model.type = "dlm", error.type = "AIC", trace = FALSE)## q - k MASE AIC BIC GMRAE MBRAE R.Adj.Sq Ljung-Box
## 5 5 1.77163 -463.1393 -422.0566 1.43662 -1.60494 0.98836 0
#model dlm berganda
model.dlmberganda = dlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , q = 5)
summary(model.dlmberganda)##
## Call:
## lm(formula = as.formula(model.formula), data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.095761 -0.028610 -0.000012 0.029496 0.102597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.81759 0.11384 -68.669 < 2e-16 ***
## interest.t -1.75616 0.80358 -2.185 0.030707 *
## interest.1 1.38935 1.22707 1.132 0.259679
## interest.2 0.40776 1.23726 0.330 0.742273
## interest.3 1.23130 1.20752 1.020 0.309830
## interest.4 -0.08718 1.20869 -0.072 0.942616
## interest.5 3.06850 0.89380 3.433 0.000808 ***
## logm1.t 0.43219 0.20876 2.070 0.040474 *
## logm1.1 0.42190 0.19807 2.130 0.035109 *
## logm1.2 0.20943 0.12883 1.626 0.106532
## logm1.3 0.22053 0.13011 1.695 0.092567 .
## logm1.4 0.05513 0.21457 0.257 0.797633
## logm1.5 0.03042 0.19192 0.159 0.874296
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04343 on 126 degrees of freedom
## Multiple R-squared: 0.9894, Adjusted R-squared: 0.9884
## F-statistic: 977.9 on 12 and 126 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 -463.1393 -422.0566
model.dlmberganda2 = dlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , q = 1)
summary(model.dlmberganda2)##
## Call:
## lm(formula = as.formula(model.formula), data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.134002 -0.044697 0.006407 0.036962 0.113063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.77917 0.13299 -58.492 < 2e-16 ***
## interest.t -3.22103 0.94184 -3.420 0.000824 ***
## interest.1 6.52775 0.94501 6.908 1.66e-10 ***
## logm1.t 0.73918 0.08419 8.780 5.61e-15 ***
## logm1.1 0.63330 0.08429 7.513 6.55e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05443 on 138 degrees of freedom
## Multiple R-squared: 0.9832, Adjusted R-squared: 0.9828
## F-statistic: 2025 on 4 and 138 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 -419.7575 -401.9805
ARDL
#Mencari orde lag optimum model ARDL
ardlBoundOrders(data = data1 , formula = logprice ~ interest + logm1,
ic="AIC")## $p
## interest logm1
## 65 0 4
##
## $q
## [1] 4
##
## $Stat.table
## q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
## p = 1 -760.1786 -757.9195 -846.8342 -975.2079 -965.7536 -958.9072 -956.7315
## p = 2 -760.0433 -759.3090 -843.6247 -971.2514 -961.7929 -955.2809 -953.4890
## p = 3 -753.7746 -753.7746 -841.2485 -970.4543 -961.4343 -953.7173 -950.0412
## p = 4 -829.8076 -832.6436 -832.6436 -971.0837 -962.1804 -955.0429 -953.4667
## p = 5 -749.4144 -753.2292 -962.9290 -962.9290 -961.7063 -954.3406 -951.7660
## p = 6 -742.2103 -742.9945 -891.6195 -952.3771 -952.3771 -952.2461 -950.1105
## p = 7 -728.9374 -733.0286 -851.2943 -945.7445 -944.6879 -944.6879 -949.3720
## p = 8 -747.9277 -746.2948 -812.4289 -937.9446 -938.9491 -937.3393 -937.3393
## p = 9 -722.6891 -724.5786 -863.2734 -928.9215 -927.2914 -926.8716 -936.6432
## p = 10 -714.8175 -714.5658 -816.3319 -918.5218 -918.6350 -916.9076 -921.1246
## p = 11 -703.1807 -705.3383 -794.0772 -909.6457 -908.8225 -906.9542 -912.9605
## p = 12 -716.7111 -714.7403 -774.0127 -910.0315 -910.6834 -908.7146 -909.6612
## p = 13 -697.7175 -698.1931 -793.4602 -895.5927 -894.9273 -893.5995 -897.7589
## p = 14 -686.5600 -685.7967 -766.5292 -886.0709 -885.4341 -885.2283 -890.1638
## p = 15 -676.7280 -678.3689 -753.2854 -875.6392 -874.1257 -874.3117 -879.2727
## q = 8 q = 9 q = 10 q = 11 q = 12 q = 13 q = 14
## p = 1 -954.3375 -946.6293 -936.5328 -927.7728 -920.6435 -917.5463 -918.3110
## p = 2 -951.1470 -943.9360 -933.7047 -924.7949 -917.5334 -913.6213 -914.4063
## p = 3 -948.4683 -941.1039 -930.8509 -922.0563 -914.5728 -910.5351 -913.4996
## p = 4 -948.2330 -941.8238 -931.5689 -923.2663 -916.2063 -911.6023 -913.9345
## p = 5 -947.5994 -939.3767 -929.0155 -920.4475 -913.5968 -909.0781 -911.6312
## p = 6 -945.5758 -937.4076 -927.2439 -919.3949 -911.9537 -907.7394 -910.2890
## p = 7 -945.5181 -937.1826 -926.9640 -917.9619 -910.2774 -905.9449 -907.8712
## p = 8 -941.9617 -933.5959 -923.3691 -914.6251 -907.0608 -902.2187 -903.9255
## p = 9 -936.6432 -935.7172 -925.2881 -917.0877 -911.6973 -903.9027 -904.6405
## p = 10 -926.6891 -926.6891 -924.6986 -917.0904 -911.4197 -903.4313 -903.0612
## p = 11 -917.9145 -918.2328 -918.2328 -919.2867 -913.3674 -904.8733 -903.6541
## p = 12 -916.1321 -914.4362 -914.4610 -914.4610 -912.5159 -904.2394 -901.6216
## p = 13 -905.4744 -903.7559 -902.4406 -902.2530 -902.2530 -902.9434 -901.2363
## p = 14 -896.2370 -896.2620 -894.2896 -897.5711 -899.1407 -899.1407 -902.2350
## p = 15 -884.5637 -886.8221 -884.9832 -890.5665 -893.2335 -891.6220 -891.6220
## q = 15
## p = 1 -908.0863
## p = 2 -904.1665
## p = 3 -903.3006
## p = 4 -903.9256
## p = 5 -901.6220
## p = 6 -900.1824
## p = 7 -897.9867
## p = 8 -894.1031
## p = 9 -894.7387
## p = 10 -893.6199
## p = 11 -893.6060
## p = 12 -892.4805
## p = 13 -892.5115
## p = 14 -893.6214
## p = 15 -891.3741
##
## $min.Stat
## [1] -977.2745
##
## $Stat.p
## interest logm1 Stat
## 65 0 4 -977.2745
## 1 0 0 -976.5191
## 2 1 0 -976.2558
## 17 0 1 -975.9606
## 66 1 4 -975.6027
## 18 1 1 -975.2079
## 49 0 3 -974.4859
## 3 2 0 -974.4275
## 33 0 2 -974.0166
## 50 1 3 -973.7500
## 67 2 4 -973.6028
## 34 1 2 -973.2324
## 19 2 1 -973.2188
## 68 3 4 -972.5992
## 4 3 0 -972.4875
## 51 2 3 -971.7743
## 20 3 1 -971.3872
## 35 2 2 -971.2514
## 69 4 4 -971.0837
## 5 4 0 -970.5114
## 52 3 3 -970.4543
## 81 0 5 -969.9284
## 53 4 3 -969.5311
## 21 4 1 -969.4756
## 36 3 2 -969.3907
## 82 1 5 -968.6783
## 37 4 2 -967.4756
## 83 2 5 -966.8835
## 84 3 5 -965.6393
## 85 4 5 -963.9662
## 86 5 5 -962.9290
## 70 5 4 -961.2547
## 54 5 3 -960.9580
## 97 0 6 -960.7402
## 6 5 0 -960.6858
## 22 5 1 -959.8419
## 98 1 6 -959.6604
## 38 5 2 -957.8547
## 99 2 6 -957.7528
## 100 3 6 -956.7875
## 101 4 6 -955.2416
## 71 6 4 -954.8953
## 87 6 5 -954.6855
## 102 5 6 -954.3662
## 103 6 6 -954.0973
## 7 6 0 -954.0615
## 113 0 7 -953.9160
## 55 6 3 -953.2860
## 23 6 1 -953.1080
## 114 1 7 -952.6540
## 39 6 2 -951.1356
## 115 2 7 -950.6562
## 116 3 7 -949.6038
## 88 7 5 -949.2090
## 72 7 4 -948.5194
## 117 4 7 -947.7999
## 104 7 6 -947.7424
## 56 7 3 -947.6915
## 8 7 0 -947.5092
## 120 7 7 -947.3660
## 24 7 1 -947.0094
## 118 5 7 -946.9631
## 119 6 7 -946.8080
## 40 7 2 -945.0123
## 129 0 8 -943.9035
## 130 1 8 -942.6627
## 131 2 8 -940.6818
## 145 0 9 -940.0114
## 132 3 8 -939.6913
## 89 8 5 -939.1878
## 73 8 4 -938.5330
## 146 