[1] "kernlab" "caret" "lattice" "kbv" "janitor" "lubridate"
[7] "forcats" "stringr" "dplyr" "purrr" "readr" "tidyr"
[13] "tibble" "ggplot2" "tidyverse" "pacman"
ggplot2
setting R environment
loading iris dataset & viewing it
Code
d=iris |> janitor::clean_names()
head(d)
sepal_length sepal_width petal_length petal_width species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Code
tail(d)
sepal_length sepal_width petal_length petal_width species
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
Code
str(d)
'data.frame': 150 obs. of 5 variables:
$ sepal_length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ sepal_width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ petal_length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ petal_width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
Code
summary(d)
sepal_length sepal_width petal_length petal_width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
species
setosa :50
versicolor:50
virginica :50
viewing histogram
viewing density plot
viewing scattered plots
viewing box plots
viewing bar plots
# A tibble: 3 × 4
species cnt m s
<fct> <dbl> <dbl> <dbl>
1 setosa 50 5.01 0.35
2 versicolor 50 5.94 0.52
3 virginica 50 6.59 0.64
caret R package for data mining
create data partition for traing & testing
[1] 100
[1] 50
random forest using caret
Random Forest
100 samples
4 predictor
3 classes: 'setosa', 'versicolor', 'virginica'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 89, 91, 91, 89, 90, 90, ...
Resampling results across tuning parameters:
mtry Accuracy Kappa
2 0.9488889 0.9231796
3 0.9488889 0.9231796
4 0.9488889 0.9231796
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
Confusion Matrix and Statistics
Reference
Prediction setosa versicolor virginica
setosa 16 0 0
versicolor 0 18 1
virginica 0 1 14
Overall Statistics
Accuracy : 0.96
95% CI : (0.8629, 0.9951)
No Information Rate : 0.38
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.9397
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.00 0.9474 0.9333
Specificity 1.00 0.9677 0.9714
Pos Pred Value 1.00 0.9474 0.9333
Neg Pred Value 1.00 0.9677 0.9714
Prevalence 0.32 0.3800 0.3000
Detection Rate 0.32 0.3600 0.2800
Detection Prevalence 0.32 0.3800 0.3000
Balanced Accuracy 1.00 0.9576 0.9524
decision tree model
Confusion Matrix and Statistics
Reference
Prediction setosa versicolor virginica
setosa 16 0 0
versicolor 0 18 1
virginica 0 1 14
Overall Statistics
Accuracy : 0.96
95% CI : (0.8629, 0.9951)
No Information Rate : 0.38
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.9397
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.00 0.9474 0.9333
Specificity 1.00 0.9677 0.9714
Pos Pred Value 1.00 0.9474 0.9333
Neg Pred Value 1.00 0.9677 0.9714
Prevalence 0.32 0.3800 0.3000
Detection Rate 0.32 0.3600 0.2800
Detection Prevalence 0.32 0.3800 0.3000
Balanced Accuracy 1.00 0.9576 0.9524
svm model
Confusion Matrix and Statistics
Reference
Prediction setosa versicolor virginica
setosa 16 0 0
versicolor 0 18 1
virginica 0 1 14
Overall Statistics
Accuracy : 0.96
95% CI : (0.8629, 0.9951)
No Information Rate : 0.38
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.9397
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.00 0.9474 0.9333
Specificity 1.00 0.9677 0.9714
Pos Pred Value 1.00 0.9474 0.9333
Neg Pred Value 1.00 0.9677 0.9714
Prevalence 0.32 0.3800 0.3000
Detection Rate 0.32 0.3600 0.2800
Detection Prevalence 0.32 0.3800 0.3000
Balanced Accuracy 1.00 0.9576 0.9524
