data visualization data mining using

using ggplot2 & caret R package

Author

kirit ved

Published

December 14, 2023

ggplot2

setting R environment

 [1] "kernlab"   "caret"     "lattice"   "kbv"       "janitor"   "lubridate"
 [7] "forcats"   "stringr"   "dplyr"     "purrr"     "readr"     "tidyr"    
[13] "tibble"    "ggplot2"   "tidyverse" "pacman"   

loading iris dataset & viewing it

Code
d=iris |> janitor::clean_names()
head(d)
  sepal_length sepal_width petal_length petal_width species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
Code
tail(d)
    sepal_length sepal_width petal_length petal_width   species
145          6.7         3.3          5.7         2.5 virginica
146          6.7         3.0          5.2         2.3 virginica
147          6.3         2.5          5.0         1.9 virginica
148          6.5         3.0          5.2         2.0 virginica
149          6.2         3.4          5.4         2.3 virginica
150          5.9         3.0          5.1         1.8 virginica
Code
str(d)
'data.frame':   150 obs. of  5 variables:
 $ sepal_length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ sepal_width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ petal_length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ petal_width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
Code
  sepal_length    sepal_width     petal_length    petal_width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       species  
 setosa    :50  
 versicolor:50  
 virginica :50  
                
                
                

viewing histogram

viewing density plot

viewing scattered plots

viewing box plots

viewing bar plots

# A tibble: 3 × 4
  species      cnt     m     s
  <fct>      <dbl> <dbl> <dbl>
1 setosa        50  5.01  0.35
2 versicolor    50  5.94  0.52
3 virginica     50  6.59  0.64

caret R package for data mining

create data partition for traing & testing

[1] 100
[1] 50

random forest using caret

Random Forest 

100 samples
  4 predictor
  3 classes: 'setosa', 'versicolor', 'virginica' 

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 89, 91, 91, 89, 90, 90, ... 
Resampling results across tuning parameters:

  mtry  Accuracy   Kappa    
  2     0.9488889  0.9231796
  3     0.9488889  0.9231796
  4     0.9488889  0.9231796

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
Confusion Matrix and Statistics

            Reference
Prediction   setosa versicolor virginica
  setosa         16          0         0
  versicolor      0         18         1
  virginica       0          1        14

Overall Statistics
                                          
               Accuracy : 0.96            
                 95% CI : (0.8629, 0.9951)
    No Information Rate : 0.38            
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.9397          
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: setosa Class: versicolor Class: virginica
Sensitivity                   1.00            0.9474           0.9333
Specificity                   1.00            0.9677           0.9714
Pos Pred Value                1.00            0.9474           0.9333
Neg Pred Value                1.00            0.9677           0.9714
Prevalence                    0.32            0.3800           0.3000
Detection Rate                0.32            0.3600           0.2800
Detection Prevalence          0.32            0.3800           0.3000
Balanced Accuracy             1.00            0.9576           0.9524

decision tree model

Confusion Matrix and Statistics

            Reference
Prediction   setosa versicolor virginica
  setosa         16          0         0
  versicolor      0         18         1
  virginica       0          1        14

Overall Statistics
                                          
               Accuracy : 0.96            
                 95% CI : (0.8629, 0.9951)
    No Information Rate : 0.38            
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.9397          
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: setosa Class: versicolor Class: virginica
Sensitivity                   1.00            0.9474           0.9333
Specificity                   1.00            0.9677           0.9714
Pos Pred Value                1.00            0.9474           0.9333
Neg Pred Value                1.00            0.9677           0.9714
Prevalence                    0.32            0.3800           0.3000
Detection Rate                0.32            0.3600           0.2800
Detection Prevalence          0.32            0.3800           0.3000
Balanced Accuracy             1.00            0.9576           0.9524

svm model

Confusion Matrix and Statistics

            Reference
Prediction   setosa versicolor virginica
  setosa         16          0         0
  versicolor      0         18         1
  virginica       0          1        14