1 9 -938.2680
## 133 4 8 -937.8368
## 105 8 6 -937.6834
## 57 8 3 -937.6370
## 9 8 0 -937.5705
## 121 8 7 -937.5351
## 136 7 8 -937.3948
## 25 8 1 -937.0088
## 134 5 8 -936.9393
## 135 6 8 -936.8904
## 147 2 9 -936.3875
## 148 3 9 -936.3159
## 137 8 8 -935.5389
## 41 8 2 -935.0088
## 149 4 9 -934.3458
## 150 5 9 -934.1858
## 152 7 9 -934.0733
## 151 6 9 -932.9538
## 153 8 9 -932.3338
## 154 9 9 -930.9065
## 161 0 10 -929.8056
## 90 9 5 -929.2731
## 74 9 4 -928.5254
## 162 1 10 -928.1257
## 10 9 0 -927.9853
## 58 9 3 -927.9744
## 122 9 7 -927.9061
## 106 9 6 -927.6344
## 26 9 1 -927.4482
## 164 3 10 -926.5271
## 163 2 10 -926.2965
## 138 9 8 -926.1307
## 42 9 2 -925.4484
## 165 4 10 -924.5287
## 168 7 10 -924.2716
## 166 5 10 -924.0521
## 167 6 10 -922.7596
## 169 8 10 -922.5928
## 155 10 9 -921.2169
## 170 9 10 -921.1777
## 177 0 11 -920.2608
## 171 10 10 -920.0124
## 91 10 5 -919.0182
## 178 1 11 -918.7342
## 75 10 4 -918.4135
## 11 10 0 -917.8597
## 59 10 3 -917.7711
## 123 10 7 -917.6569
## 107 10 6 -917.3861
## 27 10 1 -917.2925
## 179 2 11 -916.9417
## 180 3 11 -916.8682
## 193 0 12 -916.1477
## 139 10 8 -915.9643
## 92 11 5 -915.3201
## 43 10 2 -915.2941
## 156 11 9 -915.0851
## 181 4 11 -914.8854
## 194 1 12 -914.4423
## 124 11 7 -914.3141
## 184 7 11 -914.1880
## 76 11 4 -914.1395
## 182 5 11 -914.0440
## 108 11 6 -913.4052
## 140 11 8 -913.3026
## 195 2 12 -913.1680
## 172 11 10 -913.0914
## 60 11 3 -912.7714
## 183 6 11 -912.7548
## 196 3 12 -912.5820
## 185 8 11 -912.5636
## 12 11 0 -912.2009
## 28 11 1 -912.0389
## 186 9 11 -911.1737
## 157 12 9 -911.1513
## 188 11 11 -911.1189
## 93 12 5 -910.7693
## 198 5 12 -910.7434
## 197 4 12 -910.6154
## 125 12 7 -910.5873
## 141 12 8 -910.0719
## 44 11 2 -910.0439
## 187 10 11 -909.9928
## 200 7 12 -909.4197
## 173 12 10 -909.2473
## 77 12 4 -909.1913
## 109 12 6 -908.7753
## 199 6 12 -908.7635
## 201 8 12 -908.1609
## 61 12 3 -908.0357
## 29 12 1 -907.8613
## 209 0 13 -907.6473
## 13 12 0 -907.6158
## 205 12 12 -907.5931
## 204 11 12 -907.5525
## 202 9 12 -907.3633
## 189 12 11 -907.3200
## 210 1 13 -906.1005
## 45 12 2 -905.9070
## 203 10 12 -905.7653
## 211 2 13 -904.7293
## 212 3 13 -903.9077
## 214 5 13 -902.0824
## 158 13 9 -901.9574
## 213 4 13 -901.9144
## 94 13 5 -901.6338
## 126 13 7 -901.3766
## 142 13 8 -900.9367
## 216 7 13 -900.5676
## 225 0 14 -900.5066
## 174 13 10 -900.1413
## 215 6 13 -900.1102
## 78 13 4 -900.0282
## 110 13 6 -899.6703
## 226 1 14 -899.0967
## 217 8 13 -899.0866
## 62 13 3 -898.8589
## 30 13 1 -898.7940
## 190 13 11 -898.4409
## 221 12 13 -898.4110
## 220 11 13 -898.3058
## 218 9 13 -898.2568
## 14 13 0 -898.2039
## 206 13 12 -897.9014
## 227 2 14 -897.3889
## 46 13 2 -896.8637
## 219 10 13 -896.6244
## 222 13 13 -896.4458
## 228 3 14 -896.2512
## 230 5 14 -895.1320
## 95 14 5 -894.6021
## 229 4 14 -894.3023
## 159 14 9 -894.2497
## 127 14 7 -893.9663
## 143 14 8 -893.6932
## 231 6 14 -893.4037
## 79 14 4 -893.1343
## 232 7 14 -893.1064
## 111 14 6 -892.6253
## 175 14 10 -892.5085
## 63 14 3 -891.9131
## 191 14 11 -891.1895
## 233 8 14 -891.1877
## 234 9 14 -891.1729
## 31 14 1 -890.7573
## 236 11 14 -890.5576
## 241 0 15 -890.5500
## 15 14 0 -890.3449
## 237 12 14 -890.1854
## 235 10 14 -889.8957
## 207 14 12 -889.7107
## 242 1 15 -889.0419
## 47 14 2 -888.9410