nueral network model
# weights: 11
initial value 110.348869
iter 10 value 43.292843
iter 20 value 15.882860
iter 30 value 5.758607
iter 40 value 4.647514
iter 50 value 4.449860
iter 60 value 4.443939
iter 70 value 4.438798
iter 70 value 4.438798
final value 4.438798
converged
# weights: 27
initial value 106.310561
iter 10 value 25.718700
iter 20 value 5.255353
iter 30 value 4.474079
iter 40 value 4.197851
iter 50 value 3.136753
iter 60 value 0.358626
iter 70 value 0.064815
iter 80 value 0.027611
iter 90 value 0.020181
iter 100 value 0.014452
final value 0.014452
stopped after 100 iterations
# weights: 43
initial value 106.930348
final value 41.455422
converged
# weights: 11
initial value 104.415041
iter 10 value 79.688881
iter 20 value 46.261790
iter 30 value 38.721418
final value 38.690814
converged
# weights: 27
initial value 110.513084
iter 10 value 66.150984
iter 20 value 24.076619
iter 30 value 21.378738
iter 40 value 20.478388
iter 50 value 20.346398
iter 60 value 20.344062
iter 70 value 20.342871
final value 20.342871
converged
# weights: 43
initial value 101.146353
iter 10 value 42.755577
iter 20 value 21.030529
iter 30 value 19.606917
iter 40 value 18.745997
iter 50 value 18.144727
iter 60 value 17.978364
iter 70 value 17.961701
iter 80 value 17.960974
iter 90 value 17.960297
iter 100 value 17.959987
final value 17.959987
stopped after 100 iterations
# weights: 11
initial value 108.505651
iter 10 value 44.263679
iter 20 value 41.566938
iter 30 value 41.556111
iter 40 value 41.544713
iter 50 value 41.536357
iter 60 value 41.524487
iter 70 value 38.613990
iter 80 value 10.958325
iter 90 value 5.015327
iter 100 value 4.995248
final value 4.995248
stopped after 100 iterations
# weights: 27
initial value 113.160195
iter 10 value 10.456197
iter 20 value 4.976803
iter 30 value 4.788480
iter 40 value 4.716120
iter 50 value 4.578231
iter 60 value 4.566010
iter 70 value 4.547135
iter 80 value 4.536586
iter 90 value 4.516755
iter 100 value 4.514009
final value 4.514009
stopped after 100 iterations
# weights: 43
initial value 118.199466
iter 10 value 22.705354
iter 20 value 5.029990
iter 30 value 4.902711
iter 40 value 4.444076
iter 50 value 3.541177
iter 60 value 2.732033
iter 70 value 1.574034
iter 80 value 0.946737
iter 90 value 0.848283
iter 100 value 0.647199
final value 0.647199
stopped after 100 iterations
# weights: 11
initial value 99.444611
iter 10 value 39.855704
iter 20 value 10.116048
iter 30 value 1.401405
iter 40 value 0.679942
iter 50 value 0.542809
iter 60 value 0.472520
iter 70 value 0.313715
iter 80 value 0.277362
iter 90 value 0.188892
iter 100 value 0.184732
final value 0.184732
stopped after 100 iterations
# weights: 27
initial value 116.433521
iter 10 value 60.978235
iter 20 value 7.227844
iter 30 value 0.304689
iter 40 value 0.000655
final value 0.000040
converged
# weights: 43
initial value 115.571028
iter 10 value 49.322799
iter 20 value 38.758439
iter 30 value 38.663670
iter 40 value 38.616939
iter 50 value 37.909081
iter 60 value 37.895702
iter 70 value 37.895520
final value 37.895508
converged
# weights: 11
initial value 102.800060
iter 10 value 53.805627
iter 20 value 47.284822
iter 30 value 38.032372
final value 38.031660
converged
# weights: 27
initial value 105.584745
iter 10 value 83.207957
iter 20 value 20.203657
iter 30 value 18.777983
iter 40 value 18.471545
iter 50 value 18.448502
iter 60 value 18.440045
iter 60 value 18.440045
final value 18.440045
converged
# weights: 43
initial value 104.297419
