XTREME GRADIENT BOOSTING
# Basic Parameter Tuning
fitControl <- trainControl(## 5-fold CV
method = "repeatedcv",
number = 5,
## repeated ten times
repeats = 5)
# Alternate Tuning Grids
xgbGrid <- expand.grid(nrounds = c(300, 500, 1000, 1500),
max_depth = 2,
eta = c(0.01, 0.02, 0.03),
gamma = 0,
colsample_bytree = 1,
min_child_weight = 1,
subsample = 1
)
set.seed(16)
xgbFit <- train(promo~ ., data = moklas3.jk.train,
method = "xgbTree",
trControl = fitControl,
verbose = FALSE,
tuneGrid = xgbGrid,
objective="reg:squarederror")
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:02:59] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:02:59] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:02:59] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:06] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:06] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:06] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:11] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:11] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:11] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:18] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:18] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:18] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:33] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:33] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:33] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:40] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:40] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:40] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:47] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:47] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:47] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:52] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:52] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:52] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:54] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:54] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:54] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:57] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:57] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:57] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:03:59] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:59] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:03:59] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:02] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:04] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:09] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:33] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:33] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:33] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:40] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:40] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:40] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:47] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:47] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:47] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:56] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:56] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:56] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:04:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:04:58] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:00] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:03] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:03] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:03] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:05] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:07] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:10] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:10] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:10] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:12] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:14] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:16] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:19] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:21] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:23] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:26] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:28] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:30] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:32] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:35] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:37] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:39] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:40] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:42] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:44] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:46] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:49] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:51] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## [18:05:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## [18:05:53] WARNING: src/c_api/c_api.cc:935: `ntree_limit` is deprecated, use `iteration_range` instead.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## eXtreme Gradient Boosting
##
## 288 samples
## 8 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times)
## Summary of sample sizes: 231, 231, 231, 230, 229, 231, ...
## Resampling results across tuning parameters:
##
## eta nrounds Accuracy Kappa
## 0.01 300 0.7207128 0.2936283
## 0.01 500 0.7227455 0.3105954
## 0.01 1000 0.7186435 0.3128324
## 0.01 1500 0.7117928 0.3017827
## 0.02 300 0.7214138 0.3122790
## 0.02 500 0.7166096 0.3076646
## 0.02 1000 0.7097126 0.3003599
## 0.02 1500 0.6958574 0.2736519
## 0.03 300 0.7227939 0.3220104
## 0.03 500 0.7124825 0.3041791
## 0.03 1000 0.6937763 0.2690656
## 0.03 1500 0.6902554 0.2627739
##
## Tuning parameter 'max_depth' was held constant at a value of 2
## Tuning
##
## Tuning parameter 'min_child_weight' was held constant at a value of 1
##
## Tuning parameter 'subsample' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were nrounds = 300, max_depth = 2, eta
## = 0.03, gamma = 0, colsample_bytree = 1, min_child_weight = 1 and subsample
## = 1.
xgbFit.best<-xgbFit$bestTune
set.seed(16)
xgbFit1 <- train(promo~ ., data = moklas3.jk.train,
method = "xgbTree",
trControl = fitControl,
verbose = FALSE,
tuneGrid = xgbFit.best,
objective="reg:squarederror")
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## Warning in check.booster.params(params, ...): The following parameters were provided multiple times:
## objective
## Only the last value for each of them will be used.
## eXtreme Gradient Boosting
##
## 288 samples
## 8 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times)
## Summary of sample sizes: 231, 231, 231, 230, 229, 231, ...
## Resampling results:
##
## Accuracy Kappa
## 0.7227939 0.3220104
##
## Tuning parameter 'nrounds' was held constant at a value of 300
## Tuning
## held constant at a value of 1
## Tuning parameter 'subsample' was held
## constant at a value of 1
confusionMatrix(xgbFit1$trainingData$.outcome,moklas3.jk.train$promo, positive="1")
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 192 0
## 1 0 96
##
## Accuracy : 1
## 95% CI : (0.9873, 1)
## No Information Rate : 0.6667
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.3333
## Detection Rate : 0.3333
## Detection Prevalence : 0.3333
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : 1
##
## Generate predictions
y_hats_x1 <- predict(
## Random forest object
object=xgbFit1,
## Data to use for predictions; remove the Species
newdata=moklas3.jk.test[, -9])
confusionMatrix(y_hats_x1,moklas3.jk.test$promo, positive="1")
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 44 14
## 1 3 10
##
## Accuracy : 0.7606
## 95% CI : (0.6446, 0.8539)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.04858
##
## Kappa : 0.3974
##
## Mcnemar's Test P-Value : 0.01529
##
## Sensitivity : 0.4167
## Specificity : 0.9362
## Pos Pred Value : 0.7692
## Neg Pred Value : 0.7586
## Prevalence : 0.3380
## Detection Rate : 0.1408
## Detection Prevalence : 0.1831
## Balanced Accuracy : 0.6764
##
## 'Positive' Class : 1
##
trellis.par.set(caretTheme())
plot(xgbFit,main = "Fine Tune Parameters on XGBoost",
xlab = "nrounds",
ylab = "RMSE" )

library(xgboost)
moklas3.jk.train.matrix<-data.matrix(moklas3.jk.train[,-9])
promo<-as.matrix(as.factor(as.character(moklas3.jk.train$promo)))