Overall Statistics
                                          
               Accuracy : 0.96            
                 95% CI : (0.8629, 0.9951)
    No Information Rate : 0.38            
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.9397          
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: setosa Class: versicolor Class: virginica
Sensitivity                   1.00            0.9474           0.9333
Specificity                   1.00            0.9677           0.9714
Pos Pred Value                1.00            0.9474           0.9333
Neg Pred Value                1.00            0.9677           0.9714
Prevalence                    0.32            0.3800           0.3000
Detection Rate                0.32            0.3600           0.2800
Detection Prevalence          0.32            0.3800           0.3000
Balanced Accuracy             1.00            0.9576           0.9524

nueral network model

# weights:  11
initial  value 110.348869 
iter  10 value 43.292843
iter  20 value 15.882860
iter  30 value 5.758607
iter  40 value 4.647514
iter  50 value 4.449860
iter  60 value 4.443939
iter  70 value 4.438798
iter  70 value 4.438798
final  value 4.438798 
converged
# weights:  27
initial  value 106.310561 
iter  10 value 25.718700
iter  20 value 5.255353
iter  30 value 4.474079
iter  40 value 4.197851
iter  50 value 3.136753
iter  60 value 0.358626
iter  70 value 0.064815
iter  80 value 0.027611
iter  90 value 0.020181
iter 100 value 0.014452
final  value 0.014452 
stopped after 100 iterations
# weights:  43
initial  value 106.930348 
final  value 41.455422 
converged
# weights:  11
initial  value 104.415041 
iter  10 value 79.688881
iter  20 value 46.261790
iter  30 value 38.721418
final  value 38.690814 
converged
# weights:  27
initial  value 110.513084 
iter  10 value 66.150984
iter  20 value 24.076619
iter  30 value 21.378738
iter  40 value 20.478388
iter  50 value 20.346398
iter  60 value 20.344062
iter  70 value 20.342871
final  value 20.342871 
converged
# weights:  43
initial  value 101.146353 
iter  10 value 42.755577
iter  20 value 21.030529
iter  30 value 19.606917
iter  40 value 18.745997
iter  50 value 18.144727
iter  60 value 17.978364
iter  70 value 17.961701
iter  80 value 17.960974
iter  90 value 17.960297
iter 100 value 17.959987
final  value 17.959987 
stopped after 100 iterations
# weights:  11
initial  value 108.505651 
iter  10 value 44.263679
iter  20 value 41.566938
iter  30 value 41.556111
iter  40 value 41.544713
iter  50 value 41.536357
iter  60 value 41.524487
iter  70 value 38.613990
iter  80 value 10.958325
iter  90 value 5.015327
iter 100 value 4.995248
final  value 4.995248 
stopped after 100 iterations
# weights:  27
initial  value 113.160195 
iter  10 value 10.456197
iter  20 value 4.976803
iter  30 value 4.788480
iter  40 value 4.716120
iter  50 value 4.578231
iter  60 value 4.566010
iter  70 value 4.547135
iter  80 value 4.536586
iter  90 value 4.516755
iter 100 value 4.514009
final  value 4.514009 
stopped after 100 iterations
# weights:  43
initial  value 118.199466 
iter  10 value 22.705354
iter  20 value 5.029990
iter  30 value 4.902711
iter  40 value 4.444076
iter  50 value 3.541177
iter  60 value 2.732033
iter  70 value 1.574034
iter  80 value 0.946737
iter  90 value 0.848283
iter 100 value 0.647199
final  value 0.647199 
stopped after 100 iterations
# weights:  11
initial  value 99.444611 
iter  10 value 39.855704
iter  20 value 10.116048
iter  30 value 1.401405
iter  40 value 0.679942
iter  50 value 0.542809
iter  60 value 0.472520
iter  70 value 0.313715
iter  80 value 0.277362
iter  90 value 0.188892
iter 100 value 0.184732
final  value 0.184732 
stopped after 100 iterations
# weights:  27
initial  value 116.433521 
iter  10 value 60.978235
iter  20 value 7.227844
iter  30 value 0.304689
iter  40 value 0.000655
final  value 0.000040 
converged
# weights:  43
initial  value 115.571028 
iter  10 value 49.322799
iter  20 value 38.758439
iter  30 value 38.663670
iter  40 value 38.616939