iter 10 value 49.263219
iter 20 value 21.002023
iter 30 value 17.907145
iter 40 value 17.056548
iter 50 value 16.773344
iter 60 value 16.297834
iter 70 value 16.229767
iter 80 value 16.227265
final value 16.227265
converged
# weights: 11
initial value 99.361167
iter 10 value 92.646220
iter 20 value 30.770593
iter 30 value 3.586130
iter 40 value 2.352263
iter 50 value 1.914247
iter 60 value 1.681670
iter 70 value 1.665991
iter 80 value 1.665958
iter 90 value 1.665941
iter 100 value 1.665912
final value 1.665912
stopped after 100 iterations
# weights: 27
initial value 117.438253
iter 10 value 78.996400
iter 20 value 31.582773
iter 30 value 2.887026
iter 40 value 1.776910
iter 50 value 1.620399
iter 60 value 1.582873
iter 70 value 1.581895
iter 80 value 1.561625
iter 90 value 1.072699
iter 100 value 0.982849
final value 0.982849
stopped after 100 iterations
# weights: 43
initial value 103.053776
iter 10 value 15.789581
iter 20 value 0.601409
iter 30 value 0.393780
iter 40 value 0.327655
iter 50 value 0.271992
iter 60 value 0.234947
iter 70 value 0.205358
iter 80 value 0.198001
iter 90 value 0.193947
iter 100 value 0.180138
final value 0.180138
stopped after 100 iterations
# weights: 11
initial value 110.464257
iter 10 value 82.283284
iter 20 value 40.888421
iter 30 value 40.821381
iter 40 value 40.819382
final value 40.819380
converged
# weights: 27
initial value 107.623720
iter 10 value 94.224093
iter 20 value 41.633900
iter 30 value 40.738816
final value 40.064498
converged
# weights: 43
initial value 108.079949
iter 10 value 38.938233
iter 20 value 8.103557
iter 30 value 5.587399
iter 40 value 4.485122
iter 50 value 4.450129
iter 60 value 4.443327
iter 70 value 4.345787
iter 80 value 3.066520
iter 90 value 2.508144
iter 100 value 2.419648
final value 2.419648
stopped after 100 iterations
# weights: 11
initial value 104.412219
iter 10 value 98.542790
iter 20 value 47.984694
iter 30 value 38.387255
iter 40 value 38.365041
final value 38.365004
converged
# weights: 27
initial value 101.082190
iter 10 value 46.920477
iter 20 value 22.199811
iter 30 value 20.504930
iter 40 value 20.363397
iter 50 value 20.345261
final value 20.345089
converged
# weights: 43
initial value 103.965038
iter 10 value 61.900468
iter 20 value 37.881968
iter 30 value 21.370492
iter 40 value 18.181537
iter 50 value 17.878359
iter 60 value 17.720992
iter 70 value 17.702678
iter 80 value 17.696338
iter 90 value 17.696039
iter 100 value 17.695883
final value 17.695883
stopped after 100 iterations
# weights: 11
initial value 101.300410
iter 10 value 55.146128
iter 20 value 38.882013
iter 30 value 25.452569
iter 40 value 7.494992
iter 50 value 5.265097
iter 60 value 5.081607
iter 70 value 5.051104
iter 80 value 5.016552
iter 90 value 5.015076
iter 100 value 5.014858
final value 5.014858
stopped after 100 iterations
# weights: 27
initial value 133.293968
iter 10 value 43.000392
iter 20 value 6.569991
iter 30 value 5.053545
iter 40 value 4.987705
iter 50 value 4.944980
iter 60 value 4.887503
iter 70 value 4.804576
iter 80 value 4.783574
iter 90 value 4.595965
iter 100 value 2.031365
final value 2.031365
stopped after 100 iterations
# weights: 43
initial value 122.368153
iter 10 value 12.611423
iter 20 value 4.647980
iter 30 value 4.582422
iter 40 value 4.554662
iter 50 value 4.546368
iter 60 value 4.534951
iter 70 value 4.529778
iter 80 value 4.521897
iter 90 value 4.518399
iter 100 value 4.515255
final value 4.515255
stopped after 100 iterations