xgbModel <- xgboost(data = moklas3.jk.train.matrix,
label = promo,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.690803
## [2] train-logloss:0.688503
## [3] train-logloss:0.686246
## [4] train-logloss:0.683958
## [5] train-logloss:0.681783
## [6] train-logloss:0.679576
## [7] train-logloss:0.677479
## [8] train-logloss:0.675350
## [9] train-logloss:0.673261
## [10] train-logloss:0.671275
## [11] train-logloss:0.669259
## [12] train-logloss:0.667343
## [13] train-logloss:0.665397
## [14] train-logloss:0.663549
## [15] train-logloss:0.661671
## [16] train-logloss:0.659827
## [17] train-logloss:0.658074
## [18] train-logloss:0.656293
## [19] train-logloss:0.654601
## [20] train-logloss:0.652881
## [21] train-logloss:0.651248
## [22] train-logloss:0.649587
## [23] train-logloss:0.647955
## [24] train-logloss:0.646405
## [25] train-logloss:0.644916
## [26] train-logloss:0.643365
## [27] train-logloss:0.641894
## [28] train-logloss:0.640395
## [29] train-logloss:0.639007
## [30] train-logloss:0.637681
## [31] train-logloss:0.636255
## [32] train-logloss:0.634937
## [33] train-logloss:0.633559
## [34] train-logloss:0.632319
## [35] train-logloss:0.631099
## [36] train-logloss:0.629783
## [37] train-logloss:0.628541
## [38] train-logloss:0.627343
## [39] train-logloss:0.626133
## [40] train-logloss:0.624994
## [41] train-logloss:0.623816
## [42] train-logloss:0.622595
## [43] train-logloss:0.621445
## [44] train-logloss:0.620364
## [45] train-logloss:0.619245
## [46] train-logloss:0.618194
## [47] train-logloss:0.617103
## [48] train-logloss:0.615964
## [49] train-logloss:0.614898
## [50] train-logloss:0.613895
## [51] train-logloss:0.612859
## [52] train-logloss:0.611850
## [53] train-logloss:0.610841
## [54] train-logloss:0.609861
## [55] train-logloss:0.608875
## [56] train-logloss:0.607942
## [57] train-logloss:0.606982
## [58] train-logloss:0.605953
## [59] train-logloss:0.605015
## [60] train-logloss:0.604125
## [61] train-logloss:0.603211
## [62] train-logloss:0.602343
## [63] train-logloss:0.601449
## [64] train-logloss:0.600482
## [65] train-logloss:0.599610
## [66] train-logloss:0.598779
## [67] train-logloss:0.597928
## [68] train-logloss:0.597088
## [69] train-logloss:0.596257
## [70] train-logloss:0.595459
## [71] train-logloss:0.594645
## [72] train-logloss:0.593750
## [73] train-logloss:0.592953
## [74] train-logloss:0.592191
## [75] train-logloss:0.590523
## [76] train-logloss:0.588884
## [77] train-logloss:0.588118
## [78] train-logloss:0.586513
## [79] train-logloss:0.585763
## [80] train-logloss:0.585020
## [81] train-logloss:0.583457
## [82] train-logloss:0.582754
## [83] train-logloss:0.581224
## [84] train-logloss:0.579722
## [85] train-logloss:0.578933
## [86] train-logloss:0.577463
## [87] train-logloss:0.576020
## [88] train-logloss:0.575323
## [89] train-logloss:0.573908
## [90] train-logloss:0.572518
## [91] train-logloss:0.571872
## [92] train-logloss:0.570511
## [93] train-logloss:0.569842
## [94] train-logloss:0.568508
## [95] train-logloss:0.567888
## [96] train-logloss:0.566581
## [97] train-logloss:0.565935
## [98] train-logloss:0.564655
## [99] train-logloss:0.563396
## [100] train-logloss:0.562834
## [101] train-logloss:0.561604
## [102] train-logloss:0.560395
## [103] train-logloss:0.559815
## [104] train-logloss:0.559199
## [105] train-logloss:0.558666
## [106] train-logloss:0.557493
## [107] train-logloss:0.556341
## [108] train-logloss:0.555828
## [109] train-logloss:0.554700
## [110] train-logloss:0.554109
## [111] train-logloss:0.553004
## [112] train-logloss:0.552513
## [113] train-logloss:0.551433
## [114] train-logloss:0.550896
## [115] train-logloss:0.549837
## [116] train-logloss:0.549368
## [117] train-logloss:0.548332
## [118] train-logloss:0.547769
## [119] train-logloss:0.546753
## [120] train-logloss:0.546304
## [121] train-logloss:0.545310
## [122] train-logloss:0.544334
## [123] train-logloss:0.543901
## [124] train-logloss:0.543357
## [125] train-logloss:0.542402
## [126] train-logloss:0.541462
## [127] train-logloss:0.541044
## [128] train-logloss:0.540560
## [129] train-logloss:0.539642
## [130] train-logloss:0.539117
## [131] train-logloss:0.538216
## [132] train-logloss:0.537816
## [133] train-logloss:0.537352
## [134] train-logloss:0.536471
## [135] train-logloss:0.536083
## [136] train-logloss:0.535221
## [137] train-logloss:0.534717
## [138] train-logloss:0.533871
## [139] train-logloss:0.533495
## [140] train-logloss:0.532665
## [141] train-logloss:0.532174
## [142] train-logloss:0.531360
## [143] train-logloss:0.530996
## [144] train-logloss:0.530197
## [145] train-logloss:0.529761
## [146] train-logloss:0.529406
## [147] train-logloss:0.528932
## [148] train-logloss:0.528151
## [149] train-logloss:0.527806
## [150] train-logloss:0.527040
## [151] train-logloss:0.526576
## [152] train-logloss:0.526157
## [153] train-logloss:0.525406
## [154] train-logloss:0.524949
## [155] train-logloss:0.524618
## [156] train-logloss:0.523882
## [157] train-logloss:0.523433
## [158] train-logloss:0.523110
## [159] train-logloss:0.522388
## [160] train-logloss:0.521986
## [161] train-logloss:0.521548
## [162] train-logloss:0.520838
## [163] train-logloss:0.520527
## [164] train-logloss:0.520143
## [165] train-logloss:0.519446
## [166] train-logloss:0.519018
## [167] train-logloss:0.518562
## [168] train-logloss:0.518261
## [169] train-logloss:0.517813
## [170] train-logloss:0.517434
## [171] train-logloss:0.517015
## [172] train-logloss:0.516575
## [173] train-logloss:0.516283
## [174] train-logloss:0.515849
## [175] train-logloss:0.515438
## [176] train-logloss:0.515012
## [177] train-logloss:0.514651
## [178] train-logloss:0.514366
## [179] train-logloss:0.513946
## [180] train-logloss:0.513544
## [181] train-logloss:0.513131
## [182] train-logloss:0.512780
## [183] train-logloss:0.512501
## [184] train-logloss:0.512108
## [185] train-logloss:0.511701
## [186] train-logloss:0.511427
## [187] train-logloss:0.511076
## [188] train-logloss:0.510676
## [189] train-logloss:0.510291
## [190] train-logloss:0.509897
## [191] train-logloss:0.509561
## [192] train-logloss:0.509173
## [193] train-logloss:0.508907
## [194] train-logloss:0.508528
## [195] train-logloss:0.508145
## [196] train-logloss:0.507809
## [197] train-logloss:0.507548
## [198] train-logloss:0.507177
## [199] train-logloss:0.506800
## [200] train-logloss:0.506544
## [201] train-logloss:0.505934
## [202] train-logloss:0.505614
## [203] train-logloss:0.505246
## [204] train-logloss:0.504881
## [205] train-logloss:0.504511
## [206] train-logloss:0.504149
## [207] train-logloss:0.503836
## [208] train-logloss:0.503480
## [209] train-logloss:0.503116
## [210] train-logloss:0.502765
## [211] train-logloss:0.502410
## [212] train-logloss:0.502166
## [213] train-logloss:0.501860
## [214] train-logloss:0.501514
## [215] train-logloss:0.501161
## [216] train-logloss:0.500820
## [217] train-logloss:0.500474
## [218] train-logloss:0.500167
## [219] train-logloss:0.499830
## [220] train-logloss:0.499592
## [221] train-logloss:0.499247
## [222] train-logloss:0.498909
## [223] train-logloss:0.498577
## [224] train-logloss:0.498285
## [225] train-logloss:0.497958
## [226] train-logloss:0.497620
## [227] train-logloss:0.497289
## [228] train-logloss:0.496967
## [229] train-logloss:0.496680
## [230] train-logloss:0.496349
## [231] train-logloss:0.496031
## [232] train-logloss:0.495558
## [233] train-logloss:0.495245
## [234] train-logloss:0.494924
## [235] train-logloss:0.494596
## [236] train-logloss:0.494288
## [237] train-logloss:0.493825
## [238] train-logloss:0.493508
## [239] train-logloss:0.493284
## [240] train-logloss:0.492831
## [241] train-logloss:0.492269
## [242] train-logloss:0.491953
## [243] train-logloss:0.491402
## [244] train-logloss:0.490956
## [245] train-logloss:0.490643
## [246] train-logloss:0.490344
## [247] train-logloss:0.490037
## [248] train-logloss:0.489741
## [249] train-logloss:0.489433
## [250] train-logloss:0.488999
## [251] train-logloss:0.488709
## [252] train-logloss:0.488407
## [253] train-logloss:0.487982
## [254] train-logloss:0.487679
## [255] train-logloss:0.487144
## [256] train-logloss:0.486860
## [257] train-logloss:0.486561
## [258] train-logloss:0.486144
## [259] train-logloss:0.485864
## [260] train-logloss:0.485568
## [261] train-logloss:0.485160
## [262] train-logloss:0.484884
## [263] train-logloss:0.484590
## [264] train-logloss:0.484240
## [265] train-logloss:0.483990
## [266] train-logloss:0.483718
## [267] train-logloss:0.483156
## [268] train-logloss:0.482869
## [269] train-logloss:0.482526
## [270] train-logloss:0.482280
## [271] train-logloss:0.482015
## [272] train-logloss:0.481466
## [273] train-logloss:0.481183
## [274] train-logloss:0.480645
## [275] train-logloss:0.480308
## [276] train-logloss:0.480067
## [277] train-logloss:0.479810
## [278] train-logloss:0.479284
## [279] train-logloss:0.479005
## [280] train-logloss:0.478675
## [281] train-logloss:0.478158
## [282] train-logloss:0.477921
## [283] train-logloss:0.477673
## [284] train-logloss:0.477399
## [285] train-logloss:0.476892
## [286] train-logloss:0.476570
## [287] train-logloss:0.476336
## [288] train-logloss:0.476094
## [289] train-logloss:0.475599
## [290] train-logloss:0.475329
## [291] train-logloss:0.475012
## [292] train-logloss:0.474525
## [293] train-logloss:0.474259
## [294] train-logloss:0.474029
## [295] train-logloss:0.473794
## [296] train-logloss:0.473482
## [297] train-logloss:0.473007
## [298] train-logloss:0.472745
## [299] train-logloss:0.472517
## [300] train-logloss:0.472286
## [301] train-logloss:0.471820
## [302] train-logloss:0.471513
## [303] train-logloss:0.471285
## [304] train-logloss:0.471061
## [305] train-logloss:0.470802
## [306] train-logloss:0.470441
## [307] train-logloss:0.470141
## [308] train-logloss:0.469916
## [309] train-logloss:0.469461
## [310] train-logloss:0.469207
## [311] train-logloss:0.468985
## [312] train-logloss:0.468689
## [313] train-logloss:0.468468
## [314] train-logloss:0.468117
## [315] train-logloss:0.467899
## [316] train-logloss:0.467456
## [317] train-logloss:0.467205
## [318] train-logloss:0.466987
## [319] train-logloss:0.466642
## [320] train-logloss:0.466207
## [321] train-logloss:0.465918
## [322] train-logloss:0.465671
## [323] train-logloss:0.465457
## [324] train-logloss:0.465242
## [325] train-logloss:0.464906
## [326] train-logloss:0.464622
## [327] train-logloss:0.464410
## [328] train-logloss:0.464198
## [329] train-logloss:0.463989
## [330] train-logloss:0.463565
## [331] train-logloss:0.463285
## [332] train-logloss:0.462956
## [333] train-logloss:0.462746
## [334] train-logloss:0.462539
## [335] train-logloss:0.462123
## [336] train-logloss:0.461848
## [337] train-logloss:0.461641
## [338] train-logloss:0.461437
## [339] train-logloss:0.461232
## [340] train-logloss:0.460960
## [341] train-logloss:0.460757
## [342] train-logloss:0.460350
## [343] train-logloss:0.460030
## [344] train-logloss:0.459763
## [345] train-logloss:0.459563
## [346] train-logloss:0.459361
## [347] train-logloss:0.459163
## [348] train-logloss:0.458964
## [349] train-logloss:0.458651
## [350] train-logloss:0.458387
## [351] train-logloss:0.458192
## [352] train-logloss:0.457794
## [353] train-logloss:0.457598
## [354] train-logloss:0.457291
## [355] train-logloss:0.457031
## [356] train-logloss:0.456838
## [357] train-logloss:0.456645
## [358] train-logloss:0.456454
## [359] train-logloss:0.456066
## [360] train-logloss:0.455810
## [361] train-logloss:0.455509
## [362] train-logloss:0.455319
## [363] train-logloss:0.455129
## [364] train-logloss:0.454876
## [365] train-logloss:0.454688
## [366] train-logloss:0.454415
## [367] train-logloss:0.454120
## [368] train-logloss:0.453740
## [369] train-logloss:0.453553
## [370] train-logloss:0.453304
## [371] train-logloss:0.453119
## [372] train-logloss:0.452959
## [373] train-logloss:0.452774
## [374] train-logloss:0.452616
## [375] train-logloss:0.452370
## [376] train-logloss:0.452187
## [377] train-logloss:0.452005
## [378] train-logloss:0.451718
## [379] train-logloss:0.451536
## [380] train-logloss:0.451381
## [381] train-logloss:0.451201
## [382] train-logloss:0.450959
## [383] train-logloss:0.450806
## [384] train-logloss:0.450492
## [385] train-logloss:0.450224
## [386] train-logloss:0.450073
## [387] train-logloss:0.449795
## [388] train-logloss:0.449557
## [389] train-logloss:0.449376
## [390] train-logloss:0.449199
## [391] train-logloss:0.449021
## [392] train-logloss:0.448796
## [393] train-logloss:0.448647
## [394] train-logloss:0.448471
## [395] train-logloss:0.448198
## [396] train-logloss:0.447963
## [397] train-logloss:0.447788
## [398] train-logloss:0.447525
## [399] train-logloss:0.447377
## [400] train-logloss:0.447109
## [401] train-logloss:0.446889
## [402] train-logloss:0.446658
## [403] train-logloss:0.446484
## [404] train-logloss:0.446311
## [405] train-logloss:0.446166
## [406] train-logloss:0.445903
## [407] train-logloss:0.445673
## [408] train-logloss:0.445502
## [409] train-logloss:0.445359
## [410] train-logloss:0.445143
## [411] train-logloss:0.444971
## [412] train-logloss:0.444831
## [413] train-logloss:0.444573
## [414] train-logloss:0.444359
## [415] train-logloss:0.444220
## [416] train-logloss:0.444050
## [417] train-logloss:0.443797
## [418] train-logloss:0.443626
## [419] train-logloss:0.443415
## [420] train-logloss:0.443278
## [421] train-logloss:0.443110
## [422] train-logloss:0.442975
## [423] train-logloss:0.442766
## [424] train-logloss:0.442516
## [425] train-logloss:0.442292
## [426] train-logloss:0.442035
## [427] train-logloss:0.441902
## [428] train-logloss:0.441656
## [429] train-logloss:0.441490
## [430] train-logloss:0.441320
## [431] train-logloss:0.441099
## [432] train-logloss:0.440893
## [433] train-logloss:0.440726
## [434] train-logloss:0.440474
## [435] train-logloss:0.440231
## [436] train-logloss:0.440099
## [437] train-logloss:0.439936
## [438] train-logloss:0.439798
## [439] train-logloss:0.439632
## [440] train-logloss:0.439502
## [441] train-logloss:0.439262
## [442] train-logloss:0.439059
## [443] train-logloss:0.438842
## [444] train-logloss:0.438680
## [445] train-logloss:0.438552
## [446] train-logloss:0.438316
## [447] train-logloss:0.437935
## [448] train-logloss:0.437736
## [449] train-logloss:0.437489
## [450] train-logloss:0.437363
## [451] train-logloss:0.436990
## [452] train-logloss:0.436756
## [453] train-logloss:0.436559
## [454] train-logloss:0.436328
## [455] train-logloss:0.435959
## [456] train-logloss:0.435765
## [457] train-logloss:0.435606
## [458] train-logloss:0.435484
## [459] train-logloss:0.435123
## [460] train-logloss:0.434929
## [461] train-logloss:0.434702
## [462] train-logloss:0.434458
## [463] train-logloss:0.434338
## [464] train-logloss:0.433982
## [465] train-logloss:0.433758
## [466] train-logloss:0.433628
## [467] train-logloss:0.433439
## [468] train-logloss:0.433088
## [469] train-logloss:0.432866
## [470] train-logloss:0.432710
## [471] train-logloss:0.432525
## [472] train-logloss:0.432409
## [473] train-logloss:0.432065
## [474] train-logloss:0.431878
## [475] train-logloss:0.431659
## [476] train-logloss:0.431431
## [477] train-logloss:0.431317
## [478] train-logloss:0.430978
## [479] train-logloss:0.430762
## [480] train-logloss:0.430632
## [481] train-logloss:0.430447
## [482] train-logloss:0.430266
## [483] train-logloss:0.430138
## [484] train-logloss:0.429984
## [485] train-logloss:0.429819
## [486] train-logloss:0.429692
## [487] train-logloss:0.429481
## [488] train-logloss:0.429257
## [489] train-logloss:0.429043
## [490] train-logloss:0.428865
## [491] train-logloss:0.428704
## [492] train-logloss:0.428578
## [493] train-logloss:0.428454
## [494] train-logloss:0.428295
## [495] train-logloss:0.428170
## [496] train-logloss:0.428018
## [497] train-logloss:0.427844
## [498] train-logloss:0.427720
## [499] train-logloss:0.427563
## [500] train-logloss:0.427356
## [501] train-logloss:0.427234
## [502] train-logloss:0.427003
## [503] train-logloss:0.426792
## [504] train-logloss:0.426669
## [505] train-logloss:0.426514
## [506] train-logloss:0.426310
## [507] train-logloss:0.426159
## [508] train-logloss:0.425990
## [509] train-logloss:0.425868
## [510] train-logloss:0.425716
## [511] train-logloss:0.425595
## [512] train-logloss:0.425475
## [513] train-logloss:0.425267
## [514] train-logloss:0.425099
## [515] train-logloss:0.424979
## [516] train-logloss:0.424829
## [517] train-logloss:0.424602
## [518] train-logloss:0.424401
## [519] train-logloss:0.424253
## [520] train-logloss:0.424104
## [521] train-logloss:0.423985
## [522] train-logloss:0.423779
## [523] train-logloss:0.423613
## [524] train-logloss:0.423495
## [525] train-logloss:0.423350
## [526] train-logloss:0.423232
## [527] train-logloss:0.423068
## [528] train-logloss:0.422951
## [529] train-logloss:0.422747
## [530] train-logloss:0.422549
## [531] train-logloss:0.422401
## [532] train-logloss:0.422286
## [533] train-logloss:0.422171
## [534] train-logloss:0.422025
## [535] train-logloss:0.421901
## [536] train-logloss:0.421678
## [537] train-logloss:0.421477
## [538] train-logloss:0.421316
## [539] train-logloss:0.421173
## [540] train-logloss:0.421059
## [541] train-logloss:0.420864
## [542] train-logloss:0.420720
## [543] train-logloss:0.420430
## [544] train-logloss:0.420256
## [545] train-logloss:0.420144
## [546] train-logloss:0.419945
## [547] train-logloss:0.419786
## [548] train-logloss:0.419501
## [549] train-logloss:0.419309
## [550] train-logloss:0.419168
## [551] train-logloss:0.419057
## [552] train-logloss:0.418886
## [553] train-logloss:0.418667
## [554] train-logloss:0.418471
## [555] train-logloss:0.418314
## [556] train-logloss:0.418034
## [557] train-logloss:0.417840
## [558] train-logloss:0.417730
## [559] train-logloss:0.417562
## [560] train-logloss:0.417424
## [561] train-logloss:0.417235
## [562] train-logloss:0.417081
## [563] train-logloss:0.416972
## [564] train-logloss:0.416831
## [565] train-logloss:0.416722
## [566] train-logloss:0.416530
## [567] train-logloss:0.416409
## [568] train-logloss:0.416136
## [569] train-logloss:0.415999
## [570] train-logloss:0.415847
## [571] train-logloss:0.415662
## [572] train-logloss:0.415447
## [573] train-logloss:0.415257
## [574] train-logloss:0.414989
## [575] train-logloss:0.414882
## [576] train-logloss:0.414694
## [577] train-logloss:0.414575
## [578] train-logloss:0.414392
## [579] train-logloss:0.414129
## [580] train-logloss:0.413965
## [581] train-logloss:0.413830
## [582] train-logloss:0.413680
## [583] train-logloss:0.413574
## [584] train-logloss:0.413389
## [585] train-logloss:0.413284
## [586] train-logloss:0.413121
## [587] train-logloss:0.412909
## [588] train-logloss:0.412770
## [589] train-logloss:0.412622
## [590] train-logloss:0.412518
