library(datasets)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
data(HairEyeColor)
HairEyeColor <- tibble::as_tibble(HairEyeColor)
View(HairEyeColor)
class(HairEyeColor)
## [1] "tbl_df" "tbl" "data.frame"
head(HairEyeColor)
## # A tibble: 6 × 4
## Hair Eye Sex n
## <chr> <chr> <chr> <dbl>
## 1 Black Brown Male 32
## 2 Brown Brown Male 53
## 3 Red Brown Male 10
## 4 Blond Brown Male 3
## 5 Black Blue Male 11
## 6 Brown Blue Male 50
glimpse(HairEyeColor)
## Rows: 32
## Columns: 4
## $ Hair <chr> "Black", "Brown", "Red", "Blond", "Black", "Brown", "Red", "Blond…
## $ Eye <chr> "Brown", "Brown", "Brown", "Brown", "Blue", "Blue", "Blue", "Blue…
## $ Sex <chr> "Male", "Male", "Male", "Male", "Male", "Male", "Male", "Male", "…
## $ n <dbl> 32, 53, 10, 3, 11, 50, 10, 30, 10, 25, 7, 5, 3, 15, 7, 8, 36, 66,…
mean(HairEyeColor$n)
## [1] 18.5
mean(HairEyeColor$n) == HairEyeColor$n%>% mean()
## [1] TRUE
#Menghitung Rata-rata n
HairEyeColor %>% group_by(Sex) %>% summarize(mean=mean(n))
## # A tibble: 2 × 2
## Sex mean
## <chr> <dbl>
## 1 Female 19.6
## 2 Male 17.4
#Mengurutkan
HairEyeColor %>% arrange(n)
## # A tibble: 32 × 4
## Hair Eye Sex n
## <chr> <chr> <chr> <dbl>
## 1 Black Green Female 2
## 2 Blond Brown Male 3
## 3 Black Green Male 3
## 4 Blond Brown Female 4
## 5 Blond Hazel Male 5
## 6 Black Hazel Female 5
## 7 Blond Hazel Female 5
## 8 Red Hazel Male 7
## 9 Red Green Male 7
## 10 Red Blue Female 7
## # ℹ 22 more rows
#Filter
HairEyeColor%>% filter(Eye=="Green")
## # A tibble: 8 × 4
## Hair Eye Sex n
## <chr> <chr> <chr> <dbl>
## 1 Black Green Male 3
## 2 Brown Green Male 15
## 3 Red Green Male 7
## 4 Blond Green Male 8
## 5 Black Green Female 2
## 6 Brown Green Female 14
## 7 Red Green Female 7
## 8 Blond Green Female 8
HairEyeColor %>% select(Hair,Sex)
## # A tibble: 32 × 2
## Hair Sex
## <chr> <chr>
## 1 Black Male
## 2 Brown Male
## 3 Red Male
## 4 Blond Male
## 5 Black Male
## 6 Brown Male
## 7 Red Male
## 8 Blond Male
## 9 Black Male
## 10 Brown Male
## # ℹ 22 more rows
HairEyeColor %>% select(-n)
## # A tibble: 32 × 3
## Hair Eye Sex
## <chr> <chr> <chr>
## 1 Black Brown Male
## 2 Brown Brown Male
## 3 Red Brown Male
## 4 Blond Brown Male
## 5 Black Blue Male
## 6 Brown Blue Male
## 7 Red Blue Male
## 8 Blond Blue Male
## 9 Black Hazel Male
## 10 Brown Hazel Male
## # ℹ 22 more rows
#Mutate
HairEyeColor %>% mutate(Statistikawan=n)
## # A tibble: 32 × 5
## Hair Eye Sex n Statistikawan
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Black Brown Male 32 32
## 2 Brown Brown Male 53 53
## 3 Red Brown Male 10 10
## 4 Blond Brown Male 3 3
## 5 Black Blue Male 11 11
## 6 Brown Blue Male 50 50
## 7 Red Blue Male 10 10
## 8 Blond Blue Male 30 30
## 9 Black Hazel Male 10 10
## 10 Brown Hazel Male 25 25
## # ℹ 22 more rows
NewLook<- HairEyeColor %>% select(-Sex) %>% mutate(Statistikawan=n)
NewLook
## # A tibble: 32 × 4
## Hair Eye n Statistikawan
## <chr> <chr> <dbl> <dbl>
## 1 Black Brown 32 32
## 2 Brown Brown 53 53
## 3 Red Brown 10 10
## 4 Blond Brown 3 3
## 5 Black Blue 11 11
## 6 Brown Blue 50 50
## 7 Red Blue 10 10
## 8 Blond Blue 30 30
## 9 Black Hazel 10 10
## 10 Brown Hazel 25 25
## # ℹ 22 more rows