# weights: 11
initial value 117.566896
iter 10 value 99.821528
iter 20 value 41.822832
iter 30 value 41.456701
final value 41.455409
converged
# weights: 27
initial value 104.109096
iter 10 value 41.536623
iter 20 value 40.545023
iter 30 value 4.042435
iter 40 value 3.836364
iter 50 value 3.821130
iter 60 value 3.813836
iter 70 value 3.809543
iter 80 value 3.808246
iter 90 value 3.805747
iter 100 value 3.801647
final value 3.801647
stopped after 100 iterations
# weights: 43
initial value 111.712213
iter 10 value 30.144180
iter 20 value 5.178092
iter 30 value 4.493806
iter 40 value 4.481492
iter 50 value 4.481201
final value 4.481201
converged
# weights: 11
initial value 115.025169
iter 10 value 54.984499
iter 20 value 40.248475
iter 30 value 38.243482
final value 38.243049
converged
# weights: 27
initial value 100.547664
iter 10 value 57.363840
iter 20 value 22.072417
iter 30 value 20.602671
iter 40 value 20.280841
iter 50 value 20.252680
iter 60 value 20.233915
final value 20.233901
converged
# weights: 43
initial value 116.001766
iter 10 value 46.776881
iter 20 value 21.438582
iter 30 value 18.488175
iter 40 value 17.967164
iter 50 value 17.546645
iter 60 value 17.448399
iter 70 value 17.422766
iter 80 value 17.413144
iter 90 value 17.412282
final value 17.412247
converged
# weights: 11
initial value 94.659862
iter 10 value 39.671416
iter 20 value 18.717270
iter 30 value 8.009920
iter 40 value 4.659287
iter 50 value 4.638841
iter 60 value 4.616173
iter 70 value 4.598341
iter 80 value 4.597235
iter 90 value 4.596675
iter 100 value 4.595654
final value 4.595654
stopped after 100 iterations
# weights: 27
initial value 118.831495
iter 10 value 74.663303
iter 20 value 5.452225
iter 30 value 4.733582
iter 40 value 4.707186
iter 50 value 4.701689
iter 60 value 4.684112
iter 70 value 4.681363
iter 80 value 4.679016
iter 90 value 4.670623
iter 100 value 4.667168
final value 4.667168
stopped after 100 iterations
# weights: 43
initial value 107.056712
iter 10 value 20.629809
iter 20 value 4.989110
iter 30 value 4.818154
iter 40 value 4.798528
iter 50 value 4.731347
iter 60 value 4.707396
iter 70 value 4.677866
iter 80 value 4.232454
iter 90 value 3.554975
iter 100 value 2.834472
final value 2.834472
stopped after 100 iterations
# weights: 11
initial value 109.354324
iter 10 value 67.375272
iter 20 value 16.280476
iter 30 value 4.927699
iter 40 value 4.500107
iter 50 value 4.480113
iter 60 value 4.473220
iter 70 value 4.472530
iter 80 value 4.467932
iter 90 value 4.467225
iter 100 value 4.461960
final value 4.461960
stopped after 100 iterations
# weights: 27
initial value 99.087362
iter 10 value 38.688492
iter 20 value 31.435657
iter 30 value 20.529781
iter 40 value 5.011195
iter 50 value 4.591822
iter 60 value 4.526600
iter 70 value 4.520238
iter 80 value 4.481221
iter 90 value 4.464242
iter 100 value 4.454926
final value 4.454926
stopped after 100 iterations
# weights: 43
initial value 137.300427
iter 10 value 37.460293
iter 20 value 11.037341
iter 30 value 9.535331
iter 40 value 7.550543
iter 50 value 7.545003
iter 60 value 7.544973
iter 70 value 7.544853
final value 7.544852
converged
# weights: 11
initial value 98.097787
iter 10 value 49.023342
iter 20 value 47.473137
iter 30 value 38.677928
final value 38.668815
converged
# weights: 27
initial value 104.219864
iter 10 value 45.887717
iter 20 value 36.937118
iter 30 value 22.211357
iter 40 value 20.899953
iter 50 value 20.688780
iter 60 value 20.633782
iter 70 value 20.633471