## [591] train-logloss:0.412387
## [592] train-logloss:0.412204
## [593] train-logloss:0.411946
## [594] train-logloss:0.411765
## [595] train-logloss:0.411605
## [596] train-logloss:0.411424
## [597] train-logloss:0.411321
## [598] train-logloss:0.411191
## [599] train-logloss:0.411045
## [600] train-logloss:0.410942
## [601] train-logloss:0.410807
## [602] train-logloss:0.410706
## [603] train-logloss:0.410529
## [604] train-logloss:0.410277
## [605] train-logloss:0.410098
## [606] train-logloss:0.409889
## [607] train-logloss:0.409745
## [608] train-logloss:0.409587
## [609] train-logloss:0.409410
## [610] train-logloss:0.409282
## [611] train-logloss:0.409183
## [612] train-logloss:0.409007
## [613] train-logloss:0.408874
## [614] train-logloss:0.408626
## [615] train-logloss:0.408451
## [616] train-logloss:0.408295
## [617] train-logloss:0.408169
## [618] train-logloss:0.408027
## [619] train-logloss:0.407929
## [620] train-logloss:0.407686
## [621] train-logloss:0.407513
## [622] train-logloss:0.407341
## [623] train-logloss:0.407136
## [624] train-logloss:0.407020
## [625] train-logloss:0.406725
## [626] train-logloss:0.406586
## [627] train-logloss:0.406415
## [628] train-logloss:0.406261
## [629] train-logloss:0.406137
## [630] train-logloss:0.406041
## [631] train-logloss:0.405902
## [632] train-logloss:0.405613
## [633] train-logloss:0.405441
## [634] train-logloss:0.405272
## [635] train-logloss:0.405140
## [636] train-logloss:0.404989
## [637] train-logloss:0.404866
## [638] train-logloss:0.404771
## [639] train-logloss:0.404602
## [640] train-logloss:0.404466
## [641] train-logloss:0.404336
## [642] train-logloss:0.404104
## [643] train-logloss:0.403937
## [644] train-logloss:0.403824
## [645] train-logloss:0.403542
## [646] train-logloss:0.403393
## [647] train-logloss:0.403225
## [648] train-logloss:0.403060
## [649] train-logloss:0.402938
## [650] train-logloss:0.402844
## [651] train-logloss:0.402710
## [652] train-logloss:0.402562
## [653] train-logloss:0.402362
## [654] train-logloss:0.402197
## [655] train-logloss:0.401920
## [656] train-logloss:0.401758
## [657] train-logloss:0.401626
## [658] train-logloss:0.401507
## [659] train-logloss:0.401397
## [660] train-logloss:0.401304
## [661] train-logloss:0.401176
## [662] train-logloss:0.401010
## [663] train-logloss:0.400738
## [664] train-logloss:0.400592
## [665] train-logloss:0.400432
## [666] train-logloss:0.400301
## [667] train-logloss:0.400209
## [668] train-logloss:0.400083
## [669] train-logloss:0.399919
## [670] train-logloss:0.399722
## [671] train-logloss:0.399502
## [672] train-logloss:0.399343
## [673] train-logloss:0.399077
## [674] train-logloss:0.398960
## [675] train-logloss:0.398798
## [676] train-logloss:0.398655
## [677] train-logloss:0.398498
## [678] train-logloss:0.398369
## [679] train-logloss:0.398254
## [680] train-logloss:0.398164
## [681] train-logloss:0.397903
## [682] train-logloss:0.397761
## [683] train-logloss:0.397606
## [684] train-logloss:0.397479
## [685] train-logloss:0.397354
## [686] train-logloss:0.397245
## [687] train-logloss:0.397051
## [688] train-logloss:0.396897
## [689] train-logloss:0.396737
## [690] train-logloss:0.396648
## [691] train-logloss:0.396534
## [692] train-logloss:0.396410
## [693] train-logloss:0.396322
## [694] train-logloss:0.396065
## [695] train-logloss:0.395913
## [696] train-logloss:0.395755
## [697] train-logloss:0.395629
## [698] train-logloss:0.395491
## [699] train-logloss:0.395378
## [700] train-logloss:0.395291
## [701] train-logloss:0.395084
## [702] train-logloss:0.394933
## [703] train-logloss:0.394808
## [704] train-logloss:0.394558
## [705] train-logloss:0.394366
## [706] train-logloss:0.394216
## [707] train-logloss:0.394110
## [708] train-logloss:0.393863
## [709] train-logloss:0.393727
## [710] train-logloss:0.393571
## [711] train-logloss:0.393448
## [712] train-logloss:0.393301
## [713] train-logloss:0.393177
## [714] train-logloss:0.393065
## [715] train-logloss:0.392980
## [716] train-logloss:0.392857
## [717] train-logloss:0.392711
## [718] train-logloss:0.392576
## [719] train-logloss:0.392455
## [720] train-logloss:0.392370
## [721] train-logloss:0.392128
## [722] train-logloss:0.392018
## [723] train-logloss:0.391896
## [724] train-logloss:0.391812
## [725] train-logloss:0.391658
## [726] train-logloss:0.391538
## [727] train-logloss:0.391299
## [728] train-logloss:0.391155
## [729] train-logloss:0.391050
## [730] train-logloss:0.390930
## [731] train-logloss:0.390732
## [732] train-logloss:0.390544
## [733] train-logloss:0.390350
## [734] train-logloss:0.390207
## [735] train-logloss:0.390054
## [736] train-logloss:0.389922
## [737] train-logloss:0.389813
## [738] train-logloss:0.389672
## [739] train-logloss:0.389589
## [740] train-logloss:0.389470
## [741] train-logloss:0.389237
## [742] train-logloss:0.389106
## [743] train-logloss:0.388878
## [744] train-logloss:0.388738
## [745] train-logloss:0.388631
## [746] train-logloss:0.388513
## [747] train-logloss:0.388411
## [748] train-logloss:0.388218
## [749] train-logloss:0.388100
## [750] train-logloss:0.387915
## [751] train-logloss:0.387685
## [752] train-logloss:0.387547
## [753] train-logloss:0.387395
## [754] train-logloss:0.387313
## [755] train-logloss:0.387089
## [756] train-logloss:0.386972
## [757] train-logloss:0.386867
## [758] train-logloss:0.386786
## [759] train-logloss:0.386649
## [760] train-logloss:0.386532
## [761] train-logloss:0.386415
## [762] train-logloss:0.386335
## [763] train-logloss:0.386110
## [764] train-logloss:0.386009
## [765] train-logloss:0.385859
## [766] train-logloss:0.385639
## [767] train-logloss:0.385503
## [768] train-logloss:0.385399
## [769] train-logloss:0.385283
## [770] train-logloss:0.385204
## [771] train-logloss:0.385088
## [772] train-logloss:0.384973
## [773] train-logloss:0.384792
## [774] train-logloss:0.384657
## [775] train-logloss:0.384578
## [776] train-logloss:0.384430
## [777] train-logloss:0.384330
## [778] train-logloss:0.384147
## [779] train-logloss:0.384014
## [780] train-logloss:0.383797
## [781] train-logloss:0.383694
## [782] train-logloss:0.383581
## [783] train-logloss:0.383503
## [784] train-logloss:0.383371
## [785] train-logloss:0.383258
## [786] train-logloss:0.383157
## [787] train-logloss:0.382943
## [788] train-logloss:0.382866
## [789] train-logloss:0.382751
## [790] train-logloss:0.382533
## [791] train-logloss:0.382435
## [792] train-logloss:0.382304
## [793] train-logloss:0.382193
## [794] train-logloss:0.382046
## [795] train-logloss:0.381867
## [796] train-logloss:0.381737
## [797] train-logloss:0.381661
## [798] train-logloss:0.381515
## [799] train-logloss:0.381404
## [800] train-logloss:0.381304
## [801] train-logloss:0.381094
## [802] train-logloss:0.380997
## [803] train-logloss:0.380883
## [804] train-logloss:0.380697
## [805] train-logloss:0.380622
## [806] train-logloss:0.380409
## [807] train-logloss:0.380280
## [808] train-logloss:0.380170
## [809] train-logloss:0.379994
## [810] train-logloss:0.379867
## [811] train-logloss:0.379792
## [812] train-logloss:0.379679
## [813] train-logloss:0.379469
## [814] train-logloss:0.379359
## [815] train-logloss:0.379261
## [816] train-logloss:0.379055
## [817] train-logloss:0.378928
## [818] train-logloss:0.378746
## [819] train-logloss:0.378602
## [820] train-logloss:0.378505
## [821] train-logloss:0.378397
## [822] train-logloss:0.378323
## [823] train-logloss:0.378211
## [824] train-logloss:0.378116
## [825] train-logloss:0.377943
## [826] train-logloss:0.377817
## [827] train-logloss:0.377743
## [828] train-logloss:0.377537
## [829] train-logloss:0.377394
## [830] train-logloss:0.377287
## [831] train-logloss:0.377116
## [832] train-logloss:0.376991
## [833] train-logloss:0.376885
## [834] train-logloss:0.376762
## [835] train-logloss:0.376583
## [836] train-logloss:0.376488
## [837] train-logloss:0.376377
## [838] train-logloss:0.376304
## [839] train-logloss:0.376199
## [840] train-logloss:0.376127
## [841] train-logloss:0.375957
## [842] train-logloss:0.375815
## [843] train-logloss:0.375693
## [844] train-logloss:0.375524
## [845] train-logloss:0.375402
## [846] train-logloss:0.375201
## [847] train-logloss:0.375080
## [848] train-logloss:0.374975
## [849] train-logloss:0.374903
## [850] train-logloss:0.374809
## [851] train-logloss:0.374669
## [852] train-logloss:0.374565
## [853] train-logloss:0.374364
## [854] train-logloss:0.374167
## [855] train-logloss:0.374057
## [856] train-logloss:0.373964
## [857] train-logloss:0.373843
## [858] train-logloss:0.373773
## [859] train-logloss:0.373670
## [860] train-logloss:0.373576
## [861] train-logloss:0.373381
## [862] train-logloss:0.373288
## [863] train-logloss:0.373187
## [864] train-logloss:0.373067
## [865] train-logloss:0.372901
## [866] train-logloss:0.372831
## [867] train-logloss:0.372722
## [868] train-logloss:0.372525
## [869] train-logloss:0.372407
## [870] train-logloss:0.372234
## [871] train-logloss:0.372069
## [872] train-logloss:0.371968
## [873] train-logloss:0.371830
## [874] train-logloss:0.371738
## [875] train-logloss:0.371631
## [876] train-logloss:0.371437
## [877] train-logloss:0.371368
## [878] train-logloss:0.371267
## [879] train-logloss:0.371150
## [880] train-logloss:0.371081
## [881] train-logloss:0.370890
## [882] train-logloss:0.370800
## [883] train-logloss:0.370700
## [884] train-logloss:0.370584
## [885] train-logloss:0.370516
## [886] train-logloss:0.370425
## [887] train-logloss:0.370255
## [888] train-logloss:0.370149
## [889] train-logloss:0.369958
## [890] train-logloss:0.369821
## [891] train-logloss:0.369722
## [892] train-logloss:0.369655
## [893] train-logloss:0.369496
## [894] train-logloss:0.369407
## [895] train-logloss:0.369219
## [896] train-logloss:0.369104
## [897] train-logloss:0.369006
## [898] train-logloss:0.368939
## [899] train-logloss:0.368803
## [900] train-logloss:0.368641
## [901] train-logloss:0.368526
## [902] train-logloss:0.368410
## [903] train-logloss:0.368304
## [904] train-logloss:0.368144
## [905] train-logloss:0.368030
## [906] train-logloss:0.367963
## [907] train-logloss:0.367876
## [908] train-logloss:0.367779
## [909] train-logloss:0.367689
## [910] train-logloss:0.367523
## [911] train-logloss:0.367418
## [912] train-logloss:0.367352
## [913] train-logloss:0.367167
## [914] train-logloss:0.367033
## [915] train-logloss:0.366919
## [916] train-logloss:0.366761
## [917] train-logloss:0.366649
## [918] train-logloss:0.366534
## [919] train-logloss:0.366448
## [920] train-logloss:0.366345
## [921] train-logloss:0.366231
## [922] train-logloss:0.366076
## [923] train-logloss:0.365894
## [924] train-logloss:0.365738
## [925] train-logloss:0.365626
## [926] train-logloss:0.365523
## [927] train-logloss:0.365342
## [928] train-logloss:0.365209
## [929] train-logloss:0.365120
## [930] train-logloss:0.365024
## [931] train-logloss:0.364844
## [932] train-logloss:0.364759
## [933] train-logloss:0.364694
## [934] train-logloss:0.364516
## [935] train-logloss:0.364405
## [936] train-logloss:0.364302
## [937] train-logloss:0.364215
## [938] train-logloss:0.364052
## [939] train-logloss:0.363903
## [940] train-logloss:0.363819
## [941] train-logloss:0.363645
## [942] train-logloss:0.363467
## [943] train-logloss:0.363373
## [944] train-logloss:0.363309
## [945] train-logloss:0.363208
## [946] train-logloss:0.363076
## [947] train-logloss:0.362904
## [948] train-logloss:0.362821
## [949] train-logloss:0.362711
## [950] train-logloss:0.362536
## [951] train-logloss:0.362383
## [952] train-logloss:0.362272
## [953] train-logloss:0.362172
## [954] train-logloss:0.362002
## [955] train-logloss:0.361915
## [956] train-logloss:0.361785
## [957] train-logloss:0.361618
## [958] train-logloss:0.361536
## [959] train-logloss:0.361427
## [960] train-logloss:0.361327
## [961] train-logloss:0.361264
## [962] train-logloss:0.361124
## [963] train-logloss:0.361007
## [964] train-logloss:0.360898
## [965] train-logloss:0.360746
## [966] train-logloss:0.360582
## [967] train-logloss:0.360452
## [968] train-logloss:0.360343
## [969] train-logloss:0.360250
## [970] train-logloss:0.360169
## [971] train-logloss:0.360107
## [972] train-logloss:0.359936
## [973] train-logloss:0.359828
## [974] train-logloss:0.359730
## [975] train-logloss:0.359580
## [976] train-logloss:0.359418
## [977] train-logloss:0.359260
## [978] train-logloss:0.359181
## [979] train-logloss:0.359083
## [980] train-logloss:0.359021
## [981] train-logloss:0.358861
## [982] train-logloss:0.358769
## [983] train-logloss:0.358709
## [984] train-logloss:0.358581
## [985] train-logloss:0.358412
## [986] train-logloss:0.358307
## [987] train-logloss:0.358228
## [988] train-logloss:0.358130
## [989] train-logloss:0.358046
## [990] train-logloss:0.357911
## [991] train-logloss:0.357745
## [992] train-logloss:0.357589
## [993] train-logloss:0.357510
## [994] train-logloss:0.357420
## [995] train-logloss:0.357273
## [996] train-logloss:0.357164
## [997] train-logloss:0.357068
## [998] train-logloss:0.356913
## [999] train-logloss:0.356787
## [1000] train-logloss:0.356727
## Plot Train error.
plot(xgbModel$evaluation_log, type = "l")

## Plot feature importance
importance <- xgb.importance(model = xgbModel)
xgb.plot.importance(importance)

## Make predictions on test data
moklas3.jk.test.matrix<-data.matrix(moklas3.jk.test[,-9])
promo.test<-as.matrix(as.factor(as.character(moklas3.jk.test$promo)))
predicted <- predict(xgbModel,moklas3.jk.test.matrix )
predicted <- ifelse(predicted > 0.5 , 1,0)
## Create confusion matrix
confusionMatrix(table(predicted = predicted, actual = promo.test))
## Confusion Matrix and Statistics
##
## actual
## predicted 0 1
## 0 38 17
## 1 9 7
##
## Accuracy : 0.6338
## 95% CI : (0.511, 0.745)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.7373
##
## Kappa : 0.1091
##
## Mcnemar's Test P-Value : 0.1698
##
## Sensitivity : 0.8085
## Specificity : 0.2917
## Pos Pred Value : 0.6909
## Neg Pred Value : 0.4375
## Prevalence : 0.6620
## Detection Rate : 0.5352
## Detection Prevalence : 0.7746
## Balanced Accuracy : 0.5501
##
## 'Positive' Class : 0
##
RUS
library(xgboost)
down.train.matrix<-data.matrix(down_train[,-(9:10)])
promo1<-as.matrix(as.factor(as.character(down_train$promo)))
xgbModel1 <- xgboost(data = down.train.matrix,
label = promo1,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.691789
## [2] train-logloss:0.690456
## [3] train-logloss:0.689148
## [4] train-logloss:0.687865
## [5] train-logloss:0.686605
## [6] train-logloss:0.685368
## [7] train-logloss:0.683980
## [8] train-logloss:0.682616
## [9] train-logloss:0.681411
## [10] train-logloss:0.680075
## [11] train-logloss:0.678897
## [12] train-logloss:0.677589
## [13] train-logloss:0.676304
## [14] train-logloss:0.675155
## [15] train-logloss:0.673896
## [16] train-logloss:0.672773
## [17] train-logloss:0.671539
## [18] train-logloss:0.670327
## [19] train-logloss:0.669229
## [20] train-logloss:0.668041
## [21] train-logloss:0.666966
## [22] train-logloss:0.665802
## [23] train-logloss:0.664658
## [24] train-logloss:0.663608
## [25] train-logloss:0.662487
## [26] train-logloss:0.661457
## [27] train-logloss:0.660358
## [28] train-logloss:0.659277
## [29] train-logloss:0.658272
## [30] train-logloss:0.657213
## [31] train-logloss:0.656227
## [32] train-logloss:0.655188
## [33] train-logloss:0.654161
## [34] train-logloss:0.653201
## [35] train-logloss:0.652240
## [36] train-logloss:0.651301
## [37] train-logloss:0.650299
## [38] train-logloss:0.649314
## [39] train-logloss:0.648398
## [40] train-logloss:0.647472
## [41] train-logloss:0.646575
## [42] train-logloss:0.645662
## [43] train-logloss:0.644783
## [44] train-logloss:0.643888
## [45] train-logloss:0.643027
## [46] train-logloss:0.642143
## [47] train-logloss:0.641274
## [48] train-logloss:0.640433
## [49] train-logloss:0.639576
## [50] train-logloss:0.638718
## [51] train-logloss:0.637875
## [52] train-logloss:0.637181
## [53] train-logloss:0.636285
## [54] train-logloss:0.635606
## [55] train-logloss:0.634938
## [56] train-logloss:0.634059
## [57] train-logloss:0.633400
## [58] train-logloss:0.632612
## [59] train-logloss:0.631965
## [60] train-logloss:0.631101
## [61] train-logloss:0.630463
## [62] train-logloss:0.629696
## [63] train-logloss:0.628905
## [64] train-logloss:0.628280
## [65] train-logloss:0.627528
## [66] train-logloss:0.626754
## [67] train-logloss:0.626141
## [68] train-logloss:0.625364
## [69] train-logloss:0.624532
## [70] train-logloss:0.623931
## [71] train-logloss:0.623339
## [72] train-logloss:0.622517
## [73] train-logloss:0.621795
## [74] train-logloss:0.621211
## [75] train-logloss:0.620405
## [76] train-logloss:0.619828
## [77] train-logloss:0.619123
## [78] train-logloss:0.618555
## [79] train-logloss:0.617826
## [80] train-logloss:0.617134
## [81] train-logloss:0.616576
## [82] train-logloss:0.615862
## [83] train-logloss:0.615184
## [84] train-logloss:0.614636
## [85] train-logloss:0.613863
## [86] train-logloss:0.613321
## [87] train-logloss:0.612658
## [88] train-logloss:0.612127
## [89] train-logloss:0.611437
## [90] train-logloss:0.610785
## [91] train-logloss:0.610263
## [92] train-logloss:0.609587
## [93] train-logloss:0.608900
## [94] train-logloss:0.608385
## [95] train-logloss:0.607643
## [96] train-logloss:0.607132
## [97] train-logloss:0.606505
## [98] train-logloss:0.606002
## [99] train-logloss:0.605272
## [100] train-logloss:0.604775
## [101] train-logloss:0.604124
## [102] train-logloss:0.603513
## [103] train-logloss:0.603023
## [104] train-logloss:0.602537
## [105] train-logloss:0.601936
## [106] train-logloss:0.601302
## [107] train-logloss:0.600824
## [108] train-logloss:0.600234
## [109] train-logloss:0.599674
## [110] train-logloss:0.599201
## [111] train-logloss:0.598731
## [112] train-logloss:0.598035
## [113] train-logloss:0.597457
## [114] train-logloss:0.596993
## [115] train-logloss:0.595772
## [116] train-logloss:0.595228
## [117] train-logloss:0.594775
## [118] train-logloss:0.594099
## [119] train-logloss:0.592909
## [120] train-logloss:0.592465
## [121] train-logloss:0.592024
## [122] train-logloss:0.590864
## [123] train-logloss:0.590274
## [124] train-logloss:0.589843
## [125] train-logloss:0.589292
## [126] train-logloss:0.588773
## [127] train-logloss:0.587641
## [128] train-logloss:0.587218
## [129] train-logloss:0.586110
## [130] train-logloss:0.585696
## [131] train-logloss:0.585057
## [132] train-logloss:0.583976
## [133] train-logloss:0.583571
## [134] train-logloss:0.583167
## [135] train-logloss:0.582664
## [136] train-logloss:0.581610
## [137] train-logloss:0.581216
## [138] train-logloss:0.580692
## [139] train-logloss:0.580140
## [140] train-logloss:0.579749
## [141] train-logloss:0.578723
## [142] train-logloss:0.577715
## [143] train-logloss:0.577336
