Fixed Number of Officers
Counting officers as full number of officers, not pruned number of
officers (excluding those with limited history/future).


Fixed City Level HPI


Facts
Fact #1: There is considerable variation even in the pay of police
officers – with a range from 45,575 to 206,821.
Person-Level Data
|
|
base_plus_overtime
|
Base_Pay
|
Overtime_Pay
|
|
n
|
8209
|
8209
|
8209
|
|
mean
|
115923
|
93919
|
22004
|
|
sd
|
32285
|
18326
|
22122
|
|
median
|
111031
|
92837
|
16098
|
|
min
|
2906
|
2906
|
0
|
|
max
|
450373
|
218508
|
322071
|
|
range
|
447467
|
215602
|
322071
|
|
skew
|
1
|
0
|
3
|
|
kurtosis
|
6
|
2
|
14
|
|
se
|
356
|
202
|
244
|
|
Q0.01
|
57219
|
47663
|
0
|
|
Q0.05
|
75422
|
67233
|
774
|
|
Q0.1
|
83133
|
72382
|
2556
|
|
Q0.25
|
95117
|
83952
|
7485
|
|
Q0.5
|
111031
|
92837
|
16098
|
|
Q0.75
|
130861
|
104793
|
28842
|
|
Q0.9
|
154229
|
117340
|
48062
|
|
Q0.95
|
174797
|
125868
|
64339
|
|
Q0.99
|
223608
|
135386
|
105578
|
Agency-Level Data
|
|
base_plus_overtime
|
Base_Pay
|
Overtime_Pay
|
|
n
|
218
|
218
|
218
|
|
mean
|
109526
|
89521
|
20006
|
|
sd
|
25519
|
19235
|
10831
|
|
median
|
109602
|
88813
|
17673
|
|
min
|
45575
|
43403
|
0
|
|
max
|
206821
|
158108
|
63034
|
|
range
|
161246
|
114705
|
63034
|
|
skew
|
0
|
0
|
1
|
|
kurtosis
|
1
|
0
|
1
|
|
se
|
1728
|
1303
|
734
|
|
Q0.01
|
58730
|
49320
|
1400
|
|
Q0.05
|
69822
|
59911
|
5459
|
|
Q0.1
|
76035
|
64470
|
8089
|
|
Q0.25
|
92344
|
76417
|
12977
|
|
Q0.5
|
109602
|
88813
|
17673
|
|
Q0.75
|
125101
|
101955
|
25488
|
|
Q0.9
|
143151
|
115549
|
34402
|
|
Q0.95
|
151824
|
120282
|
41475
|
|
Q0.99
|
169453
|
129585
|
52697
|
Fact #2: There is considerable correlation (coefficient = .39)
between base pay and overtime pay
Fact #3: Overtime is a larger share of compensation in places where
total compensation is higher (this is partially mechanical)
Agency-Level Data

Fact #4: Big Cities Pay More
Agency-Level Data

Fact #5: Bigger Cities have more cops

Fact #6: Richer Places Pay More, and both size and wealth are
significant if you income them both

##
## ===============================================
## Dependent variable:
## ---------------------------
## base_plus_overtime
## -----------------------------------------------
## log_pop 17,146.000***
## (2,587.000)
##
## log_income 75,370.000***
## (7,771.000)
##
## Constant -332,329.000***
## (39,396.000)
##
## -----------------------------------------------
## Observations 218
## R2 0.389
## Adjusted R2 0.384
## Residual Std. Error 20,032.000 (df = 215)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Fact #7: There is no correlation between income and number of police
officers once you control for city level population
##
## ===============================================
## Dependent variable:
## ---------------------------
## log_officers
## -----------------------------------------------
## log_pop 0.808***
## (0.035)
##
## log_income 0.048
## (0.104)
##
## Constant -2.520***
## (0.527)
##
## -----------------------------------------------
## Observations 218
## R2 0.717
## Adjusted R2 0.715
## Residual Std. Error 0.268 (df = 215)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Fact #8: The Correlation between Pay and Crime Rates is negligible
for violent crime – and there are lots of places with almost no crime
that are paying cops a lot


Fact #9: Both violent and property crime predict the total number of
police officers
##
## =====================================================
## Dependent variable:
## ---------------------------------
## log_officers
## (1) (2)
## -----------------------------------------------------
## log_prop_crime 0.675***
## (0.057)
##
## log_violent_crime 0.291***
## (0.045)
##
## log_pop 0.174*** 0.531***
## (0.060) (0.054)
##
## Constant -1.400*** -1.610***
## (0.146) (0.185)
##
## -----------------------------------------------------
## Observations 216 214
## R2 0.828 0.755
## Adjusted R2 0.826 0.753
## Residual Std. Error 0.209 (df = 213) 0.246 (df = 211)
## =====================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Fact #10 Liberal Places do not have fewer cops
##
## ===============================================
## Dependent variable:
## ---------------------------
## log_officers
## -----------------------------------------------
## demshare_pres_2016 0.135
## (0.085)
##
## log_violent_crime 0.099**
## (0.039)
##
## log_pop 0.875***
## (0.052)
##
## Constant -2.900***
## (0.183)
##
## -----------------------------------------------
## Observations 205
## R2 0.849
## Adjusted R2 0.846
## Residual Std. Error 0.191 (df = 201)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Fact #11: Link Between Town Income and Wages Stronger for
Firefighters than Cops
##
## =================================================
## Dependent variable:
## ---------------------------
## log_wages
## -------------------------------------------------
## log_pop 0.048***
## (0.008)
##
## fire_dummy -0.777***
## (0.253)
##
## log_income 0.055
## (0.036)
##
## fire_dummy:log_income 0.168***
## (0.052)
##
## -------------------------------------------------
## County FE Yes
## Observations 331
## R2 0.702
## Adjusted R2 0.648
## Residual Std. Error 0.066 (df = 279)
## =================================================
## Note: *p<0.1; **p<0.05; ***p<0.01