iter 70 value 20.633471
iter 70 value 20.633471
final value 20.633471
converged
# weights: 43
initial value 121.007461
iter 10 value 31.521160
iter 20 value 22.935027
iter 30 value 20.358511
iter 40 value 18.588230
iter 50 value 18.230150
iter 60 value 18.179822
iter 70 value 18.151539
iter 80 value 18.142507
iter 90 value 18.138811
iter 100 value 18.138760
final value 18.138760
stopped after 100 iterations
# weights: 11
initial value 102.635138
iter 10 value 88.188747
iter 20 value 13.866255
iter 30 value 5.932524
iter 40 value 5.277815
iter 50 value 5.195317
iter 60 value 5.188043
iter 70 value 5.144823
iter 80 value 5.074821
iter 90 value 5.049290
iter 100 value 5.044083
final value 5.044083
stopped after 100 iterations
# weights: 27
initial value 108.011517
iter 10 value 41.222349
iter 20 value 40.727347
iter 30 value 12.694748
iter 40 value 5.581777
iter 50 value 5.079366
iter 60 value 4.986027
iter 70 value 4.911481
iter 80 value 4.689867
iter 90 value 4.564167
iter 100 value 4.538114
final value 4.538114
stopped after 100 iterations
# weights: 43
initial value 102.514132
iter 10 value 34.285222
iter 20 value 5.069444
iter 30 value 4.845359
iter 40 value 4.595756
iter 50 value 4.101032
iter 60 value 1.845992
iter 70 value 1.676707
iter 80 value 1.237679
iter 90 value 1.087277
iter 100 value 0.958848
final value 0.958848
stopped after 100 iterations
# weights: 11
initial value 114.752199
iter 10 value 49.092931
iter 20 value 41.475287
iter 30 value 41.455529
final value 41.455399
converged
# weights: 27
initial value 110.667730
iter 10 value 41.508971
iter 20 value 39.003375
iter 30 value 22.507248
iter 40 value 6.337612
iter 50 value 1.023343
iter 60 value 0.001905
final value 0.000075
converged
# weights: 43
initial value 119.403061
iter 10 value 41.893004
iter 20 value 6.555182
iter 30 value 4.370311
iter 40 value 1.687630
iter 50 value 0.001831
final value 0.000061
converged
# weights: 11
initial value 117.047639
iter 10 value 50.088679
iter 20 value 38.594761
final value 38.587845
converged
# weights: 27
initial value 102.607004
iter 10 value 22.261648
iter 20 value 18.884951
iter 30 value 18.699313
iter 40 value 18.662764
final value 18.657358
converged
# weights: 43
initial value 97.258151
iter 10 value 37.753569
iter 20 value 20.316256
iter 30 value 18.584031
iter 40 value 17.781769
iter 50 value 17.521181
iter 60 value 17.468606
iter 70 value 17.269122
iter 80 value 17.228317
iter 90 value 17.225894
final value 17.225893
converged
# weights: 11
initial value 101.142188
iter 10 value 25.990107
iter 20 value 6.386457
iter 30 value 3.704326
iter 40 value 3.227261
iter 50 value 2.726838
iter 60 value 2.548899
iter 70 value 2.546901
iter 80 value 2.546344
iter 90 value 2.544349
iter 100 value 2.542189
final value 2.542189
stopped after 100 iterations
# weights: 27
initial value 104.206896
iter 10 value 7.665683
iter 20 value 1.696907
iter 30 value 0.675475
iter 40 value 0.590520
iter 50 value 0.528816
iter 60 value 0.503296
iter 70 value 0.483200
iter 80 value 0.431426
iter 90 value 0.410266
iter 100 value 0.382347
final value 0.382347
stopped after 100 iterations
# weights: 43
initial value 108.421523
iter 10 value 63.112211
iter 20 value 5.523619
iter 30 value 0.472608
iter 40 value 0.400093
iter 50 value 0.383952
iter 60 value 0.371918
iter 70 value 0.363483
iter 80 value 0.357365
iter 90 value 0.350342
iter 100 value 0.335421
final value 0.335421
stopped after 100 iterations
# weights: 11
initial value 102.168531