## [144] train-logloss:0.576732
## [145] train-logloss:0.575747
## [146] train-logloss:0.575374
## [147] train-logloss:0.574895
## [148] train-logloss:0.573929
## [149] train-logloss:0.573564
## [150] train-logloss:0.573061
## [151] train-logloss:0.572700
## [152] train-logloss:0.571756
## [153] train-logloss:0.570828
## [154] train-logloss:0.570473
## [155] train-logloss:0.569885
## [156] train-logloss:0.569360
## [157] train-logloss:0.568450
## [158] train-logloss:0.568104
## [159] train-logloss:0.567535
## [160] train-logloss:0.566959
## [161] train-logloss:0.566068
## [162] train-logloss:0.565727
## [163] train-logloss:0.565215
## [164] train-logloss:0.564648
## [165] train-logloss:0.564164
## [166] train-logloss:0.563288
## [167] train-logloss:0.562956
## [168] train-logloss:0.562453
## [169] train-logloss:0.562125
## [170] train-logloss:0.561649
## [171] train-logloss:0.561095
## [172] train-logloss:0.560769
## [173] train-logloss:0.559915
## [174] train-logloss:0.559422
## [175] train-logloss:0.558581
## [176] train-logloss:0.558038
## [177] train-logloss:0.557569
## [178] train-logloss:0.557252
## [179] train-logloss:0.556768
## [180] train-logloss:0.555942
## [181] train-logloss:0.555410
## [182] train-logloss:0.554949
## [183] train-logloss:0.554136
## [184] train-logloss:0.553828
## [185] train-logloss:0.553354
## [186] train-logloss:0.553049
## [187] train-logloss:0.552527
## [188] train-logloss:0.552075
## [189] train-logloss:0.551772
## [190] train-logloss:0.550978
## [191] train-logloss:0.550513
## [192] train-logloss:0.549732
## [193] train-logloss:0.549220
## [194] train-logloss:0.548926
## [195] train-logloss:0.548480
## [196] train-logloss:0.548024
## [197] train-logloss:0.547256
## [198] train-logloss:0.546968
## [199] train-logloss:0.546466
## [200] train-logloss:0.546028
## [201] train-logloss:0.545742
## [202] train-logloss:0.544991
## [203] train-logloss:0.544543
## [204] train-logloss:0.544051
## [205] train-logloss:0.543312
## [206] train-logloss:0.542871
## [207] train-logloss:0.542592
## [208] train-logloss:0.542161
## [209] train-logloss:0.541434
## [210] train-logloss:0.540952
## [211] train-logloss:0.540679
## [212] train-logloss:0.540247
## [213] train-logloss:0.539823
## [214] train-logloss:0.539108
## [215] train-logloss:0.538840
## [216] train-logloss:0.538367
## [217] train-logloss:0.537943
## [218] train-logloss:0.537677
## [219] train-logloss:0.536978
## [220] train-logloss:0.536514
## [221] train-logloss:0.536097
## [222] train-logloss:0.535407
## [223] train-logloss:0.535148
## [224] train-logloss:0.534731
## [225] train-logloss:0.534475
## [226] train-logloss:0.534065
## [227] train-logloss:0.533610
## [228] train-logloss:0.532933
## [229] train-logloss:0.532524
## [230] train-logloss:0.532274
## [231] train-logloss:0.531610
## [232] train-logloss:0.531164
## [233] train-logloss:0.530761
## [234] train-logloss:0.530109
## [235] train-logloss:0.529863
## [236] train-logloss:0.529458
## [237] train-logloss:0.529019
## [238] train-logloss:0.528376
## [239] train-logloss:0.527962
## [240] train-logloss:0.527331
## [241] train-logloss:0.526936
## [242] train-logloss:0.526696
## [243] train-logloss:0.526290
## [244] train-logloss:0.525913
## [245] train-logloss:0.525484
## [246] train-logloss:0.525095
## [247] train-logloss:0.524476
## [248] train-logloss:0.524078
## [249] train-logloss:0.523707
## [250] train-logloss:0.523471
## [251] train-logloss:0.522861
## [252] train-logloss:0.522467
## [253] train-logloss:0.522040
## [254] train-logloss:0.521442
## [255] train-logloss:0.521022
## [256] train-logloss:0.520433
## [257] train-logloss:0.520068
## [258] train-logloss:0.519687
## [259] train-logloss:0.519108
## [260] train-logloss:0.518694
## [261] train-logloss:0.518124
## [262] train-logloss:0.517754
## [263] train-logloss:0.517395
## [264] train-logloss:0.516834
## [265] train-logloss:0.516373
## [266] train-logloss:0.515964
## [267] train-logloss:0.515585
## [268] train-logloss:0.515234
## [269] train-logloss:0.515004
## [270] train-logloss:0.514449
## [271] train-logloss:0.514090
## [272] train-logloss:0.513718
## [273] train-logloss:0.513173
## [274] train-logloss:0.512769
## [275] train-logloss:0.512423
## [276] train-logloss:0.511977
## [277] train-logloss:0.511609
## [278] train-logloss:0.511071
## [279] train-logloss:0.510732
## [280] train-logloss:0.510382
## [281] train-logloss:0.509986
## [282] train-logloss:0.509761
## [283] train-logloss:0.509230
## [284] train-logloss:0.508897
## [285] train-logloss:0.508535
## [286] train-logloss:0.508144
## [287] train-logloss:0.507816
## [288] train-logloss:0.507292
## [289] train-logloss:0.507071
## [290] train-logloss:0.506642
## [291] train-logloss:0.506286
## [292] train-logloss:0.505964
## [293] train-logloss:0.505579
## [294] train-logloss:0.505061
## [295] train-logloss:0.504723
## [296] train-logloss:0.504407
## [297] train-logloss:0.504057
## [298] train-logloss:0.503545
## [299] train-logloss:0.503214
## [300] train-logloss:0.502834
## [301] train-logloss:0.502619
## [302] train-logloss:0.502308
## [303] train-logloss:0.501803
## [304] train-logloss:0.501458
## [305] train-logloss:0.501152
## [306] train-logloss:0.500940
## [307] train-logloss:0.500567
## [308] train-logloss:0.500067
## [309] train-logloss:0.499701
## [310] train-logloss:0.499399
## [311] train-logloss:0.498907
## [312] train-logloss:0.498585
## [313] train-logloss:0.498376
## [314] train-logloss:0.498006
## [315] train-logloss:0.497709
## [316] train-logloss:0.497373
## [317] train-logloss:0.496887
## [318] train-logloss:0.496572
## [319] train-logloss:0.496207
## [320] train-logloss:0.495915
## [321] train-logloss:0.495583
## [322] train-logloss:0.495103
## [323] train-logloss:0.494898
## [324] train-logloss:0.494588
## [325] train-logloss:0.494116
## [326] train-logloss:0.493828
## [327] train-logloss:0.493467
## [328] train-logloss:0.493141
## [329] train-logloss:0.492857
## [330] train-logloss:0.492390
## [331] train-logloss:0.492085
## [332] train-logloss:0.491884
## [333] train-logloss:0.491530
## [334] train-logloss:0.491250
## [335] train-logloss:0.490788
## [336] train-logloss:0.490467
## [337] train-logloss:0.490167
## [338] train-logloss:0.489892
## [339] train-logloss:0.489694
## [340] train-logloss:0.489238
## [341] train-logloss:0.488897
## [342] train-logloss:0.488625
## [343] train-logloss:0.488176
## [344] train-logloss:0.487882
## [345] train-logloss:0.487534
## [346] train-logloss:0.487220
## [347] train-logloss:0.486775
## [348] train-logloss:0.486507
## [349] train-logloss:0.486313
## [350] train-logloss:0.485967
## [351] train-logloss:0.485658
## [352] train-logloss:0.485395
## [353] train-logloss:0.484955
## [354] train-logloss:0.484668
## [355] train-logloss:0.484477
## [356] train-logloss:0.484149
## [357] train-logloss:0.483715
## [358] train-logloss:0.483456
## [359] train-logloss:0.483173
## [360] train-logloss:0.482745
## [361] train-logloss:0.482405
## [362] train-logloss:0.482149
## [363] train-logloss:0.481846
## [364] train-logloss:0.481657
## [365] train-logloss:0.481405
## [366] train-logloss:0.480982
## [367] train-logloss:0.480702
## [368] train-logloss:0.480405
## [369] train-logloss:0.480069
## [370] train-logloss:0.479821
## [371] train-logloss:0.479401
## [372] train-logloss:0.479216
## [373] train-logloss:0.478902
## [374] train-logloss:0.478490
## [375] train-logloss:0.478215
## [376] train-logloss:0.477970
## [377] train-logloss:0.477639
## [378] train-logloss:0.477456
## [379] train-logloss:0.477215
## [380] train-logloss:0.476923
## [381] train-logloss:0.476514
## [382] train-logloss:0.476245
## [383] train-logloss:0.475864
## [384] train-logloss:0.475460
## [385] train-logloss:0.475222
## [386] train-logloss:0.475042
## [387] train-logloss:0.474755
## [388] train-logloss:0.474520
## [389] train-logloss:0.474195
## [390] train-logloss:0.473795
## [391] train-logloss:0.473530
## [392] train-logloss:0.473299
## [393] train-logloss:0.473122
## [394] train-logloss:0.472749
## [395] train-logloss:0.472353
## [396] train-logloss:0.472071
## [397] train-logloss:0.471750
## [398] train-logloss:0.471522
## [399] train-logloss:0.471348
## [400] train-logloss:0.470982
## [401] train-logloss:0.470590
## [402] train-logloss:0.470365
## [403] train-logloss:0.470193
## [404] train-logloss:0.469877
## [405] train-logloss:0.469618
## [406] train-logloss:0.469342
## [407] train-logloss:0.468954
## [408] train-logloss:0.468732
## [409] train-logloss:0.468459
## [410] train-logloss:0.468076
## [411] train-logloss:0.467764
## [412] train-logloss:0.467509
## [413] train-logloss:0.467290
## [414] train-logloss:0.467122
## [415] train-logloss:0.466905
## [416] train-logloss:0.466596
## [417] train-logloss:0.466216
## [418] train-logloss:0.465948
## [419] train-logloss:0.465734
## [420] train-logloss:0.465568
## [421] train-logloss:0.465262
## [422] train-logloss:0.464887
## [423] train-logloss:0.464590
## [424] train-logloss:0.464235
## [425] train-logloss:0.464023
## [426] train-logloss:0.463859
## [427] train-logloss:0.463488
## [428] train-logloss:0.463240
## [429] train-logloss:0.463030
## [430] train-logloss:0.462682
## [431] train-logloss:0.462315
## [432] train-logloss:0.462154
## [433] train-logloss:0.461852
## [434] train-logloss:0.461645
## [435] train-logloss:0.461383
## [436] train-logloss:0.461224
## [437] train-logloss:0.460981
## [438] train-logloss:0.460617
## [439] train-logloss:0.460412
## [440] train-logloss:0.460114
## [441] train-logloss:0.459956
## [442] train-logloss:0.459670
## [443] train-logloss:0.459310
## [444] train-logloss:0.459107
## [445] train-logloss:0.458868
## [446] train-logloss:0.458529
## [447] train-logloss:0.458174
## [448] train-logloss:0.457973
## [449] train-logloss:0.457681
## [450] train-logloss:0.457525
## [451] train-logloss:0.457271
## [452] train-logloss:0.457072
## [453] train-logloss:0.456783
## [454] train-logloss:0.456430
## [455] train-logloss:0.456277
## [456] train-logloss:0.456042
## [457] train-logloss:0.455756
## [458] train-logloss:0.455560
## [459] train-logloss:0.455409
## [460] train-logloss:0.455060
## [461] train-logloss:0.454782
## [462] train-logloss:0.454588
## [463] train-logloss:0.454357
## [464] train-logloss:0.454012
## [465] train-logloss:0.453729
## [466] train-logloss:0.453580
## [467] train-logloss:0.453388
## [468] train-logloss:0.453115
## [469] train-logloss:0.452967
## [470] train-logloss:0.452777
## [471] train-logloss:0.452499
## [472] train-logloss:0.452156
## [473] train-logloss:0.451929
## [474] train-logloss:0.451684
## [475] train-logloss:0.451345
## [476] train-logloss:0.451156
## [477] train-logloss:0.450881
## [478] train-logloss:0.450735
## [479] train-logloss:0.450511
## [480] train-logloss:0.450325
## [481] train-logloss:0.450054
## [482] train-logloss:0.449717
## [483] train-logloss:0.449573
## [484] train-logloss:0.449310
## [485] train-logloss:0.449125
## [486] train-logloss:0.448792
## [487] train-logloss:0.448573
## [488] train-logloss:0.448333
## [489] train-logloss:0.448064
## [490] train-logloss:0.447922
## [491] train-logloss:0.447740
## [492] train-logloss:0.447409
## [493] train-logloss:0.447144
## [494] train-logloss:0.446927
## [495] train-logloss:0.446786
## [496] train-logloss:0.446606
## [497] train-logloss:0.446371
## [498] train-logloss:0.446044
## [499] train-logloss:0.445865
## [500] train-logloss:0.445603
## [501] train-logloss:0.445464
## [502] train-logloss:0.445209
## [503] train-logloss:0.445031
## [504] train-logloss:0.444772
## [505] train-logloss:0.444447
## [506] train-logloss:0.444235
## [507] train-logloss:0.444098
## [508] train-logloss:0.443841
## [509] train-logloss:0.443520
## [510] train-logloss:0.443345
## [511] train-logloss:0.443115
## [512] train-logloss:0.442980
## [513] train-logloss:0.442728
## [514] train-logloss:0.442555
## [515] train-logloss:0.442300
## [516] train-logloss:0.442092
## [517] train-logloss:0.441773
## [518] train-logloss:0.441602
## [519] train-logloss:0.441351
## [520] train-logloss:0.441217
## [521] train-logloss:0.441012
## [522] train-logloss:0.440696
## [523] train-logloss:0.440448
## [524] train-logloss:0.440278
## [525] train-logloss:0.439970
## [526] train-logloss:0.439838
## [527] train-logloss:0.439590
## [528] train-logloss:0.439277
## [529] train-logloss:0.439109
## [530] train-logloss:0.438884
## [531] train-logloss:0.438683
## [532] train-logloss:0.438372
## [533] train-logloss:0.438206
## [534] train-logloss:0.437959
## [535] train-logloss:0.437829
## [536] train-logloss:0.437664
## [537] train-logloss:0.437421
## [538] train-logloss:0.437292
## [539] train-logloss:0.437049
## [540] train-logloss:0.436742
## [541] train-logloss:0.436499
## [542] train-logloss:0.436336
## [543] train-logloss:0.436116
## [544] train-logloss:0.435919
## [545] train-logloss:0.435614
## [546] train-logloss:0.435452
## [547] train-logloss:0.435325
## [548] train-logloss:0.435085
## [549] train-logloss:0.434959
## [550] train-logloss:0.434799
## [551] train-logloss:0.434582
## [552] train-logloss:0.434345
## [553] train-logloss:0.434046
## [554] train-logloss:0.433743
## [555] train-logloss:0.433584
## [556] train-logloss:0.433349
## [557] train-logloss:0.433225
## [558] train-logloss:0.432987
## [559] train-logloss:0.432688
## [560] train-logloss:0.432495
## [561] train-logloss:0.432338
## [562] train-logloss:0.432104
## [563] train-logloss:0.431891
## [564] train-logloss:0.431594
## [565] train-logloss:0.431437
## [566] train-logloss:0.431315
## [567] train-logloss:0.431084
## [568] train-logloss:0.430895
## [569] train-logloss:0.430741
## [570] train-logloss:0.430620
## [571] train-logloss:0.430386
## [572] train-logloss:0.430091
## [573] train-logloss:0.429798
## [574] train-logloss:0.429569
## [575] train-logloss:0.429315
## [576] train-logloss:0.429161
## [577] train-logloss:0.429043
## [578] train-logloss:0.428816
## [579] train-logloss:0.428524
## [580] train-logloss:0.428373
## [581] train-logloss:0.428121
## [582] train-logloss:0.427936
## [583] train-logloss:0.427786
## [584] train-logloss:0.427668
## [585] train-logloss:0.427422
## [586] train-logloss:0.427132
## [587] train-logloss:0.426949
## [588] train-logloss:0.426800
## [589] train-logloss:0.426557
## [590] train-logloss:0.426269
## [591] train-logloss:0.426122
## [592] train-logloss:0.425941
## [593] train-logloss:0.425826
## [594] train-logloss:0.425602
## [595] train-logloss:0.425456
## [596] train-logloss:0.425172
## [597] train-logloss:0.424932
## [598] train-logloss:0.424647
## [599] train-logloss:0.424469
## [600] train-logloss:0.424324
## [601] train-logloss:0.424087
## [602] train-logloss:0.423806
## [603] train-logloss:0.423661
## [604] train-logloss:0.423548
## [605] train-logloss:0.423326
## [606] train-logloss:0.423093
## [607] train-logloss:0.422814
## [608] train-logloss:0.422639
## [609] train-logloss:0.422496
## [610] train-logloss:0.422266
## [611] train-logloss:0.422124
## [612] train-logloss:0.422013
## [613] train-logloss:0.421736
## [614] train-logloss:0.421507
## [615] train-logloss:0.421335
## [616] train-logloss:0.421055
## [617] train-logloss:0.420836
## [618] train-logloss:0.420696
## [619] train-logloss:0.420470
## [620] train-logloss:0.420195
## [621] train-logloss:0.420024
## [622] train-logloss:0.419914
## [623] train-logloss:0.419775
## [624] train-logloss:0.419552
## [625] train-logloss:0.419247
## [626] train-logloss:0.419079
## [627] train-logloss:0.418807
## [628] train-logloss:0.418669
## [629] train-logloss:0.418369
## [630] train-logloss:0.418261
## [631] train-logloss:0.418034
## [632] train-logloss:0.417813
## [633] train-logloss:0.417706
## [634] train-logloss:0.417569
## [635] train-logloss:0.417353
## [636] train-logloss:0.417084
## [637] train-logloss:0.416918
## [638] train-logloss:0.416696
## [639] train-logloss:0.416400
## [640] train-logloss:0.416294
## [641] train-logloss:0.416159
## [642] train-logloss:0.415944
## [643] train-logloss:0.415728
## [644] train-logloss:0.415491
## [645] train-logloss:0.415386
## [646] train-logloss:0.415222
## [647] train-logloss:0.414956
## [648] train-logloss:0.414741
## [649] train-logloss:0.414451
## [650] train-logloss:0.414290
## [651] train-logloss:0.414003
## [652] train-logloss:0.413770
## [653] train-logloss:0.413666
## [654] train-logloss:0.413445
## [655] train-logloss:0.413285
## [656] train-logloss:0.413003
## [657] train-logloss:0.412784
## [658] train-logloss:0.412652
## [659] train-logloss:0.412549
## [660] train-logloss:0.412320
## [661] train-logloss:0.412162
## [662] train-logloss:0.411951
## [663] train-logloss:0.411689
## [664] train-logloss:0.411587
## [665] train-logloss:0.411456
## [666] train-logloss:0.411248
## [667] train-logloss:0.410972
## [668] train-logloss:0.410747
## [669] train-logloss:0.410646
## [670] train-logloss:0.410435
## [671] train-logloss:0.410215
## [672] train-logloss:0.410059
## [673] train-logloss:0.409848
## [674] train-logloss:0.409748
## [675] train-logloss:0.409489
## [676] train-logloss:0.409360
## [677] train-logloss:0.409155
## [678] train-logloss:0.408947
## [679] train-logloss:0.408849
## [680] train-logloss:0.408642
## [681] train-logloss:0.408424
## [682] train-logloss:0.408296
## [683] train-logloss:0.408205
## [684] train-logloss:0.408000
## [685] train-logloss:0.407904
## [686] train-logloss:0.407700
## [687] train-logloss:0.407429
## [688] train-logloss:0.407228
## [689] train-logloss:0.407075
## [690] train-logloss:0.406817
## [691] train-logloss:0.406616
## [692] train-logloss:0.406397
## [693] train-logloss:0.406303
## [694] train-logloss:0.406103
## [695] train-logloss:0.405838
## [696] train-logloss:0.405688
## [697] train-logloss:0.405600
## [698] train-logloss:0.405339
## [699] train-logloss:0.405190
## [700] train-logloss:0.404976
## [701] train-logloss:0.404778
## [702] train-logloss:0.404583
## [703] train-logloss:0.404489
## [704] train-logloss:0.404236
## [705] train-logloss:0.404111
## [706] train-logloss:0.403855
## [707] train-logloss:0.403662
## [708] train-logloss:0.403570
## [709] train-logloss:0.403484
## [710] train-logloss:0.403265
## [711] train-logloss:0.403119
## [712] train-logloss:0.402870
## [713] train-logloss:0.402674
## [714] train-logloss:0.402485
## [715] train-logloss:0.402361
## [716] train-logloss:0.402270
## [717] train-logloss:0.402053
## [718] train-logloss:0.401852
## [719] train-logloss:0.401729
## [720] train-logloss:0.401645
## [721] train-logloss:0.401555
## [722] train-logloss:0.401342
## [723] train-logloss:0.401214
## [724] train-logloss:0.400962
## [725] train-logloss:0.400818
## [726] train-logloss:0.400571
## [727] train-logloss:0.400384
## [728] train-logloss:0.400193
## [729] train-logloss:0.400071
## [730] train-logloss:0.399863
## [731] train-logloss:0.399774
## [732] train-logloss:0.399528