## 238 13 14 -888.1867
## 223 14 13 -887.7488
## 239 14 14 -887.6659
## 243 2 15 -887.3088
## 244 3 15 -886.0691
## 246 5 15 -884.7479
## 96 15 5 -884.2869
## 245 4 15 -884.1417
## 160 15 9 -883.9364
## 128 15 7 -883.6409
## 144 15 8 -883.4503
## 247 6 15 -883.0158
## 80 15 4 -882.8148
## 248 7 15 -882.7881
## 112 15 6 -882.3106
## 176 15 10 -882.2093
## 64 15 3 -881.6497
## 253 12 15 -881.4274
## 252 11 15 -881.3077
## 250 9 15 -881.1831
## 192 15 11 -880.9028
## 249 8 15 -880.8964
## 32 15 1 -880.5983
## 251 10 15 -880.2736
## 16 15 0 -880.2468
## 254 13 15 -879.4467
## 208 15 12 -879.4364
## 255 14 15 -879.2846
## 48 15 2 -878.8432
## 224 15 13 -877.4985
## 240 15 14 -877.4570
model.ardlDlmberganda = ardlDlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , p = 4 , q = 4)
summary(model.ardlDlmberganda)##
## Time series regression with "ts" data:
## Start = 5, End = 144
##
## Call:
## dynlm(formula = as.formula(model.text), data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0290527 -0.0075965 0.0005726 0.0072745 0.0304486
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0145022 0.1822785 0.080 0.93671
## interest.t 0.0067985 0.2135315 0.032 0.97465
## interest.1 0.6093502 0.3240545 1.880 0.06238 .
## interest.2 0.0798544 0.3221168 0.248 0.80461
## interest.3 -0.3638172 0.3238873 -1.123 0.26347
## interest.4 0.2084240 0.2447331 0.852 0.39604
## logm1.t 0.0828689 0.0457486 1.811 0.07248 .
## logm1.1 -0.0092841 0.0399079 -0.233 0.81642
## logm1.2 -0.1166129 0.0390732 -2.984 0.00342 **
## logm1.3 0.0007016 0.0389297 0.018 0.98565
## logm1.4 0.0447857 0.0425474 1.053 0.29455
## logprice.1 0.3274245 0.0651574 5.025 1.7e-06 ***
## logprice.2 0.1323801 0.0684485 1.934 0.05537 .
## logprice.3 -0.1448245 0.0674268 -2.148 0.03365 *
## logprice.4 0.6730871 0.0636443 10.576 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01132 on 125 degrees of freedom
## Multiple R-squared: 0.9993, Adjusted R-squared: 0.9992
## F-statistic: 1.273e+04 on 14 and 125 DF, p-value: < 2.2e-16
#model p interest 0 p logm1 4
rem.p = list(interest = c(1,2,3,4))
remove = list(p = rem.p)
model.ardlDlmberganda2 = ardlDlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , p = 4 , q = 4 ,
remove = remove)
summary(model.ardlDlmberganda2)##
## Time series regression with "ts" data:
## Start = 5, End = 144
##
## Call:
## dynlm(formula = as.formula(model.text), data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0290369 -0.0083445 0.0009024 0.0079199 0.0303652
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.174838 0.133708 1.308 0.19333
## interest.t 0.448826 0.098736 4.546 1.24e-05 ***
## logm1.t 0.056659 0.043836 1.293 0.19849
## logm1.1 -0.017025 0.039159 -0.435 0.66446
## logm1.2 -0.118413 0.037399 -3.166 0.00193 **
## logm1.3 -0.006454 0.038112 -0.169 0.86580
## logm1.4 0.060220 0.040337 1.493 0.13789
## logprice.1 0.319059 0.062107 5.137 1.00e-06 ***
## logprice.2 0.111794 0.066101 1.691 0.09320 .
## logprice.3 -0.122129 0.065114 -1.876 0.06297 .
## logprice.4 0.699061 0.062611 11.165 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01149 on 129 degrees of freedom
## Multiple R-squared: 0.9993, Adjusted R-squared: 0.9992
## F-statistic: 1.73e+04 on 10 and 129 DF, p-value: < 2.2e-16
Proses selanjutnya sama dengan pemodelan menggunakan peubah tunggal.