iter 10 value 95.012592
iter 20 value 41.022818
final value 40.819795
converged
# weights: 27
initial value 110.610627
iter 10 value 39.730305
iter 20 value 7.215392
iter 30 value 4.616564
iter 40 value 4.451421
iter 50 value 4.449964
iter 60 value 4.449946
final value 4.449946
converged
# weights: 43
initial value 106.206328
iter 10 value 34.249771
iter 20 value 4.325622
iter 30 value 0.442849
iter 40 value 0.000639
final value 0.000073
converged
# weights: 11
initial value 112.676997
iter 10 value 96.260114
iter 20 value 45.527785
iter 30 value 38.436835
final value 38.417434
converged
# weights: 27
initial value 110.053176
iter 10 value 63.602459
iter 20 value 46.263482
iter 30 value 27.066640
iter 40 value 19.961946
iter 50 value 19.738523
iter 60 value 19.374096
iter 70 value 19.235135
final value 19.234828
converged
# weights: 43
initial value 135.874490
iter 10 value 37.768236
iter 20 value 23.442607
iter 30 value 19.120916
iter 40 value 18.254385
iter 50 value 18.122840
iter 60 value 17.987732
iter 70 value 17.965580
iter 80 value 17.964713
final value 17.964585
converged
# weights: 11
initial value 100.370849
iter 10 value 55.628820
iter 20 value 6.118329
iter 30 value 4.936049
iter 40 value 4.889308
iter 50 value 4.849107
iter 60 value 4.831003
iter 70 value 4.828613
iter 80 value 4.822597
iter 90 value 4.821712
iter 100 value 4.821059
final value 4.821059
stopped after 100 iterations
# weights: 27
initial value 102.571870
iter 10 value 39.590952
iter 20 value 26.181230
iter 30 value 5.407628
iter 40 value 4.904591
iter 50 value 4.890725
iter 60 value 4.869023
iter 70 value 4.842984
iter 80 value 4.836045
iter 90 value 4.830246
iter 100 value 4.826626
final value 4.826626
stopped after 100 iterations
# weights: 43
initial value 98.732387
iter 10 value 35.316613
iter 20 value 5.390554
iter 30 value 2.663862
iter 40 value 0.847404
iter 50 value 0.744891
iter 60 value 0.604505
iter 70 value 0.518708
iter 80 value 0.486693
iter 90 value 0.468080
iter 100 value 0.455985
final value 0.455985
stopped after 100 iterations
# weights: 11
initial value 106.725037
iter 10 value 41.396453
iter 20 value 38.982024
iter 30 value 32.220632
iter 40 value 7.894152
iter 50 value 5.028564
iter 60 value 4.635226
iter 70 value 4.552554
iter 80 value 4.474874
iter 90 value 4.460059
iter 100 value 4.437713
final value 4.437713
stopped after 100 iterations
# weights: 27
initial value 108.675148
iter 10 value 41.680149
iter 20 value 41.456000
iter 30 value 41.455399
final value 41.455399
converged
# weights: 43
initial value 101.915825
iter 10 value 8.284658
iter 20 value 4.438714
iter 30 value 3.167064
iter 40 value 1.375825
iter 50 value 0.000473
final value 0.000047
converged
# weights: 11
initial value 109.596625
iter 10 value 61.742011
iter 20 value 38.431839
final value 38.423071
converged
# weights: 27
initial value 98.563207
iter 10 value 26.055240
iter 20 value 21.535537
iter 30 value 20.412744
iter 40 value 20.056860
final value 20.055998
converged
# weights: 43
initial value 110.473491
iter 10 value 68.153510
iter 20 value 35.706520
iter 30 value 19.825300
iter 40 value 17.973119
iter 50 value 17.876237
iter 60 value 17.819668
iter 70 value 17.806540
iter 80 value 17.798841
iter 90 value 17.797073
final value 17.797058
converged
# weights: 11
initial value 108.831842
iter 10 value 74.402800
iter 20 value 34.741073
iter 30 value 31.580688
iter 40 value 21.233924
iter 50 value 7.697030
iter 60 value 5.256134