## [733] train-logloss:0.399385
## [734] train-logloss:0.399197
## [735] train-logloss:0.398953
## [736] train-logloss:0.398771
## [737] train-logloss:0.398567
## [738] train-logloss:0.398426
## [739] train-logloss:0.398338
## [740] train-logloss:0.398093
## [741] train-logloss:0.397913
## [742] train-logloss:0.397700
## [743] train-logloss:0.397613
## [744] train-logloss:0.397497
## [745] train-logloss:0.397334
## [746] train-logloss:0.397252
## [747] train-logloss:0.397133
## [748] train-logloss:0.397018
## [749] train-logloss:0.396779
## [750] train-logloss:0.396640
## [751] train-logloss:0.396560
## [752] train-logloss:0.396399
## [753] train-logloss:0.396156
## [754] train-logloss:0.396038
## [755] train-logloss:0.395862
## [756] train-logloss:0.395704
## [757] train-logloss:0.395590
## [758] train-logloss:0.395510
## [759] train-logloss:0.395397
## [760] train-logloss:0.395163
## [761] train-logloss:0.395007
## [762] train-logloss:0.394767
## [763] train-logloss:0.394650
## [764] train-logloss:0.394513
## [765] train-logloss:0.394315
## [766] train-logloss:0.394143
## [767] train-logloss:0.393988
## [768] train-logloss:0.393777
## [769] train-logloss:0.393665
## [770] train-logloss:0.393550
## [771] train-logloss:0.393472
## [772] train-logloss:0.393362
## [773] train-logloss:0.393124
## [774] train-logloss:0.392895
## [775] train-logloss:0.392760
## [776] train-logloss:0.392551
## [777] train-logloss:0.392398
## [778] train-logloss:0.392283
## [779] train-logloss:0.392114
## [780] train-logloss:0.392006
## [781] train-logloss:0.391770
## [782] train-logloss:0.391636
## [783] train-logloss:0.391485
## [784] train-logloss:0.391372
## [785] train-logloss:0.391295
## [786] train-logloss:0.391188
## [787] train-logloss:0.390963
## [788] train-logloss:0.390770
## [789] train-logloss:0.390620
## [790] train-logloss:0.390413
## [791] train-logloss:0.390191
## [792] train-logloss:0.390059
## [793] train-logloss:0.389911
## [794] train-logloss:0.389732
## [795] train-logloss:0.389657
## [796] train-logloss:0.389492
## [797] train-logloss:0.389287
## [798] train-logloss:0.389175
## [799] train-logloss:0.388984
## [800] train-logloss:0.388892
## [801] train-logloss:0.388659
## [802] train-logloss:0.388496
## [803] train-logloss:0.388349
## [804] train-logloss:0.388173
## [805] train-logloss:0.388062
## [806] train-logloss:0.387845
## [807] train-logloss:0.387684
## [808] train-logloss:0.387481
## [809] train-logloss:0.387337
## [810] train-logloss:0.387263
## [811] train-logloss:0.387173
## [812] train-logloss:0.387000
## [813] train-logloss:0.386870
## [814] train-logloss:0.386760
## [815] train-logloss:0.386572
## [816] train-logloss:0.386429
## [817] train-logloss:0.386228
## [818] train-logloss:0.386139
## [819] train-logloss:0.385926
## [820] train-logloss:0.385727
## [821] train-logloss:0.385556
## [822] train-logloss:0.385485
## [823] train-logloss:0.385396
## [824] train-logloss:0.385288
## [825] train-logloss:0.385130
## [826] train-logloss:0.384989
## [827] train-logloss:0.384822
## [828] train-logloss:0.384734
## [829] train-logloss:0.384523
## [830] train-logloss:0.384453
## [831] train-logloss:0.384325
## [832] train-logloss:0.384139
## [833] train-logloss:0.384000
## [834] train-logloss:0.383835
## [835] train-logloss:0.383638
## [836] train-logloss:0.383431
## [837] train-logloss:0.383276
## [838] train-logloss:0.383206
## [839] train-logloss:0.383100
## [840] train-logloss:0.382869
## [841] train-logloss:0.382716
## [842] train-logloss:0.382612
## [843] train-logloss:0.382449
## [844] train-logloss:0.382266
## [845] train-logloss:0.382070
## [846] train-logloss:0.381933
## [847] train-logloss:0.381730
## [848] train-logloss:0.381603
## [849] train-logloss:0.381467
## [850] train-logloss:0.381274
## [851] train-logloss:0.381206
## [852] train-logloss:0.381119
## [853] train-logloss:0.380969
## [854] train-logloss:0.380865
## [855] train-logloss:0.380704
## [856] train-logloss:0.380524
## [857] train-logloss:0.380439
## [858] train-logloss:0.380304
## [859] train-logloss:0.380202
## [860] train-logloss:0.380042
## [861] train-logloss:0.379975
## [862] train-logloss:0.379746
## [863] train-logloss:0.379598
## [864] train-logloss:0.379407
## [865] train-logloss:0.379305
## [866] train-logloss:0.379172
## [867] train-logloss:0.379014
## [868] train-logloss:0.378825
## [869] train-logloss:0.378759
## [870] train-logloss:0.378674
## [871] train-logloss:0.378448
## [872] train-logloss:0.378302
## [873] train-logloss:0.378117
## [874] train-logloss:0.377985
## [875] train-logloss:0.377795
## [876] train-logloss:0.377729
## [877] train-logloss:0.377585
## [878] train-logloss:0.377485
## [879] train-logloss:0.377329
## [880] train-logloss:0.377105
## [881] train-logloss:0.376963
## [882] train-logloss:0.376879
## [883] train-logloss:0.376680
## [884] train-logloss:0.376503
## [885] train-logloss:0.376404
## [886] train-logloss:0.376249
## [887] train-logloss:0.376052
## [888] train-logloss:0.375869
## [889] train-logloss:0.375803
## [890] train-logloss:0.375720
## [891] train-logloss:0.375579
## [892] train-logloss:0.375449
## [893] train-logloss:0.375228
## [894] train-logloss:0.375074
## [895] train-logloss:0.374894
## [896] train-logloss:0.374828
## [897] train-logloss:0.374730
## [898] train-logloss:0.374543
## [899] train-logloss:0.374404
## [900] train-logloss:0.374321
## [901] train-logloss:0.374225
## [902] train-logloss:0.374048
## [903] train-logloss:0.373864
## [904] train-logloss:0.373712
## [905] train-logloss:0.373647
## [906] train-logloss:0.373509
## [907] train-logloss:0.373381
## [908] train-logloss:0.373206
## [909] train-logloss:0.373142
## [910] train-logloss:0.372922
## [911] train-logloss:0.372786
## [912] train-logloss:0.372600
## [913] train-logloss:0.372504
## [914] train-logloss:0.372354
## [915] train-logloss:0.372136
## [916] train-logloss:0.371942
## [917] train-logloss:0.371821
## [918] train-logloss:0.371686
## [919] train-logloss:0.371471
## [920] train-logloss:0.371288
## [921] train-logloss:0.371193
## [922] train-logloss:0.371058
## [923] train-logloss:0.370886
## [924] train-logloss:0.370705
## [925] train-logloss:0.370579
## [926] train-logloss:0.370515
## [927] train-logloss:0.370365
## [928] train-logloss:0.370270
## [929] train-logloss:0.370138
## [930] train-logloss:0.369989
## [931] train-logloss:0.369925
## [932] train-logloss:0.369755
## [933] train-logloss:0.369631
## [934] train-logloss:0.369450
## [935] train-logloss:0.369370
## [936] train-logloss:0.369307
## [937] train-logloss:0.369094
## [938] train-logloss:0.368962
## [939] train-logloss:0.368815
## [940] train-logloss:0.368648
## [941] train-logloss:0.368525
## [942] train-logloss:0.368462
## [943] train-logloss:0.368283
## [944] train-logloss:0.368190
## [945] train-logloss:0.368111
## [946] train-logloss:0.367965
## [947] train-logloss:0.367835
## [948] train-logloss:0.367662
## [949] train-logloss:0.367451
## [950] train-logloss:0.367272
## [951] train-logloss:0.367180
## [952] train-logloss:0.367050
## [953] train-logloss:0.366972
## [954] train-logloss:0.366781
## [955] train-logloss:0.366660
## [956] train-logloss:0.366531
## [957] train-logloss:0.366440
## [958] train-logloss:0.366296
## [959] train-logloss:0.366133
## [960] train-logloss:0.366071
## [961] train-logloss:0.365860
## [962] train-logloss:0.365683
## [963] train-logloss:0.365513
## [964] train-logloss:0.365339
## [965] train-logloss:0.365171
## [966] train-logloss:0.364996
## [967] train-logloss:0.364854
## [968] train-logloss:0.364727
## [969] train-logloss:0.364537
## [970] train-logloss:0.364365
## [971] train-logloss:0.364275
## [972] train-logloss:0.364213
## [973] train-logloss:0.364136
## [974] train-logloss:0.363970
## [975] train-logloss:0.363795
## [976] train-logloss:0.363654
## [977] train-logloss:0.363490
## [978] train-logloss:0.363318
## [979] train-logloss:0.363242
## [980] train-logloss:0.363085
## [981] train-logloss:0.363024
## [982] train-logloss:0.362906
## [983] train-logloss:0.362767
## [984] train-logloss:0.362641
## [985] train-logloss:0.362433
## [986] train-logloss:0.362309
## [987] train-logloss:0.362220
## [988] train-logloss:0.362080
## [989] train-logloss:0.361926
## [990] train-logloss:0.361865
## [991] train-logloss:0.361692
## [992] train-logloss:0.361487
## [993] train-logloss:0.361363
## [994] train-logloss:0.361275
## [995] train-logloss:0.361138
## [996] train-logloss:0.361016
## [997] train-logloss:0.360941
## [998] train-logloss:0.360755
## [999] train-logloss:0.360640
## [1000] train-logloss:0.360469
## Make predictions on test data
moklas3.jk.test.matrix<-data.matrix(moklas3.jk.test[,-9])
promo.test<-as.matrix(as.factor(as.character(moklas3.jk.test$promo)))
predicted <- predict(xgbModel1,moklas3.jk.test.matrix )
predicted <- ifelse(predicted > 0.5 , 1,0)
## Create confusion matrix
confusionMatrix(table(predicted = predicted, actual = promo.test))
## Confusion Matrix and Statistics
##
## actual
## predicted 0 1
## 0 29 7
## 1 18 17
##
## Accuracy : 0.6479
## 95% CI : (0.5254, 0.7576)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.6509
##
## Kappa : 0.2925
##
## Mcnemar's Test P-Value : 0.0455
##
## Sensitivity : 0.6170
## Specificity : 0.7083
## Pos Pred Value : 0.8056
## Neg Pred Value : 0.4857
## Prevalence : 0.6620
## Detection Rate : 0.4085
## Detection Prevalence : 0.5070
## Balanced Accuracy : 0.6627
##
## 'Positive' Class : 0
##
ROS
library(xgboost)
up.train.matrix<-data.matrix(up_train[,-(9:10)])
promo2<-as.matrix(as.factor(as.character(up_train$promo)))
xgbModel2 <- xgboost(data = up.train.matrix,
label = promo2,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.691671
## [2] train-logloss:0.690224
## [3] train-logloss:0.688803
## [4] train-logloss:0.687408
## [5] train-logloss:0.686040
## [6] train-logloss:0.684697
## [7] train-logloss:0.683380
## [8] train-logloss:0.682086
## [9] train-logloss:0.680817
## [10] train-logloss:0.679597
## [11] train-logloss:0.678360
## [12] train-logloss:0.677173
## [13] train-logloss:0.675961
## [14] train-logloss:0.674806
## [15] train-logloss:0.673628
## [16] train-logloss:0.672503
## [17] train-logloss:0.671350
## [18] train-logloss:0.670219
## [19] train-logloss:0.669131
## [20] train-logloss:0.668102
## [21] train-logloss:0.667033
## [22] train-logloss:0.665954
## [23] train-logloss:0.664964
## [24] train-logloss:0.663936
## [25] train-logloss:0.662972
## [26] train-logloss:0.661955
## [27] train-logloss:0.661012
## [28] train-logloss:0.660005
## [29] train-logloss:0.659017
## [30] train-logloss:0.658104
## [31] train-logloss:0.657139
## [32] train-logloss:0.656248
## [33] train-logloss:0.655291
## [34] train-logloss:0.654415
## [35] train-logloss:0.653477
## [36] train-logloss:0.652547
## [37] train-logloss:0.651697
## [38] train-logloss:0.650788
## [39] train-logloss:0.649958
## [40] train-logloss:0.649058
## [41] train-logloss:0.648244
## [42] train-logloss:0.647363
## [43] train-logloss:0.646564
## [44] train-logloss:0.645700
## [45] train-logloss:0.644844
## [46] train-logloss:0.644069
## [47] train-logloss:0.643221
## [48] train-logloss:0.642463
## [49] train-logloss:0.641633
## [50] train-logloss:0.640888
## [51] train-logloss:0.640074
## [52] train-logloss:0.639259
## [53] train-logloss:0.638533
## [54] train-logloss:0.637733
## [55] train-logloss:0.637021
## [56] train-logloss:0.636239
## [57] train-logloss:0.635538
## [58] train-logloss:0.634773
## [59] train-logloss:0.634085
## [60] train-logloss:0.633330
## [61] train-logloss:0.632656
## [62] train-logloss:0.631907
## [63] train-logloss:0.631140
## [64] train-logloss:0.629747
## [65] train-logloss:0.628379
## [66] train-logloss:0.627725
## [67] train-logloss:0.626384
## [68] train-logloss:0.625742
## [69] train-logloss:0.624426
## [70] train-logloss:0.623795
## [71] train-logloss:0.622506
## [72] train-logloss:0.621691
## [73] train-logloss:0.620427
## [74] train-logloss:0.619712
## [75] train-logloss:0.618471
## [76] train-logloss:0.617858
## [77] train-logloss:0.616637
## [78] train-logloss:0.615845
## [79] train-logloss:0.614646
## [80] train-logloss:0.614048
## [81] train-logloss:0.613271
## [82] train-logloss:0.612090
## [83] train-logloss:0.611502
## [84] train-logloss:0.610343
## [85] train-logloss:0.609673
## [86] train-logloss:0.608536
## [87] train-logloss:0.607779
## [88] train-logloss:0.606659
## [89] train-logloss:0.606086
## [90] train-logloss:0.605343
## [91] train-logloss:0.604242
## [92] train-logloss:0.603680
## [93] train-logloss:0.602598
## [94] train-logloss:0.601870
## [95] train-logloss:0.601319
## [96] train-logloss:0.600255
## [97] train-logloss:0.599629
## [98] train-logloss:0.598585
## [99] train-logloss:0.597874
## [100] train-logloss:0.596846
## [101] train-logloss:0.596311
## [102] train-logloss:0.595301
## [103] train-logloss:0.594604
## [104] train-logloss:0.593909
## [105] train-logloss:0.592917
## [106] train-logloss:0.591941
## [107] train-logloss:0.591257
## [108] train-logloss:0.590736
## [109] train-logloss:0.589776
## [110] train-logloss:0.589197
## [111] train-logloss:0.588253
## [112] train-logloss:0.587585
## [113] train-logloss:0.586657
## [114] train-logloss:0.585990
## [115] train-logloss:0.585076
## [116] train-logloss:0.584420
## [117] train-logloss:0.583920
## [118] train-logloss:0.583021
## [119] train-logloss:0.582372
## [120] train-logloss:0.581488
## [121] train-logloss:0.580844
## [122] train-logloss:0.580359
## [123] train-logloss:0.579488
## [124] train-logloss:0.578855
## [125] train-logloss:0.578319
## [126] train-logloss:0.577464
## [127] train-logloss:0.576622
## [128] train-logloss:0.575998
## [129] train-logloss:0.575368
## [130] train-logloss:0.574538
## [131] train-logloss:0.573918
## [132] train-logloss:0.573402
## [133] train-logloss:0.572586
## [134] train-logloss:0.571976
## [135] train-logloss:0.571171
## [136] train-logloss:0.570712
## [137] train-logloss:0.570114
## [138] train-logloss:0.569320
## [139] train-logloss:0.568718
## [140] train-logloss:0.567937
## [141] train-logloss:0.567349
## [142] train-logloss:0.566857
## [143] train-logloss:0.566088
## [144] train-logloss:0.565511
## [145] train-logloss:0.564752
## [146] train-logloss:0.564272
## [147] train-logloss:0.563705
## [148] train-logloss:0.562958
## [149] train-logloss:0.562400
## [150] train-logloss:0.561663
## [151] train-logloss:0.561194
## [152] train-logloss:0.560645
## [153] train-logloss:0.559918
## [154] train-logloss:0.559414
## [155] train-logloss:0.558875
## [156] train-logloss:0.558160
## [157] train-logloss:0.557629
## [158] train-logloss:0.557174
## [159] train-logloss:0.556468
## [160] train-logloss:0.555947
## [161] train-logloss:0.555528
## [162] train-logloss:0.554831
## [163] train-logloss:0.554319
## [164] train-logloss:0.553876
## [165] train-logloss:0.553190
## [166] train-logloss:0.552687
## [167] train-logloss:0.552011
## [168] train-logloss:0.551515
## [169] train-logloss:0.551080
## [170] train-logloss:0.550413
## [171] train-logloss:0.549925
## [172] train-logloss:0.549267
## [173] train-logloss:0.548787
## [174] train-logloss:0.548359
## [175] train-logloss:0.547888
## [176] train-logloss:0.547238
## [177] train-logloss:0.546774
## [178] train-logloss:0.546310
## [179] train-logloss:0.545671
## [180] train-logloss:0.545214
## [181] train-logloss:0.544774
## [182] train-logloss:0.544359
## [183] train-logloss:0.543729
## [184] train-logloss:0.543281
## [185] train-logloss:0.542660
## [186] train-logloss:0.542251
## [187] train-logloss:0.541823
## [188] train-logloss:0.541308
## [189] train-logloss:0.540697
## [190] train-logloss:0.540259
## [191] train-logloss:0.539880
## [192] train-logloss:0.539464
## [193] train-logloss:0.538861
## [194] train-logloss:0.538462
## [195] train-logloss:0.537869
## [196] train-logloss:0.537440
## [197] train-logloss:0.537071
## [198] train-logloss:0.536666
## [199] train-logloss:0.536171
## [200] train-logloss:0.535585
## [201] train-logloss:0.535195
## [202] train-logloss:0.534778
## [203] train-logloss:0.534384
## [204] train-logloss:0.533806
## [205] train-logloss:0.533449
## [206] train-logloss:0.533066
## [207] train-logloss:0.532498
## [208] train-logloss:0.532088
## [209] train-logloss:0.531704
## [210] train-logloss:0.531357
## [211] train-logloss:0.530797
## [212] train-logloss:0.530319
## [213] train-logloss:0.529943
## [214] train-logloss:0.529539
## [215] train-logloss:0.528988
## [216] train-logloss:0.528519
## [217] train-logloss:0.528126
## [218] train-logloss:0.527759
## [219] train-logloss:0.527388
## [220] train-logloss:0.526843
## [221] train-logloss:0.526511
## [222] train-logloss:0.525974
## [223] train-logloss:0.525587
## [224] train-logloss:0.525231
## [225] train-logloss:0.524867
## [226] train-logloss:0.524415
## [227] train-logloss:0.523883
## [228] train-logloss:0.523498
## [229] train-logloss:0.522975
## [230] train-logloss:0.522598
## [231] train-logloss:0.522251
## [232] train-logloss:0.521810
## [233] train-logloss:0.521294
## [234] train-logloss:0.520777
## [235] train-logloss:0.520437
## [236] train-logloss:0.520004
## [237] train-logloss:0.519498
## [238] train-logloss:0.518989
## [239] train-logloss:0.518656
## [240] train-logloss:0.518347
## [241] train-logloss:0.517845
## [242] train-logloss:0.517421
## [243] train-logloss:0.517064
## [244] train-logloss:0.516740
## [245] train-logloss:0.516244
## [246] train-logloss:0.515897
## [247] train-logloss:0.515409
## [248] train-logloss:0.514921
## [249] train-logloss:0.514571
## [250] train-logloss:0.514159
## [251] train-logloss:0.513843
## [252] train-logloss:0.513365
## [253] train-logloss:0.512883
## [254] train-logloss:0.512479
## [255] train-logloss:0.512009
## [256] train-logloss:0.511533
## [257] train-logloss:0.511196
## [258] train-logloss:0.510889
## [259] train-logloss:0.510495
## [260] train-logloss:0.510035
## [261] train-logloss:0.509565
## [262] train-logloss:0.509112
## [263] train-logloss:0.508811
## [264] train-logloss:0.508348
## [265] train-logloss:0.507961
## [266] train-logloss:0.507516
## [267] train-logloss:0.507058
## [268] train-logloss:0.506735
## [269] train-logloss:0.506378
## [270] train-logloss:0.506085
## [271] train-logloss:0.505632
## [272] train-logloss:0.505255
## [273] train-logloss:0.504821
## [274] train-logloss:0.504474
## [275] train-logloss:0.504244
## [276] train-logloss:0.503797
## [277] train-logloss:0.503483
## [278] train-logloss:0.503257
## [279] train-logloss:0.502816
## [280] train-logloss:0.502506
## [281] train-logloss:0.502165
## [282] train-logloss:0.501744
## [283] train-logloss:0.501308
## [284] train-logloss:0.501003
## [285] train-logloss:0.500795
## [286] train-logloss:0.500381
## [287] train-logloss:0.499951
## [288] train-logloss:0.499649
## [289] train-logloss:0.499286
## [290] train-logloss:0.499082
## [291] train-logloss:0.498657
## [292] train-logloss:0.498251
## [293] train-logloss:0.497955
## [294] train-logloss:0.497534
## [295] train-logloss:0.497242
## [296] train-logloss:0.497043
## [297] train-logloss:0.496646
## [298] train-logloss:0.496230
## [299] train-logloss:0.495941
## [300] train-logloss:0.495746
## [301] train-logloss:0.495337
## [302] train-logloss:0.495052
## [303] train-logloss:0.494698
## [304] train-logloss:0.494309
## [305] train-logloss:0.493986
## [306] train-logloss:0.493581
## [307] train-logloss:0.493301
## [308] train-logloss:0.493111
## [309] train-logloss:0.492712
## [310] train-logloss:0.492435
## [311] train-logloss:0.492054
## [312] train-logloss:0.491868
## [313] train-logloss:0.491472
## [314] train-logloss:0.491199
## [315] train-logloss:0.491017
## [316] train-logloss:0.490673
## [317] train-logloss:0.490283
## [318] train-logloss:0.489909
## [319] train-logloss:0.489641
## [320] train-logloss:0.489373
## [321] train-logloss:0.489194
## [322] train-logloss:0.488810
## [323] train-logloss:0.488545
## [324] train-logloss:0.488177
## [325] train-logloss:0.487841
## [326] train-logloss:0.487460
## [327] train-logloss:0.487199
## [328] train-logloss:0.487024
## [329] train-logloss:0.486649
## [330] train-logloss:0.486286
## [331] train-logloss:0.486029
## [332] train-logloss:0.485726
## [333] train-logloss:0.485554
## [334] train-logloss:0.485183
## [335] train-logloss:0.484855
## [336] train-logloss:0.484498
## [337] train-logloss:0.484328
## [338] train-logloss:0.483961
## [339] train-logloss:0.483709
## [340] train-logloss:0.483410
## [341] train-logloss:0.483048
## [342] train-logloss:0.482798
## [343] train-logloss:0.482449
## [344] train-logloss:0.482128
## [345] train-logloss:0.481962
## [346] train-logloss:0.481603
## [347] train-logloss:0.481303
## [348] train-logloss:0.481057
## [349] train-logloss:0.480895
## [350] train-logloss:0.480603
## [351] train-logloss:0.480250
## [352] train-logloss:0.480006
## [353] train-logloss:0.479663
## [354] train-logloss:0.479348
## [355] train-logloss:0.478999
## [356] train-logloss:0.478759
## [357] train-logloss:0.478420
## [358] train-logloss:0.478261
## [359] train-logloss:0.477974
## [360] train-logloss:0.477629
## [361] train-logloss:0.477392
## [362] train-logloss:0.477135
## [363] train-logloss:0.476978
## [364] train-logloss:0.476744
## [365] train-logloss:0.476404
## [366] train-logloss:0.476121
## [367] train-logloss:0.475889
## [368] train-logloss:0.475552
## [369] train-logloss:0.475300
## [370] train-logloss:0.475146
## [371] train-logloss:0.474916
## [372] train-logloss:0.474638
## [373] train-logloss:0.474303
## [374] train-logloss:0.474075
## [375] train-logloss:0.473924
## [376] train-logloss:0.473620
## [377] train-logloss:0.473291
## [378] train-logloss:0.473016
## [379] train-logloss:0.472791
## [380] train-logloss:0.472640
## [381] train-logloss:0.472393
## [382] train-logloss:0.472067
## [383] train-logloss:0.471845
## [384] train-logloss:0.471697
## [385] train-logloss:0.471400
## [386] train-logloss:0.471120
## [387] train-logloss:0.470794
## [388] train-logloss:0.470472
## [389] train-logloss:0.470254
## [390] train-logloss:0.470108
## [391] train-logloss:0.469889
## [392] train-logloss:0.469645
## [393] train-logloss:0.469377
## [394] train-logloss:0.469232
## [395] train-logloss:0.468915
## [396] train-logloss:0.468698
## [397] train-logloss:0.468456
## [398] train-logloss:0.468192
## [399] train-logloss:0.467978
## [400] train-logloss:0.467740
## [401] train-logloss:0.467598
## [402] train-logloss:0.467384
## [403] train-logloss:0.467066
## [404] train-logloss:0.466777
## [405] train-logloss:0.466463
## [406] train-logloss:0.466148
## [407] train-logloss:0.465888
## [408] train-logloss:0.465679
## [409] train-logloss:0.465540
## [410] train-logloss:0.465329
## [411] train-logloss:0.465018
## [412] train-logloss:0.464762
## [413] train-logloss:0.464525
## [414] train-logloss:0.464317
## [415] train-logloss:0.464179
## [416] train-logloss:0.463872
## [417] train-logloss:0.463565
## [418] train-logloss:0.463311
## [419] train-logloss:0.463107
## [420] train-logloss:0.462900
## [421] train-logloss:0.462764
## [422] train-logloss:0.462532
## [423] train-logloss:0.462281
## [424] train-logloss:0.462080
## [425] train-logloss:0.461850
## [426] train-logloss:0.461716
## [427] train-logloss:0.461512
## [428] train-logloss:0.461210
## [429] train-logloss:0.460962
## [430] train-logloss:0.460732
## [431] train-logloss:0.460559
## [432] train-logloss:0.460358
## [433] train-logloss:0.460057
## [434] train-logloss:0.459780
## [435] train-logloss:0.459480
## [436] train-logloss:0.459308
## [437] train-logloss:0.459011
## [438] train-logloss:0.458816
## [439] train-logloss:0.458572
## [440] train-logloss:0.458375
## [441] train-logloss:0.458245
## [442] train-logloss:0.457948
## [443] train-logloss:0.457675
## [444] train-logloss:0.457383
## [445] train-logloss:0.457214
## [446] train-logloss:0.457023
## [447] train-logloss:0.456828
## [448] train-logloss:0.456602
## [449] train-logloss:0.456380
## [450] train-logloss:0.456141
## [451] train-logloss:0.456014
## [452] train-logloss:0.455848
## [453] train-logloss:0.455656
## [454] train-logloss:0.455432
## [455] train-logloss:0.455140
## [456] train-logloss:0.454853
## [457] train-logloss:0.454617
## [458] train-logloss:0.454430
## [459] train-logloss:0.454240
## [460] train-logloss:0.453972
## [461] train-logloss:0.453678
## [462] train-logloss:0.453554
## [463] train-logloss:0.453265
## [464] train-logloss:0.452984
## [465] train-logloss:0.452814
## [466] train-logloss:0.452580
## [467] train-logloss:0.452393
## [468] train-logloss:0.452270
## [469] train-logloss:0.452052
## [470] train-logloss:0.451821
## [471] train-logloss:0.451699
## [472] train-logloss:0.451531
## [473] train-logloss:0.451246
## [474] train-logloss:0.450970
## [475] train-logloss:0.450786
## [476] train-logloss:0.450666
## [477] train-logloss:0.450379
## [478] train-logloss:0.450164
## [479] train-logloss:0.449999
## [480] train-logloss:0.449771
## [481] train-logloss:0.449653
## [482] train-logloss:0.449371
## [483] train-logloss:0.449099
## [484] train-logloss:0.448916
## [485] train-logloss:0.448655
## [486] train-logloss:0.448443
## [487] train-logloss:0.448325
## [488] train-logloss:0.448169
## [489] train-logloss:0.447901
## [490] train-logloss:0.447741
## [491] train-logloss:0.447517
## [492] train-logloss:0.447337
## [493] train-logloss:0.447058
## [494] train-logloss:0.446837
## [495] train-logloss:0.446659
## [496] train-logloss:0.446396
## [497] train-logloss:0.446242
## [498] train-logloss:0.445964
## [499] train-logloss:0.445689
## [500] train-logloss:0.445480
## [501] train-logloss:0.445322
## [502] train-logloss:0.445103
## [503] train-logloss:0.444989
## [504] train-logloss:0.444812
## [505] train-logloss:0.444556
## [506] train-logloss:0.444297
## [507] train-logloss:0.444024
## [508] train-logloss:0.443912
## [509] train-logloss:0.443758
## [510] train-logloss:0.443542
## [511] train-logloss:0.443269
## [512] train-logloss:0.443096
## [513] train-logloss:0.442985
## [514] train-logloss:0.442730
## [515] train-logloss:0.442525
## [516] train-logloss:0.442373
## [517] train-logloss:0.442148
## [518] train-logloss:0.441880
## [519] train-logloss:0.441771
## [520] train-logloss:0.441623
## [521] train-logloss:0.441515
## [522] train-logloss:0.441302
## [523] train-logloss:0.441033
## [524] train-logloss:0.440862
## [525] train-logloss:0.440659
## [526] train-logloss:0.440410
## [527] train-logloss:0.440303
## [528] train-logloss:0.440082
## [529] train-logloss:0.439912
## [530] train-logloss:0.439806
## [531] train-logloss:0.439541
## [532] train-logloss:0.439294
## [533] train-logloss:0.439125
## [534] train-logloss:0.438915
## [535] train-logloss:0.438715
## [536] train-logloss:0.438610
## [537] train-logloss:0.438465
## [538] train-logloss:0.438218
## [539] train-logloss:0.437958
## [540] train-logloss:0.437854
## [541] train-logloss:0.437658
## [542] train-logloss:0.437451
## [543] train-logloss:0.437189
## [544] train-logloss:0.437022
## [545] train-logloss:0.436780
## [546] train-logloss:0.436565
## [547] train-logloss:0.436360
## [548] train-logloss:0.436257
## [549] train-logloss:0.436116
## [550] train-logloss:0.435951
## [551] train-logloss:0.435850
## [552] train-logloss:0.435656
## [553] train-logloss:0.435398
## [554] train-logloss:0.435159
## [555] train-logloss:0.434996
## [556] train-logloss:0.434896
## [557] train-logloss:0.434693
## [558] train-logloss:0.434438
## [559] train-logloss:0.434201
## [560] train-logloss:0.434040
## [561] train-logloss:0.433940
## [562] train-logloss:0.433749
## [563] train-logloss:0.433610
## [564] train-logloss:0.433400
## [565] train-logloss:0.433199
## [566] train-logloss:0.433101
## [567] train-logloss:0.432941
## [568] train-logloss:0.432689
## [569] train-logloss:0.432456
## [570] train-logloss:0.432257
## [571] train-logloss:0.432068
## [572] train-logloss:0.431970
## [573] train-logloss:0.431718
## [574] train-logloss:0.431583
## [575] train-logloss:0.431386
## [576] train-logloss:0.431181
## [577] train-logloss:0.430941
## [578] train-logloss:0.430712
## [579] train-logloss:0.430555
## [580] train-logloss:0.430459
## [581] train-logloss:0.430209
## [582] train-logloss:0.430054
## [583] train-logloss:0.429807
## [584] train-logloss:0.429579
## [585] train-logloss:0.429445
## [586] train-logloss:0.429292
## [587] train-logloss:0.429067
## [588] train-logloss:0.428880
## [589] train-logloss:0.428747
## [590] train-logloss:0.428653
## [591] train-logloss:0.428405
## [592] train-logloss:0.428205
## [593] train-logloss:0.428012
## [594] train-logloss:0.427881
## [595] train-logloss:0.427750
## [596] train-logloss:0.427566
## [597] train-logloss:0.427323
## [598] train-logloss:0.427194
## [599] train-logloss:0.426997
## [600] train-logloss:0.426869
## [601] train-logloss:0.426678
## [602] train-logloss:0.426526
## [603] train-logloss:0.426286
## [604] train-logloss:0.426160
## [605] train-logloss:0.425940
## [606] train-logloss:0.425747
## [607] train-logloss:0.425564
## [608] train-logloss:0.425439
## [609] train-logloss:0.425251
## [610] train-logloss:0.425125
## [611] train-logloss:0.424975
## [612] train-logloss:0.424732
## [613] train-logloss:0.424515
## [614] train-logloss:0.424324
## [615] train-logloss:0.424143
## [616] train-logloss:0.424020
## [617] train-logloss:0.423833
## [618] train-logloss:0.423598
## [619] train-logloss:0.423474
## [620] train-logloss:0.423353
## [621] train-logloss:0.423121
## [622] train-logloss:0.422932
## [623] train-logloss:0.422809
## [624] train-logloss:0.422662
## [625] train-logloss:0.422541
## [626] train-logloss:0.422354
## [627] train-logloss:0.422122
## [628] train-logloss:0.421894
## [629] train-logloss:0.421716
## [630] train-logloss:0.421532
## [631] train-logloss:0.421412
## [632] train-logloss:0.421187
## [633] train-logloss:0.420975
## [634] train-logloss:0.420791
## [635] train-logloss:0.420672
## [636] train-logloss:0.420449
## [637] train-logloss:0.420273
## [638] train-logloss:0.420129
## [639] train-logloss:0.419888
## [640] train-logloss:0.419678
## [641] train-logloss:0.419457
## [642] train-logloss:0.419275
## [643] train-logloss:0.419094
## [644] train-logloss:0.418977
## [645] train-logloss:0.418758
## [646] train-logloss:0.418616
## [647] train-logloss:0.418528
## [648] train-logloss:0.418291
## [649] train-logloss:0.418082
## [650] train-logloss:0.417903
## [651] train-logloss:0.417728
## [652] train-logloss:0.417642
## [653] train-logloss:0.417408
## [654] train-logloss:0.417228
## [655] train-logloss:0.417088
## [656] train-logloss:0.416882
## [657] train-logloss:0.416704
## [658] train-logloss:0.416477
## [659] train-logloss:0.416260
## [660] train-logloss:0.416067
## [661] train-logloss:0.415952
## [662] train-logloss:0.415762
## [663] train-logloss:0.415583
## [664] train-logloss:0.415381
## [665] train-logloss:0.415167
## [666] train-logloss:0.415028
## [667] train-logloss:0.414796
## [668] train-logloss:0.414620
## [669] train-logloss:0.414432
## [670] train-logloss:0.414231
## [671] train-logloss:0.414019
## [672] train-logloss:0.413795
## [673] train-logloss:0.413625
## [674] train-logloss:0.413542
## [675] train-logloss:0.413314
## [676] train-logloss:0.413176
## [677] train-logloss:0.413000
## [678] train-logloss:0.412774
## [679] train-logloss:0.412589
## [680] train-logloss:0.412390
## [681] train-logloss:0.412278
## [682] train-logloss:0.412059
## [683] train-logloss:0.411848
## [684] train-logloss:0.411737
## [685] train-logloss:0.411554
## [686] train-logloss:0.411387
## [687] train-logloss:0.411212
## [688] train-logloss:0.411039
## [689] train-logloss:0.410903
## [690] train-logloss:0.410723
## [691] train-logloss:0.410507
## [692] train-logloss:0.410341
## [693] train-logloss:0.410168
## [694] train-logloss:0.409960
## [695] train-logloss:0.409851
## [696] train-logloss:0.409743
## [697] train-logloss:0.409571
## [698] train-logloss:0.409393
## [699] train-logloss:0.409187
## [700] train-logloss:0.409080
## [701] train-logloss:0.408885
## [702] train-logloss:0.408622
## [703] train-logloss:0.408488
## [704] train-logloss:0.408324
## [705] train-logloss:0.408218
## [706] train-logloss:0.408043
## [707] train-logloss:0.407831
## [708] train-logloss:0.407654
## [709] train-logloss:0.407450
## [710] train-logloss:0.407345
## [711] train-logloss:0.407087
## [712] train-logloss:0.406894
## [713] train-logloss:0.406727
## [714] train-logloss:0.406555
## [715] train-logloss:0.406393
## [716] train-logloss:0.406223
## [717] train-logloss:0.406119
## [718] train-logloss:0.405918
## [719] train-logloss:0.405665
## [720] train-logloss:0.405533
## [721] train-logloss:0.405430
## [722] train-logloss:0.405264
## [723] train-logloss:0.405094
## [724] train-logloss:0.404992
## [725] train-logloss:0.404833
## [726] train-logloss:0.404643
## [727] train-logloss:0.404396
## [728] train-logloss:0.404266
## [729] train-logloss:0.404099
## [730] train-logloss:0.403890
## [731] train-logloss:0.403790
## [732] train-logloss:0.403615
## [733] train-logloss:0.403446
## [734] train-logloss:0.403247
## [735] train-logloss:0.403147
## [736] train-logloss:0.402904
## [737] train-logloss:0.402717
## [738] train-logloss:0.402588
## [739] train-logloss:0.402431
## [740] train-logloss:0.402259
## [741] train-logloss:0.402160
## [742] train-logloss:0.401996
## [743] train-logloss:0.401791
## [744] train-logloss:0.401636
## [745] train-logloss:0.401467
## [746] train-logloss:0.401369
## [747] train-logloss:0.401184
## [748] train-logloss:0.400945
## [749] train-logloss:0.400848
## [750] train-logloss:0.400687
## [751] train-logloss:0.400490
## [752] train-logloss:0.400329
## [753] train-logloss:0.400233
## [754] train-logloss:0.399998
## [755] train-logloss:0.399816
## [756] train-logloss:0.399689
## [757] train-logloss:0.399487
## [758] train-logloss:0.399329
## [759] train-logloss:0.399161
## [760] train-logloss:0.398931
## [761] train-logloss:0.398778
## [762] train-logloss:0.398611
## [763] train-logloss:0.398516
## [764] train-logloss:0.398336
## [765] train-logloss:0.398210
## [766] train-logloss:0.398116
## [767] train-logloss:0.397960
## [768] train-logloss:0.397794
## [769] train-logloss:0.397600
## [770] train-logloss:0.397374
## [771] train-logloss:0.397196
## [772] train-logloss:0.397039
## [773] train-logloss:0.396914
## [774] train-logloss:0.396715
## [775] train-logloss:0.396622
## [776] train-logloss:0.396468
## [777] train-logloss:0.396317
## [778] train-logloss:0.396096
## [779] train-logloss:0.396003
## [780] train-logloss:0.395880
## [781] train-logloss:0.395728
## [782] train-logloss:0.395532
## [783] train-logloss:0.395382
## [784] train-logloss:0.395207
## [785] train-logloss:0.395116
## [786] train-logloss:0.394951
## [787] train-logloss:0.394733
## [788] train-logloss:0.394570
## [789] train-logloss:0.394408
## [790] train-logloss:0.394317
## [791] train-logloss:0.394124
## [792] train-logloss:0.393909
## [793] train-logloss:0.393756
## [794] train-logloss:0.393583
## [795] train-logloss:0.393372
## [796] train-logloss:0.393250
## [797] train-logloss:0.393101
## [798] train-logloss:0.393011
## [799] train-logloss:0.392864
## [800] train-logloss:0.392704
## [801] train-logloss:0.392615
## [802] train-logloss:0.392444
## [803] train-logloss:0.392253
## [804] train-logloss:0.392045
## [805] train-logloss:0.391925
## [806] train-logloss:0.391778
## [807] train-logloss:0.391585
## [808] train-logloss:0.391497
## [809] train-logloss:0.391339
## [810] train-logloss:0.391134
## [811] train-logloss:0.390965
## [812] train-logloss:0.390878
## [813] train-logloss:0.390733
## [814] train-logloss:0.390577
## [815] train-logloss:0.390490
## [816] train-logloss:0.390346
## [817] train-logloss:0.390154
## [818] train-logloss:0.389965
## [819] train-logloss:0.389764
## [820] train-logloss:0.389597
## [821] train-logloss:0.389511
## [822] train-logloss:0.389314
## [823] train-logloss:0.389194
## [824] train-logloss:0.389109
## [825] train-logloss:0.388967
## [826] train-logloss:0.388824
## [827] train-logloss:0.388670
## [828] train-logloss:0.388505
## [829] train-logloss:0.388420
## [830] train-logloss:0.388231
## [831] train-logloss:0.388084
## [832] train-logloss:0.387931
## [833] train-logloss:0.387744
## [834] train-logloss:0.387550
## [835] train-logloss:0.387466
## [836] train-logloss:0.387349
## [837] train-logloss:0.387207
## [838] train-logloss:0.387068
## [839] train-logloss:0.386905
## [840] train-logloss:0.386822
## [841] train-logloss:0.386632
## [842] train-logloss:0.386486
## [843] train-logloss:0.386335
## [844] train-logloss:0.386149
## [845] train-logloss:0.386010
## [846] train-logloss:0.385824
## [847] train-logloss:0.385636
## [848] train-logloss:0.385555
## [849] train-logloss:0.385418
## [850] train-logloss:0.385258
## [851] train-logloss:0.385108
## [852] train-logloss:0.385027
## [853] train-logloss:0.384911
## [854] train-logloss:0.384831
## [855] train-logloss:0.384696
## [856] train-logloss:0.384512
## [857] train-logloss:0.384365
## [858] train-logloss:0.384228
## [859] train-logloss:0.384148
## [860] train-logloss:0.383964
## [861] train-logloss:0.383805
## [862] train-logloss:0.383622
## [863] train-logloss:0.383441
## [864] train-logloss:0.383299
## [865] train-logloss:0.383183
## [866] train-logloss:0.383037
## [867] train-logloss:0.382959
## [868] train-logloss:0.382823
## [869] train-logloss:0.382680
## [870] train-logloss:0.382602
## [871] train-logloss:0.382469
## [872] train-logloss:0.382309
## [873] train-logloss:0.382152
## [874] train-logloss:0.381970
## [875] train-logloss:0.381792
## [876] train-logloss:0.381652
## [877] train-logloss:0.381537
## [878] train-logloss:0.381406
## [879] train-logloss:0.381224
## [880] train-logloss:0.381049