iter 70 value 5.123540
iter 80 value 5.023297
iter 90 value 4.995329
iter 100 value 4.995162
final value 4.995162
stopped after 100 iterations
# weights: 27
initial value 167.684136
iter 10 value 41.883107
iter 20 value 41.525148
iter 30 value 41.517622
iter 40 value 41.510500
iter 50 value 41.501599
iter 60 value 24.572062
iter 70 value 7.749578
iter 80 value 5.071912
iter 90 value 5.000681
iter 100 value 4.964058
final value 4.964058
stopped after 100 iterations
# weights: 43
initial value 103.416915
iter 10 value 41.697711
iter 20 value 41.685748
iter 30 value 40.727594
iter 40 value 8.333599
iter 50 value 4.785044
iter 60 value 4.676934
iter 70 value 4.621426
iter 80 value 4.557545
iter 90 value 4.530304
iter 100 value 4.522346
final value 4.522346
stopped after 100 iterations
# weights: 11
initial value 109.515884
iter 10 value 70.272253
iter 20 value 40.844613
iter 30 value 40.819615
final value 40.819543
converged
# weights: 27
initial value 102.759925
iter 10 value 87.575164
iter 20 value 7.754834
iter 30 value 4.468585
iter 40 value 4.072138
iter 50 value 3.470419
iter 60 value 2.526532
iter 70 value 2.381770
iter 80 value 2.308612
iter 90 value 2.078149
iter 100 value 1.715969
final value 1.715969
stopped after 100 iterations
# weights: 43
initial value 112.178451
iter 10 value 15.334090
iter 20 value 5.091506
iter 30 value 4.462834
iter 40 value 4.450264
iter 50 value 4.449952
iter 60 value 4.449946
iter 60 value 4.449946
iter 60 value 4.449946
final value 4.449946
converged
# weights: 11
initial value 97.974278
iter 10 value 38.824226
iter 20 value 38.494283
final value 38.494270
converged
# weights: 27
initial value 110.313248
iter 10 value 53.870664
iter 20 value 26.700481
iter 30 value 22.802635
iter 40 value 21.513535
iter 50 value 19.783460
iter 60 value 19.438911
iter 70 value 19.337184
final value 19.337184
converged
# weights: 43
initial value 100.541119
iter 10 value 55.203690
iter 20 value 35.377102
iter 30 value 24.333463
iter 40 value 20.215776
iter 50 value 19.853585
iter 60 value 19.066946
iter 70 value 18.900907
iter 80 value 18.797023
iter 90 value 18.789679
iter 100 value 18.789098
final value 18.789098
stopped after 100 iterations
# weights: 11
initial value 110.189729
iter 10 value 43.279215
iter 20 value 40.885945
iter 30 value 40.880458
iter 40 value 35.736851
iter 50 value 10.761332
iter 60 value 5.099822
iter 70 value 5.069726
iter 80 value 5.057643
iter 90 value 5.034239
iter 100 value 5.032818
final value 5.032818
stopped after 100 iterations
# weights: 27
initial value 125.097128
iter 10 value 39.475987
iter 20 value 7.625300
iter 30 value 5.010775
iter 40 value 4.877261
iter 50 value 4.836843
iter 60 value 4.827084
iter 70 value 4.821674
iter 80 value 4.817457
iter 90 value 4.643967
iter 100 value 4.224931
final value 4.224931
stopped after 100 iterations
# weights: 43
initial value 124.180638
iter 10 value 24.737040
iter 20 value 5.043634
iter 30 value 4.667736
iter 40 value 4.548246
iter 50 value 4.525265
iter 60 value 4.520265
iter 70 value 4.517439
iter 80 value 4.514351
iter 90 value 4.511791
iter 100 value 4.507405
final value 4.507405
stopped after 100 iterations
# weights: 11
initial value 103.662518
iter 10 value 38.267190
iter 20 value 5.407043
iter 30 value 2.900899
iter 40 value 2.751746
iter 50 value 2.700032
iter 60 value 2.685532
iter 70 value 2.624612
iter 80 value 2.587842
iter 90 value 2.540929
iter 100 value 2.517503
final value 2.517503
stopped after 100 iterations