## [881] train-logloss:0.380893
## [882] train-logloss:0.380817
## [883] train-logloss:0.380674
## [884] train-logloss:0.380500
## [885] train-logloss:0.380424
## [886] train-logloss:0.380290
## [887] train-logloss:0.380153
## [888] train-logloss:0.380077
## [889] train-logloss:0.379898
## [890] train-logloss:0.379719
## [891] train-logloss:0.379548
## [892] train-logloss:0.379419
## [893] train-logloss:0.379266
## [894] train-logloss:0.379191
## [895] train-logloss:0.379023
## [896] train-logloss:0.378909
## [897] train-logloss:0.378731
## [898] train-logloss:0.378595
## [899] train-logloss:0.378463
## [900] train-logloss:0.378389
## [901] train-logloss:0.378237
## [902] train-logloss:0.378060
## [903] train-logloss:0.377987
## [904] train-logloss:0.377820
## [905] train-logloss:0.377686
## [906] train-logloss:0.377544
## [907] train-logloss:0.377472
## [908] train-logloss:0.377404
## [909] train-logloss:0.377277
## [910] train-logloss:0.377205
## [911] train-logloss:0.377065
## [912] train-logloss:0.376901
## [913] train-logloss:0.376752
## [914] train-logloss:0.376576
## [915] train-logloss:0.376464
## [916] train-logloss:0.376308
## [917] train-logloss:0.376133
## [918] train-logloss:0.375969
## [919] train-logloss:0.375836
## [920] train-logloss:0.375698
## [921] train-logloss:0.375627
## [922] train-logloss:0.375561
## [923] train-logloss:0.375432
## [924] train-logloss:0.375295
## [925] train-logloss:0.375225
## [926] train-logloss:0.375064
## [927] train-logloss:0.374953
## [928] train-logloss:0.374805
## [929] train-logloss:0.374735
## [930] train-logloss:0.374610
## [931] train-logloss:0.374479
## [932] train-logloss:0.374304
## [933] train-logloss:0.374146
## [934] train-logloss:0.374077
## [935] train-logloss:0.373931
## [936] train-logloss:0.373758
## [937] train-logloss:0.373601
## [938] train-logloss:0.373532
## [939] train-logloss:0.373402
## [940] train-logloss:0.373338
## [941] train-logloss:0.373210
## [942] train-logloss:0.373075
## [943] train-logloss:0.373007
## [944] train-logloss:0.372853
## [945] train-logloss:0.372742
## [946] train-logloss:0.372588
## [947] train-logloss:0.372498
## [948] train-logloss:0.372375
## [949] train-logloss:0.372231
## [950] train-logloss:0.372061
## [951] train-logloss:0.371909
## [952] train-logloss:0.371841
## [953] train-logloss:0.371712
## [954] train-logloss:0.371578
## [955] train-logloss:0.371511
## [956] train-logloss:0.371360
## [957] train-logloss:0.371294
## [958] train-logloss:0.371121
## [959] train-logloss:0.370988
## [960] train-logloss:0.370845
## [961] train-logloss:0.370676
## [962] train-logloss:0.370527
## [963] train-logloss:0.370439
## [964] train-logloss:0.370312
## [965] train-logloss:0.370165
## [966] train-logloss:0.370105
## [967] train-logloss:0.369979
## [968] train-logloss:0.369893
## [969] train-logloss:0.369742
## [970] train-logloss:0.369621
## [971] train-logloss:0.369480
## [972] train-logloss:0.369334
## [973] train-logloss:0.369163
## [974] train-logloss:0.369024
## [975] train-logloss:0.368857
## [976] train-logloss:0.368791
## [977] train-logloss:0.368648
## [978] train-logloss:0.368516
## [979] train-logloss:0.368450
## [980] train-logloss:0.368324
## [981] train-logloss:0.368194
## [982] train-logloss:0.368129
## [983] train-logloss:0.367986
## [984] train-logloss:0.367928
## [985] train-logloss:0.367819
## [986] train-logloss:0.367700
## [987] train-logloss:0.367562
## [988] train-logloss:0.367397
## [989] train-logloss:0.367256
## [990] train-logloss:0.367086
## [991] train-logloss:0.366957
## [992] train-logloss:0.366893
## [993] train-logloss:0.366753
## [994] train-logloss:0.366671
## [995] train-logloss:0.366535
## [996] train-logloss:0.366385
## [997] train-logloss:0.366321
## [998] train-logloss:0.366198
## [999] train-logloss:0.366071
## [1000] train-logloss:0.366007
## Make predictions on test data
moklas3.jk.test.matrix<-data.matrix(moklas3.jk.test[,-9])
promo.test<-as.matrix(as.factor(as.character(moklas3.jk.test$promo)))
predicted <- predict(xgbModel2,moklas3.jk.test.matrix )
predicted <- ifelse(predicted > 0.5 , 1,0)
## Create confusion matrix
confusionMatrix(table(predicted = predicted, actual = promo.test))
## Confusion Matrix and Statistics
##
## actual
## predicted 0 1
## 0 35 7
## 1 12 17
##
## Accuracy : 0.7324
## 95% CI : (0.6141, 0.8306)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.1285
##
## Kappa : 0.431
##
## Mcnemar's Test P-Value : 0.3588
##
## Sensitivity : 0.7447
## Specificity : 0.7083
## Pos Pred Value : 0.8333
## Neg Pred Value : 0.5862
## Prevalence : 0.6620
## Detection Rate : 0.4930
## Detection Prevalence : 0.5915
## Balanced Accuracy : 0.7265
##
## 'Positive' Class : 0
##
SMOTE
library(xgboost)
smote.train.matrix<-data.matrix(smote_train[,-9])
promo3<-as.matrix(as.factor(as.character(smote_train$promo)))
xgbModel3 <- xgboost(data = smote.train.matrix,
label = promo3,
nrounds = 1000,
max_depth = 2,
eta = 0.01,
objective = "binary:logistic")
## [1] train-logloss:0.691175
## [2] train-logloss:0.689240
## [3] train-logloss:0.687343
## [4] train-logloss:0.685482
## [5] train-logloss:0.683656
## [6] train-logloss:0.681865
## [7] train-logloss:0.680108
## [8] train-logloss:0.678384
## [9] train-logloss:0.676691
## [10] train-logloss:0.675026
## [11] train-logloss:0.673384
## [12] train-logloss:0.671932
## [13] train-logloss:0.670508
## [14] train-logloss:0.669110
## [15] train-logloss:0.667726
## [16] train-logloss:0.666184
## [17] train-logloss:0.664853
## [18] train-logloss:0.663529
## [19] train-logloss:0.662240
## [20] train-logloss:0.660962
## [21] train-logloss:0.659506
## [22] train-logloss:0.658261
## [23] train-logloss:0.656840
## [24] train-logloss:0.655625
## [25] train-logloss:0.654235
## [26] train-logloss:0.652864
## [27] train-logloss:0.651686
## [28] train-logloss:0.650520
## [29] train-logloss:0.649193
## [30] train-logloss:0.648059
## [31] train-logloss:0.646765
## [32] train-logloss:0.645646
## [33] train-logloss:0.644376
## [34] train-logloss:0.643284
## [35] train-logloss:0.642043
## [36] train-logloss:0.640817
## [37] train-logloss:0.639770
## [38] train-logloss:0.638719
## [39] train-logloss:0.637528
## [40] train-logloss:0.636521
## [41] train-logloss:0.635357
## [42] train-logloss:0.634344
## [43] train-logloss:0.633201
## [44] train-logloss:0.632240
## [45] train-logloss:0.631260
## [46] train-logloss:0.630147
## [47] train-logloss:0.629221
## [48] train-logloss:0.628133
## [49] train-logloss:0.627187
## [50] train-logloss:0.626117
## [51] train-logloss:0.625235
## [52] train-logloss:0.624187
## [53] train-logloss:0.623274
## [54] train-logloss:0.622246
## [55] train-logloss:0.621352
## [56] train-logloss:0.620341
## [57] train-logloss:0.619508
## [58] train-logloss:0.618640
## [59] train-logloss:0.617653
## [60] train-logloss:0.616848
## [61] train-logloss:0.615883
## [62] train-logloss:0.615043
## [63] train-logloss:0.614093
## [64] train-logloss:0.613323
## [65] train-logloss:0.612507
## [66] train-logloss:0.611578
## [67] train-logloss:0.610833
## [68] train-logloss:0.609922
## [69] train-logloss:0.609020
## [70] train-logloss:0.608237
## [71] train-logloss:0.607350
## [72] train-logloss:0.606637
## [73] train-logloss:0.605766
## [74] train-logloss:0.605010
## [75] train-logloss:0.604151
## [76] train-logloss:0.603464
## [77] train-logloss:0.602621
## [78] train-logloss:0.601891
## [79] train-logloss:0.601060
## [80] train-logloss:0.600238
## [81] train-logloss:0.599527
## [82] train-logloss:0.598718
## [83] train-logloss:0.597941
## [84] train-logloss:0.597143
## [85] train-logloss:0.596503
## [86] train-logloss:0.595745
## [87] train-logloss:0.594965
## [88] train-logloss:0.594288
## [89] train-logloss:0.593523
## [90] train-logloss:0.592785
## [91] train-logloss:0.592034
## [92] train-logloss:0.591312
## [93] train-logloss:0.590569
## [94] train-logloss:0.589916
## [95] train-logloss:0.589211
## [96] train-logloss:0.588483
## [97] train-logloss:0.587791
## [98] train-logloss:0.587075
## [99] train-logloss:0.586442
## [100] train-logloss:0.585767
## [101] train-logloss:0.585064
## [102] train-logloss:0.584402
## [103] train-logloss:0.583707
## [104] train-logloss:0.583123
## [105] train-logloss:0.582474
## [106] train-logloss:0.581902
## [107] train-logloss:0.581266
## [108] train-logloss:0.580706
## [109] train-logloss:0.580082
## [110] train-logloss:0.579484
## [111] train-logloss:0.578872
## [112] train-logloss:0.578249
## [113] train-logloss:0.577712
## [114] train-logloss:0.577105
## [115] train-logloss:0.576579
## [116] train-logloss:0.575987
## [117] train-logloss:0.575392
## [118] train-logloss:0.574882
## [119] train-logloss:0.574306
## [120] train-logloss:0.573724
## [121] train-logloss:0.573226
## [122] train-logloss:0.572665
## [123] train-logloss:0.572181
## [124] train-logloss:0.571634
## [125] train-logloss:0.571067
## [126] train-logloss:0.570593
## [127] train-logloss:0.570061
## [128] train-logloss:0.569498
## [129] train-logloss:0.568945
## [130] train-logloss:0.568424
## [131] train-logloss:0.567965
## [132] train-logloss:0.567528
## [133] train-logloss:0.567018
## [134] train-logloss:0.566572
## [135] train-logloss:0.565919
## [136] train-logloss:0.565421
## [137] train-logloss:0.564997
## [138] train-logloss:0.564500
## [139] train-logloss:0.564012
## [140] train-logloss:0.563372
## [141] train-logloss:0.562945
## [142] train-logloss:0.562469
## [143] train-logloss:0.562059
## [144] train-logloss:0.561431
## [145] train-logloss:0.560902
## [146] train-logloss:0.560502
## [147] train-logloss:0.560037
## [148] train-logloss:0.559421
## [149] train-logloss:0.559014
## [150] train-logloss:0.558560
## [151] train-logloss:0.558171
## [152] train-logloss:0.557566
## [153] train-logloss:0.557097
## [154] train-logloss:0.556652
## [155] train-logloss:0.556273
## [156] train-logloss:0.555884
## [157] train-logloss:0.555450
## [158] train-logloss:0.554858
## [159] train-logloss:0.554432
## [160] train-logloss:0.554062
## [161] train-logloss:0.553477
## [162] train-logloss:0.553101
## [163] train-logloss:0.552683
## [164] train-logloss:0.552109
## [165] train-logloss:0.551753
## [166] train-logloss:0.551304
## [167] train-logloss:0.550895
## [168] train-logloss:0.550531
## [169] train-logloss:0.549967
## [170] train-logloss:0.549567
## [171] train-logloss:0.549222
## [172] train-logloss:0.548666
## [173] train-logloss:0.548314
## [174] train-logloss:0.547921
## [175] train-logloss:0.547488
## [176] train-logloss:0.547154
## [177] train-logloss:0.546768
## [178] train-logloss:0.546223
## [179] train-logloss:0.545880
## [180] train-logloss:0.545341
## [181] train-logloss:0.545016
## [182] train-logloss:0.544639
## [183] train-logloss:0.544168
## [184] train-logloss:0.543849
## [185] train-logloss:0.543480
## [186] train-logloss:0.542950
## [187] train-logloss:0.542636
## [188] train-logloss:0.542308
## [189] train-logloss:0.541786
## [190] train-logloss:0.541423
## [191] train-logloss:0.541118
## [192] train-logloss:0.540764
## [193] train-logloss:0.540271
## [194] train-logloss:0.539950
## [195] train-logloss:0.539437
## [196] train-logloss:0.539139
## [197] train-logloss:0.538792
## [198] train-logloss:0.538311
## [199] train-logloss:0.537998
## [200] train-logloss:0.537602
## [201] train-logloss:0.537260
## [202] train-logloss:0.536970
## [203] train-logloss:0.536499
## [204] train-logloss:0.536164
## [205] train-logloss:0.535860
## [206] train-logloss:0.535364
## [207] train-logloss:0.535080
## [208] train-logloss:0.534751
## [209] train-logloss:0.534291
## [210] train-logloss:0.533995
## [211] train-logloss:0.533509
## [212] train-logloss:0.533231
## [213] train-logloss:0.532910
## [214] train-logloss:0.532461
## [215] train-logloss:0.532144
## [216] train-logloss:0.531855
## [217] train-logloss:0.531456
## [218] train-logloss:0.531186
## [219] train-logloss:0.530876
## [220] train-logloss:0.530593
## [221] train-logloss:0.530154
## [222] train-logloss:0.529848
## [223] train-logloss:0.529429
## [224] train-logloss:0.529166
## [225] train-logloss:0.528695
## [226] train-logloss:0.528435
## [227] train-logloss:0.528136
## [228] train-logloss:0.527708
## [229] train-logloss:0.527436
## [230] train-logloss:0.527057
## [231] train-logloss:0.526764
## [232] train-logloss:0.526509
## [233] train-logloss:0.526137
## [234] train-logloss:0.525849
## [235] train-logloss:0.525599
## [236] train-logloss:0.525235
## [237] train-logloss:0.524950
## [238] train-logloss:0.524685
## [239] train-logloss:0.524441
## [240] train-logloss:0.524160
## [241] train-logloss:0.523879
## [242] train-logloss:0.523523
## [243] train-logloss:0.523248
## [244] train-logloss:0.523007
## [245] train-logloss:0.522731
## [246] train-logloss:0.522312
## [247] train-logloss:0.521966
## [248] train-logloss:0.521697
## [249] train-logloss:0.521460
## [250] train-logloss:0.521194
## [251] train-logloss:0.520782
## [252] train-logloss:0.520548
## [253] train-logloss:0.520276
## [254] train-logloss:0.520015
## [255] train-logloss:0.519609
## [256] train-logloss:0.519376
## [257] train-logloss:0.519109
## [258] train-logloss:0.518851
## [259] train-logloss:0.518621
## [260] train-logloss:0.518288
## [261] train-logloss:0.517890
## [262] train-logloss:0.517637
## [263] train-logloss:0.517374
## [264] train-logloss:0.517147
## [265] train-logloss:0.516755
## [266] train-logloss:0.516321
## [267] train-logloss:0.516073
## [268] train-logloss:0.515846
## [269] train-logloss:0.515419
## [270] train-logloss:0.515196
## [271] train-logloss:0.514938
## [272] train-logloss:0.514616
## [273] train-logloss:0.514374
## [274] train-logloss:0.513986
## [275] train-logloss:0.513748
## [276] train-logloss:0.513330
## [277] train-logloss:0.513014
## [278] train-logloss:0.512776
## [279] train-logloss:0.512524
## [280] train-logloss:0.512290
## [281] train-logloss:0.511770
## [282] train-logloss:0.511388
## [283] train-logloss:0.511174
## [284] train-logloss:0.510940
## [285] train-logloss:0.510431
## [286] train-logloss:0.510057
## [287] train-logloss:0.509749
## [288] train-logloss:0.509380
## [289] train-logloss:0.509169
## [290] train-logloss:0.508866
## [291] train-logloss:0.508634
## [292] train-logloss:0.508237
## [293] train-logloss:0.507871
## [294] train-logloss:0.507645
## [295] train-logloss:0.507346
## [296] train-logloss:0.506956
## [297] train-logloss:0.506661
## [298] train-logloss:0.506455
## [299] train-logloss:0.506094
## [300] train-logloss:0.505865
## [301] train-logloss:0.505644
## [302] train-logloss:0.505399
## [303] train-logloss:0.505018
## [304] train-logloss:0.504727
## [305] train-logloss:0.504330
## [306] train-logloss:0.504105
## [307] train-logloss:0.503751
## [308] train-logloss:0.503532
## [309] train-logloss:0.503159
## [310] train-logloss:0.502874
## [311] train-logloss:0.502487
## [312] train-logloss:0.502265
## [313] train-logloss:0.502026
## [314] train-logloss:0.501811
## [315] train-logloss:0.501336
## [316] train-logloss:0.500970
## [317] train-logloss:0.500624
## [318] train-logloss:0.500345
## [319] train-logloss:0.499968
## [320] train-logloss:0.499750
## [321] train-logloss:0.499539
## [322] train-logloss:0.499303
## [323] train-logloss:0.498840
## [324] train-logloss:0.498483
## [325] train-logloss:0.498114
## [326] train-logloss:0.497921
## [327] train-logloss:0.497582
## [328] train-logloss:0.497311
## [329] train-logloss:0.497096
## [330] train-logloss:0.496747
## [331] train-logloss:0.496518
## [332] train-logloss:0.496251
## [333] train-logloss:0.495893
## [334] train-logloss:0.495687
## [335] train-logloss:0.495475
## [336] train-logloss:0.495145
## [337] train-logloss:0.494803
## [338] train-logloss:0.494580
## [339] train-logloss:0.494319
## [340] train-logloss:0.494114
## [341] train-logloss:0.493778
## [342] train-logloss:0.493520
## [343] train-logloss:0.493301
## [344] train-logloss:0.492955
## [345] train-logloss:0.492746
## [346] train-logloss:0.492556
## [347] train-logloss:0.492326
## [348] train-logloss:0.492005
## [349] train-logloss:0.491752
## [350] train-logloss:0.491424
## [351] train-logloss:0.491210
## [352] train-logloss:0.490871
## [353] train-logloss:0.490446
## [354] train-logloss:0.490246
## [355] train-logloss:0.489932
## [356] train-logloss:0.489728
## [357] train-logloss:0.489407
## [358] train-logloss:0.489210
## [359] train-logloss:0.488960
## [360] train-logloss:0.488651
## [361] train-logloss:0.488443
## [362] train-logloss:0.488130
## [363] train-logloss:0.487715
## [364] train-logloss:0.487521
## [365] train-logloss:0.487273
## [366] train-logloss:0.486964
## [367] train-logloss:0.486817
## [368] train-logloss:0.486487
## [369] train-logloss:0.486287
## [370] train-logloss:0.486029
## [371] train-logloss:0.485839
## [372] train-logloss:0.485614
## [373] train-logloss:0.485312
## [374] train-logloss:0.485168
## [375] train-logloss:0.484844
## [376] train-logloss:0.484641
## [377] train-logloss:0.484396
## [378] train-logloss:0.484218
## [379] train-logloss:0.484077
## [380] train-logloss:0.483825
## [381] train-logloss:0.483604
## [382] train-logloss:0.483286
## [383] train-logloss:0.483102
## [384] train-logloss:0.482694
## [385] train-logloss:0.482398
## [386] train-logloss:0.482258
## [387] train-logloss:0.482016
## [388] train-logloss:0.481769
## [389] train-logloss:0.481459
## [390] train-logloss:0.481260
## [391] train-logloss:0.481122
## [392] train-logloss:0.480950
## [393] train-logloss:0.480733
## [394] train-logloss:0.480597
## [395] train-logloss:0.480291
## [396] train-logloss:0.480112
## [397] train-logloss:0.479715
## [398] train-logloss:0.479477
## [399] train-logloss:0.479235
## [400] train-logloss:0.479069
## [401] train-logloss:0.478680
## [402] train-logloss:0.478546
## [403] train-logloss:0.478246
## [404] train-logloss:0.477864
## [405] train-logloss:0.477701
## [406] train-logloss:0.477568
## [407] train-logloss:0.477333
## [408] train-logloss:0.477097
## [409] train-logloss:0.476927
## [410] train-logloss:0.476553
## [411] train-logloss:0.476268
## [412] train-logloss:0.476035
## [413] train-logloss:0.475845
## [414] train-logloss:0.475549
## [415] train-logloss:0.475420
## [416] train-logloss:0.475260
## [417] train-logloss:0.475031
## [418] train-logloss:0.474800
## [419] train-logloss:0.474614
## [420] train-logloss:0.474446
## [421] train-logloss:0.474232
## [422] train-logloss:0.473943
## [423] train-logloss:0.473815
## [424] train-logloss:0.473690
## [425] train-logloss:0.473533
## [426] train-logloss:0.473170
## [427] train-logloss:0.472943
## [428] train-logloss:0.472657
## [429] train-logloss:0.472431
## [430] train-logloss:0.472147
## [431] train-logloss:0.471985
## [432] train-logloss:0.471629
## [433] train-logloss:0.471506
## [434] train-logloss:0.471224
## [435] train-logloss:0.470998
## [436] train-logloss:0.470816
## [437] train-logloss:0.470595
## [438] train-logloss:0.470317