# weights: 27
initial value 99.402222
iter 10 value 33.914583
iter 20 value 4.447898
iter 30 value 3.549071
iter 40 value 2.689626
iter 50 value 1.865088
iter 60 value 0.001706
final value 0.000085
converged
# weights: 43
initial value 124.153640
iter 10 value 44.420629
iter 20 value 4.452503
iter 30 value 4.027622
iter 40 value 2.700108
iter 50 value 1.980338
iter 60 value 0.000523
final value 0.000079
converged
# weights: 11
initial value 96.927130
iter 10 value 51.926706
iter 20 value 46.518898
iter 30 value 36.618574
final value 36.577228
converged
# weights: 27
initial value 118.880016
iter 10 value 51.761058
iter 20 value 44.070044
iter 30 value 23.890256
iter 40 value 19.923683
iter 50 value 19.713322
iter 60 value 19.647230
iter 70 value 19.501871
iter 80 value 18.179703
iter 90 value 18.167029
final value 18.167027
converged
# weights: 43
initial value 112.272566
iter 10 value 53.311779
iter 20 value 38.803263
iter 30 value 18.845837
iter 40 value 17.314790
iter 50 value 17.231567
iter 60 value 16.888968
iter 70 value 16.559424
iter 80 value 16.549053
final value 16.549053
converged
# weights: 11
initial value 116.321690
iter 10 value 96.525203
iter 20 value 36.796078
iter 30 value 30.880655
iter 40 value 6.811179
iter 50 value 4.254336
iter 60 value 3.599027
iter 70 value 3.554364
iter 80 value 3.532093
iter 90 value 3.494367
iter 100 value 3.494056
final value 3.494056
stopped after 100 iterations
# weights: 27
initial value 150.242224
iter 10 value 41.507886
iter 20 value 25.448937
iter 30 value 4.623267
iter 40 value 3.547753
iter 50 value 3.516873
iter 60 value 3.467457
iter 70 value 3.460607
iter 80 value 3.457636
iter 90 value 3.452957
iter 100 value 3.451768
final value 3.451768
stopped after 100 iterations
# weights: 43
initial value 131.466952
iter 10 value 35.006640
iter 20 value 4.690433
iter 30 value 4.618616
iter 40 value 4.596508
iter 50 value 4.539330
iter 60 value 4.124204
iter 70 value 2.873892
iter 80 value 2.654286
iter 90 value 2.620304
iter 100 value 2.601012
final value 2.601012
stopped after 100 iterations
# weights: 11
initial value 110.138896
iter 10 value 57.451793
iter 20 value 15.488750
iter 30 value 5.804019
iter 40 value 5.285310
iter 50 value 5.116809
iter 60 value 5.060870
iter 70 value 5.051332
iter 80 value 5.050374
iter 90 value 5.048425
iter 100 value 5.045746
final value 5.045746
stopped after 100 iterations
Confusion Matrix and Statistics
Reference
Prediction setosa versicolor virginica
setosa 16 0 0
versicolor 0 19 0
virginica 0 0 15
Overall Statistics
Accuracy : 1
95% CI : (0.9289, 1)
No Information Rate : 0.38
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 1
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.00 1.00 1.0
Specificity 1.00 1.00 1.0
Pos Pred Value 1.00 1.00 1.0
Neg Pred Value 1.00 1.00 1.0
Prevalence 0.32 0.38 0.3
Detection Rate 0.32 0.38 0.3
Detection Prevalence 0.32 0.38 0.3
Balanced Accuracy 1.00 1.00 1.0
knn model
Confusion Matrix and Statistics
Reference
Prediction setosa versicolor virginica
setosa 16 0 0
versicolor 0 19 0
virginica 0 0 15
Overall Statistics
Accuracy : 1
95% CI : (0.9289, 1)
No Information Rate : 0.38
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 1
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.00 1.00 1.0
Specificity 1.00 1.00 1.0
Pos Pred Value 1.00 1.00 1.0
Neg Pred Value 1.00 1.00 1.0
Prevalence 0.32 0.38 0.3
Detection Rate 0.32 0.38 0.3
Detection Prevalence 0.32 0.38 0.3
Balanced Accuracy 1.00 1.00 1.0