## [439] train-logloss:0.470164
## [440] train-logloss:0.469954
## [441] train-logloss:0.469833
## [442] train-logloss:0.469484
## [443] train-logloss:0.469206
## [444] train-logloss:0.468903
## [445] train-logloss:0.468686
## [446] train-logloss:0.468412
## [447] train-logloss:0.468232
## [448] train-logloss:0.468083
## [449] train-logloss:0.467963
## [450] train-logloss:0.467665
## [451] train-logloss:0.467391
## [452] train-logloss:0.467051
## [453] train-logloss:0.466781
## [454] train-logloss:0.466488
## [455] train-logloss:0.466370
## [456] train-logloss:0.466158
## [457] train-logloss:0.465869
## [458] train-logloss:0.465600
## [459] train-logloss:0.465335
## [460] train-logloss:0.465158
## [461] train-logloss:0.464875
## [462] train-logloss:0.464757
## [463] train-logloss:0.464549
## [464] train-logloss:0.464341
## [465] train-logloss:0.464081
## [466] train-logloss:0.463907
## [467] train-logloss:0.463685
## [468] train-logloss:0.463538
## [469] train-logloss:0.463206
## [470] train-logloss:0.462939
## [471] train-logloss:0.462662
## [472] train-logloss:0.462546
## [473] train-logloss:0.462341
## [474] train-logloss:0.462085
## [475] train-logloss:0.461821
## [476] train-logloss:0.461548
## [477] train-logloss:0.461433
## [478] train-logloss:0.461164
## [479] train-logloss:0.460903
## [480] train-logloss:0.460638
## [481] train-logloss:0.460385
## [482] train-logloss:0.460212
## [483] train-logloss:0.460099
## [484] train-logloss:0.459898
## [485] train-logloss:0.459637
## [486] train-logloss:0.459387
## [487] train-logloss:0.459217
## [488] train-logloss:0.458960
## [489] train-logloss:0.458703
## [490] train-logloss:0.458590
## [491] train-logloss:0.458337
## [492] train-logloss:0.458140
## [493] train-logloss:0.457894
## [494] train-logloss:0.457690
## [495] train-logloss:0.457523
## [496] train-logloss:0.457412
## [497] train-logloss:0.457169
## [498] train-logloss:0.456916
## [499] train-logloss:0.456666
## [500] train-logloss:0.456555
## [501] train-logloss:0.456236
## [502] train-logloss:0.456094
## [503] train-logloss:0.455843
## [504] train-logloss:0.455597
## [505] train-logloss:0.455403
## [506] train-logloss:0.455165
## [507] train-logloss:0.454923
## [508] train-logloss:0.454757
## [509] train-logloss:0.454507
## [510] train-logloss:0.454267
## [511] train-logloss:0.454094
## [512] train-logloss:0.453903
## [513] train-logloss:0.453668
## [514] train-logloss:0.453560
## [515] train-logloss:0.453418
## [516] train-logloss:0.453202
## [517] train-logloss:0.453037
## [518] train-logloss:0.452800
## [519] train-logloss:0.452556
## [520] train-logloss:0.452246
## [521] train-logloss:0.452139
## [522] train-logloss:0.451907
## [523] train-logloss:0.451673
## [524] train-logloss:0.451432
## [525] train-logloss:0.451200
## [526] train-logloss:0.451013
## [527] train-logloss:0.450850
## [528] train-logloss:0.450622
## [529] train-logloss:0.450392
## [530] train-logloss:0.450224
## [531] train-logloss:0.450118
## [532] train-logloss:0.449980
## [533] train-logloss:0.449679
## [534] train-logloss:0.449441
## [535] train-logloss:0.449257
## [536] train-logloss:0.449030
## [537] train-logloss:0.448804
## [538] train-logloss:0.448644
## [539] train-logloss:0.448479
## [540] train-logloss:0.448342
## [541] train-logloss:0.448106
## [542] train-logloss:0.448003
## [543] train-logloss:0.447780
## [544] train-logloss:0.447557
## [545] train-logloss:0.447346
## [546] train-logloss:0.447163
## [547] train-logloss:0.447003
## [548] train-logloss:0.446902
## [549] train-logloss:0.446670
## [550] train-logloss:0.446535
## [551] train-logloss:0.446337
## [552] train-logloss:0.446045
## [553] train-logloss:0.445823
## [554] train-logloss:0.445603
## [555] train-logloss:0.445442
## [556] train-logloss:0.445341
## [557] train-logloss:0.445162
## [558] train-logloss:0.445031
## [559] train-logloss:0.444743
## [560] train-logloss:0.444514
## [561] train-logloss:0.444296
## [562] train-logloss:0.444079
## [563] train-logloss:0.443863
## [564] train-logloss:0.443705
## [565] train-logloss:0.443497
## [566] train-logloss:0.443270
## [567] train-logloss:0.443173
## [568] train-logloss:0.442960
## [569] train-logloss:0.442783
## [570] train-logloss:0.442569
## [571] train-logloss:0.442412
## [572] train-logloss:0.442316
## [573] train-logloss:0.442106
## [574] train-logloss:0.441894
## [575] train-logloss:0.441671
## [576] train-logloss:0.441461
## [577] train-logloss:0.441307
## [578] train-logloss:0.441176
## [579] train-logloss:0.441081
## [580] train-logloss:0.440907
## [581] train-logloss:0.440697
## [582] train-logloss:0.440490
## [583] train-logloss:0.440269
## [584] train-logloss:0.440115
## [585] train-logloss:0.440021
## [586] train-logloss:0.439893
## [587] train-logloss:0.439699
## [588] train-logloss:0.439421
## [589] train-logloss:0.439202
## [590] train-logloss:0.439030
## [591] train-logloss:0.438822
## [592] train-logloss:0.438729
## [593] train-logloss:0.438524
## [594] train-logloss:0.438379
## [595] train-logloss:0.438176
## [596] train-logloss:0.438050
## [597] train-logloss:0.437812
## [598] train-logloss:0.437642
## [599] train-logloss:0.437443
## [600] train-logloss:0.437293
## [601] train-logloss:0.437168
## [602] train-logloss:0.436976
## [603] train-logloss:0.436705
## [604] train-logloss:0.436490
## [605] train-logloss:0.436284
## [606] train-logloss:0.436194
## [607] train-logloss:0.435992
## [608] train-logloss:0.435825
## [609] train-logloss:0.435681
## [610] train-logloss:0.435477
## [611] train-logloss:0.435354
## [612] train-logloss:0.435088
## [613] train-logloss:0.434874
## [614] train-logloss:0.434675
## [615] train-logloss:0.434586
## [616] train-logloss:0.434388
## [617] train-logloss:0.434223
## [618] train-logloss:0.434081
## [619] train-logloss:0.433868
## [620] train-logloss:0.433667
## [621] train-logloss:0.433472
## [622] train-logloss:0.433327
## [623] train-logloss:0.433239
## [624] train-logloss:0.433008
## [625] train-logloss:0.432845
## [626] train-logloss:0.432705
## [627] train-logloss:0.432510
## [628] train-logloss:0.432389
## [629] train-logloss:0.432180
## [630] train-logloss:0.431991
## [631] train-logloss:0.431791
## [632] train-logloss:0.431565
## [633] train-logloss:0.431478
## [634] train-logloss:0.431285
## [635] train-logloss:0.431125
## [636] train-logloss:0.431005
## [637] train-logloss:0.430746
## [638] train-logloss:0.430661
## [639] train-logloss:0.430471
## [640] train-logloss:0.430264
## [641] train-logloss:0.430066
## [642] train-logloss:0.429878
## [643] train-logloss:0.429739
## [644] train-logloss:0.429535
## [645] train-logloss:0.429348
## [646] train-logloss:0.429012
## [647] train-logloss:0.428791
## [648] train-logloss:0.428633
## [649] train-logloss:0.428496
## [650] train-logloss:0.428355
## [651] train-logloss:0.428160
## [652] train-logloss:0.428076
## [653] train-logloss:0.427958
## [654] train-logloss:0.427820
## [655] train-logloss:0.427602
## [656] train-logloss:0.427414
## [657] train-logloss:0.427259
## [658] train-logloss:0.427123
## [659] train-logloss:0.426937
## [660] train-logloss:0.426820
## [661] train-logloss:0.426568
## [662] train-logloss:0.426375
## [663] train-logloss:0.426160
## [664] train-logloss:0.425976
## [665] train-logloss:0.425776
## [666] train-logloss:0.425623
## [667] train-logloss:0.425508
## [668] train-logloss:0.425372
## [669] train-logloss:0.425290
## [670] train-logloss:0.425108
## [671] train-logloss:0.424974
## [672] train-logloss:0.424823
## [673] train-logloss:0.424710
## [674] train-logloss:0.424463
## [675] train-logloss:0.424263
## [676] train-logloss:0.424020
## [677] train-logloss:0.423909
## [678] train-logloss:0.423829
## [679] train-logloss:0.423646
## [680] train-logloss:0.423454
## [681] train-logloss:0.423257
## [682] train-logloss:0.423077
## [683] train-logloss:0.422928
## [684] train-logloss:0.422795
## [685] train-logloss:0.422606
## [686] train-logloss:0.422527
## [687] train-logloss:0.422349
## [688] train-logloss:0.422152
## [689] train-logloss:0.421942
## [690] train-logloss:0.421766
## [691] train-logloss:0.421442
## [692] train-logloss:0.421264
## [693] train-logloss:0.421056
## [694] train-logloss:0.420882
## [695] train-logloss:0.420750
## [696] train-logloss:0.420604
## [697] train-logloss:0.420418
## [698] train-logloss:0.420225
## [699] train-logloss:0.420053
## [700] train-logloss:0.419975
## [701] train-logloss:0.419769
## [702] train-logloss:0.419599
## [703] train-logloss:0.419469
## [704] train-logloss:0.419285
## [705] train-logloss:0.418968
## [706] train-logloss:0.418840
## [707] train-logloss:0.418709
## [708] train-logloss:0.418565
## [709] train-logloss:0.418384
## [710] train-logloss:0.418083
## [711] train-logloss:0.417880
## [712] train-logloss:0.417803
## [713] train-logloss:0.417692
## [714] train-logloss:0.417510
## [715] train-logloss:0.417320
## [716] train-logloss:0.417150
## [717] train-logloss:0.417008
## [718] train-logloss:0.416699
## [719] train-logloss:0.416572
## [720] train-logloss:0.416394
## [721] train-logloss:0.416101
## [722] train-logloss:0.415930
## [723] train-logloss:0.415742
## [724] train-logloss:0.415544
## [725] train-logloss:0.415375
## [726] train-logloss:0.415236
## [727] train-logloss:0.415107
## [728] train-logloss:0.414933
## [729] train-logloss:0.414808
## [730] train-logloss:0.414519
## [731] train-logloss:0.414409
## [732] train-logloss:0.414335
## [733] train-logloss:0.414171
## [734] train-logloss:0.414064
## [735] train-logloss:0.413866
## [736] train-logloss:0.413688
## [737] train-logloss:0.413614
## [738] train-logloss:0.413476
## [739] train-logloss:0.413304
## [740] train-logloss:0.413136
## [741] train-logloss:0.412941
## [742] train-logloss:0.412834
## [743] train-logloss:0.412658
## [744] train-logloss:0.412492
## [745] train-logloss:0.412368
## [746] train-logloss:0.412295
## [747] train-logloss:0.412159
## [748] train-logloss:0.411991
## [749] train-logloss:0.411869
## [750] train-logloss:0.411570
## [751] train-logloss:0.411290
## [752] train-logloss:0.411097
## [753] train-logloss:0.410933
## [754] train-logloss:0.410768
## [755] train-logloss:0.410601
## [756] train-logloss:0.410467
## [757] train-logloss:0.410294
## [758] train-logloss:0.410174
## [759] train-logloss:0.409898
## [760] train-logloss:0.409792
## [761] train-logloss:0.409631
## [762] train-logloss:0.409560
## [763] train-logloss:0.409397
## [764] train-logloss:0.409264
## [765] train-logloss:0.409100
## [766] train-logloss:0.409029
## [767] train-logloss:0.408858
## [768] train-logloss:0.408667
## [769] train-logloss:0.408563
## [770] train-logloss:0.408444
## [771] train-logloss:0.408283
## [772] train-logloss:0.408152
## [773] train-logloss:0.407989
## [774] train-logloss:0.407801
## [775] train-logloss:0.407684
## [776] train-logloss:0.407413
## [777] train-logloss:0.407310
## [778] train-logloss:0.407140
## [779] train-logloss:0.407019
## [780] train-logloss:0.406861
## [781] train-logloss:0.406792
## [782] train-logloss:0.406689
## [783] train-logloss:0.406504
## [784] train-logloss:0.406343
## [785] train-logloss:0.406213
## [786] train-logloss:0.406054
## [787] train-logloss:0.405938
## [788] train-logloss:0.405779
## [789] train-logloss:0.405710
## [790] train-logloss:0.405609
## [791] train-logloss:0.405441
## [792] train-logloss:0.405327
## [793] train-logloss:0.405060
## [794] train-logloss:0.404876
## [795] train-logloss:0.404748
## [796] train-logloss:0.404592
## [797] train-logloss:0.404458
## [798] train-logloss:0.404302
## [799] train-logloss:0.404120
## [800] train-logloss:0.403962
## [801] train-logloss:0.403699
## [802] train-logloss:0.403543
## [803] train-logloss:0.403342
## [804] train-logloss:0.403229
## [805] train-logloss:0.402970
## [806] train-logloss:0.402843
## [807] train-logloss:0.402688
## [808] train-logloss:0.402621
## [809] train-logloss:0.402441
## [810] train-logloss:0.402276
## [811] train-logloss:0.402079
## [812] train-logloss:0.401922
## [813] train-logloss:0.401854
## [814] train-logloss:0.401728
## [815] train-logloss:0.401617
## [816] train-logloss:0.401422
## [817] train-logloss:0.401268
## [818] train-logloss:0.401106
## [819] train-logloss:0.401039
## [820] train-logloss:0.400861
## [821] train-logloss:0.400708
## [822] train-logloss:0.400590
## [823] train-logloss:0.400466
## [824] train-logloss:0.400313
## [825] train-logloss:0.400122
## [826] train-logloss:0.400011
## [827] train-logloss:0.399756
## [828] train-logloss:0.399581
## [829] train-logloss:0.399480
## [830] train-logloss:0.399347
## [831] train-logloss:0.399095
## [832] train-logloss:0.398921
## [833] train-logloss:0.398856
## [834] train-logloss:0.398667
## [835] train-logloss:0.398514
## [836] train-logloss:0.398266
## [837] train-logloss:0.398143
## [838] train-logloss:0.397994
## [839] train-logloss:0.397822
## [840] train-logloss:0.397635
## [841] train-logloss:0.397526
## [842] train-logloss:0.397282
## [843] train-logloss:0.397123
## [844] train-logloss:0.396972
## [845] train-logloss:0.396802
## [846] train-logloss:0.396669
## [847] train-logloss:0.396429
## [848] train-logloss:0.396260
## [849] train-logloss:0.396195
## [850] train-logloss:0.396011
## [851] train-logloss:0.395861
## [852] train-logloss:0.395624
## [853] train-logloss:0.395502
## [854] train-logloss:0.395354
## [855] train-logloss:0.395172
## [856] train-logloss:0.395004
## [857] train-logloss:0.394897
## [858] train-logloss:0.394663
## [859] train-logloss:0.394570
## [860] train-logloss:0.394456
## [861] train-logloss:0.394326
## [862] train-logloss:0.394181
## [863] train-logloss:0.394015
## [864] train-logloss:0.393786
## [865] train-logloss:0.393605
## [866] train-logloss:0.393440
## [867] train-logloss:0.393291
## [868] train-logloss:0.393064
## [869] train-logloss:0.392945
## [870] train-logloss:0.392799
## [871] train-logloss:0.392736
## [872] train-logloss:0.392581
## [873] train-logloss:0.392403
## [874] train-logloss:0.392240
## [875] train-logloss:0.392133
## [876] train-logloss:0.391909
## [877] train-logloss:0.391818
## [878] train-logloss:0.391756
## [879] train-logloss:0.391580
## [880] train-logloss:0.391433
## [881] train-logloss:0.391213
## [882] train-logloss:0.391026
## [883] train-logloss:0.390874
## [884] train-logloss:0.390730
## [885] train-logloss:0.390558
## [886] train-logloss:0.390413
## [887] train-logloss:0.390294
## [888] train-logloss:0.390077
## [889] train-logloss:0.389892
## [890] train-logloss:0.389830
## [891] train-logloss:0.389713
## [892] train-logloss:0.389542
## [893] train-logloss:0.389413
## [894] train-logloss:0.389198
## [895] train-logloss:0.389037
## [896] train-logloss:0.388898
## [897] train-logloss:0.388715
## [898] train-logloss:0.388572
## [899] train-logloss:0.388445
## [900] train-logloss:0.388339
## [901] train-logloss:0.388127
## [902] train-logloss:0.387946
## [903] train-logloss:0.387805
## [904] train-logloss:0.387690
## [905] train-logloss:0.387519
## [906] train-logloss:0.387380
## [907] train-logloss:0.387320
## [908] train-logloss:0.387109
## [909] train-logloss:0.386972
## [910] train-logloss:0.386793
## [911] train-logloss:0.386668
## [912] train-logloss:0.386524
## [913] train-logloss:0.386410
## [914] train-logloss:0.386272
## [915] train-logloss:0.386104
## [916] train-logloss:0.385955
## [917] train-logloss:0.385798
## [918] train-logloss:0.385694
## [919] train-logloss:0.385486
## [920] train-logloss:0.385308
## [921] train-logloss:0.385166
## [922] train-logloss:0.385107
## [923] train-logloss:0.384941
## [924] train-logloss:0.384805
## [925] train-logloss:0.384692
## [926] train-logloss:0.384486
## [927] train-logloss:0.384350
## [928] train-logloss:0.384174
## [929] train-logloss:0.384051
## [930] train-logloss:0.383904
## [931] train-logloss:0.383801
## [932] train-logloss:0.383598
## [933] train-logloss:0.383424
## [934] train-logloss:0.383313
## [935] train-logloss:0.383178
## [936] train-logloss:0.383013
## [937] train-logloss:0.382904
## [938] train-logloss:0.382733
## [939] train-logloss:0.382611
## [940] train-logloss:0.382466
## [941] train-logloss:0.382264
## [942] train-logloss:0.382101
## [943] train-logloss:0.381961
## [944] train-logloss:0.381903
## [945] train-logloss:0.381802
## [946] train-logloss:0.381601
## [947] train-logloss:0.381491
## [948] train-logloss:0.381358
## [949] train-logloss:0.381225
## [950] train-logloss:0.381055
## [951] train-logloss:0.380893
## [952] train-logloss:0.380750
## [953] train-logloss:0.380644
## [954] train-logloss:0.380512
## [955] train-logloss:0.380403
## [956] train-logloss:0.380283
## [957] train-logloss:0.380085
## [958] train-logloss:0.379931
## [959] train-logloss:0.379800
## [960] train-logloss:0.379640
## [961] train-logloss:0.379472
## [962] train-logloss:0.379353
## [963] train-logloss:0.379253
## [964] train-logloss:0.379057
## [965] train-logloss:0.378911
## [966] train-logloss:0.378855
## [967] train-logloss:0.378747
## [968] train-logloss:0.378606
## [969] train-logloss:0.378441
## [970] train-logloss:0.378324
## [971] train-logloss:0.378194
## [972] train-logloss:0.378139
## [973] train-logloss:0.377945
## [974] train-logloss:0.377816
## [975] train-logloss:0.377656
## [976] train-logloss:0.377518
## [977] train-logloss:0.377412
## [978] train-logloss:0.377248
## [979] train-logloss:0.377108
## [980] train-logloss:0.376916
## [981] train-logloss:0.376789
## [982] train-logloss:0.376631
## [983] train-logloss:0.376469
## [984] train-logloss:0.376364
## [985] train-logloss:0.376237
## [986] train-logloss:0.376138
## [987] train-logloss:0.375948
## [988] train-logloss:0.375671
## [989] train-logloss:0.375566
## [990] train-logloss:0.375423
## [991] train-logloss:0.375273
## [992] train-logloss:0.375146
## [993] train-logloss:0.374986
## [994] train-logloss:0.374870
## [995] train-logloss:0.374773
## [996] train-logloss:0.374501
## [997] train-logloss:0.374313
## [998] train-logloss:0.374209
## [999] train-logloss:0.374084
## [1000] train-logloss:0.373928
## Make predictions on test data
moklas3.jk.test.matrix<-data.matrix(moklas3.jk.test[,-9])
promo.test<-as.matrix(as.factor(as.character(moklas3.jk.test$promo)))
predicted <- predict(xgbModel3,moklas3.jk.test.matrix )
predicted <- ifelse(predicted > 0.5 , 1,0)
## Create confusion matrix
confusionMatrix(table(predicted = predicted, actual = promo.test))
## Confusion Matrix and Statistics
##
## actual
## predicted 0 1
## 0 28 6
## 1 19 18
##
## Accuracy : 0.6479
## 95% CI : (0.5254, 0.7576)
## No Information Rate : 0.662
## P-Value [Acc > NIR] : 0.6509
##
## Kappa : 0.3053
##
## Mcnemar's Test P-Value : 0.0164
##
## Sensitivity : 0.5957
## Specificity : 0.7500
## Pos Pred Value : 0.8235
## Neg Pred Value : 0.4865
## Prevalence : 0.6620
## Detection Rate : 0.3944
## Detection Prevalence : 0.4789
## Balanced Accuracy : 0.6729
##
## 'Positive' Class : 0
##