iter  50 value 37.909081
iter  60 value 37.895702
iter  70 value 37.895520
final  value 37.895508 
converged
# weights:  11
initial  value 102.800060 
iter  10 value 53.805627
iter  20 value 47.284822
iter  30 value 38.032372
final  value 38.031660 
converged
# weights:  27
initial  value 105.584745 
iter  10 value 83.207957
iter  20 value 20.203657
iter  30 value 18.777983
iter  40 value 18.471545
iter  50 value 18.448502
iter  60 value 18.440045
iter  60 value 18.440045
final  value 18.440045 
converged
# weights:  43
initial  value 104.297419 
iter  10 value 49.263219
iter  20 value 21.002023
iter  30 value 17.907145
iter  40 value 17.056548
iter  50 value 16.773344
iter  60 value 16.297834
iter  70 value 16.229767
iter  80 value 16.227265
final  value 16.227265 
converged
# weights:  11
initial  value 99.361167 
iter  10 value 92.646220
iter  20 value 30.770593
iter  30 value 3.586130
iter  40 value 2.352263
iter  50 value 1.914247
iter  60 value 1.681670
iter  70 value 1.665991
iter  80 value 1.665958
iter  90 value 1.665941
iter 100 value 1.665912
final  value 1.665912 
stopped after 100 iterations
# weights:  27
initial  value 117.438253 
iter  10 value 78.996400
iter  20 value 31.582773
iter  30 value 2.887026
iter  40 value 1.776910
iter  50 value 1.620399
iter  60 value 1.582873
iter  70 value 1.581895
iter  80 value 1.561625
iter  90 value 1.072699
iter 100 value 0.982849
final  value 0.982849 
stopped after 100 iterations
# weights:  43
initial  value 103.053776 
iter  10 value 15.789581
iter  20 value 0.601409
iter  30 value 0.393780
iter  40 value 0.327655
iter  50 value 0.271992
iter  60 value 0.234947
iter  70 value 0.205358
iter  80 value 0.198001
iter  90 value 0.193947
iter 100 value 0.180138
final  value 0.180138 
stopped after 100 iterations
# weights:  11
initial  value 110.464257 
iter  10 value 82.283284
iter  20 value 40.888421
iter  30 value 40.821381
iter  40 value 40.819382
final  value 40.819380 
converged
# weights:  27
initial  value 107.623720 
iter  10 value 94.224093
iter  20 value 41.633900
iter  30 value 40.738816
final  value 40.064498 
converged
# weights:  43
initial  value 108.079949 
iter  10 value 38.938233
iter  20 value 8.103557
iter  30 value 5.587399
iter  40 value 4.485122
iter  50 value 4.450129
iter  60 value 4.443327
iter  70 value 4.345787
iter  80 value 3.066520
iter  90 value 2.508144
iter 100 value 2.419648
final  value 2.419648 
stopped after 100 iterations
# weights:  11
initial  value 104.412219 
iter  10 value 98.542790
iter  20 value 47.984694
iter  30 value 38.387255
iter  40 value 38.365041
final  value 38.365004 
converged
# weights:  27
initial  value 101.082190 
iter  10 value 46.920477
iter  20 value 22.199811
iter  30 value 20.504930
iter  40 value 20.363397
iter  50 value 20.345261
final  value 20.345089 
converged
# weights:  43
initial  value 103.965038 
iter  10 value 61.900468
iter  20 value 37.881968
iter  30 value 21.370492
iter  40 value 18.181537
iter  50 value 17.878359
iter  60 value 17.720992
iter  70 value 17.702678
iter  80 value 17.696338
iter  90 value 17.696039
iter 100 value 17.695883
final  value 17.695883 
stopped after 100 iterations
# weights:  11
initial  value 101.300410 
iter  10 value 55.146128
iter  20 value 38.882013
iter  30 value 25.452569
iter  40 value 7.494992
iter  50 value 5.265097
iter  60 value 5.081607
iter  70 value 5.051104
iter  80 value 5.016552
iter  90 value 5.015076
iter 100 value 5.014858
final  value 5.014858 
stopped after 100 iterations
# weights:  27
initial  value 133.293968 
iter  10 value 43.000392
iter  20 value 6.569991
iter  30 value 5.053545
iter  40 value 4.987705
iter  50 value 4.944980
iter  60 value 4.887503
iter  70 value 4.804576
iter  80 value 4.783574
iter  90 value 4.595965
iter 100 value 2.031365
final  value 2.031365 
stopped after 100 iterations
# weights:  43
initial  value 122.368153 
iter  10 value 12.611423
iter  20 value 4.647980
iter  30 value 4.582422
iter  40 value 4.554662
iter  50 value 4.546368
iter  60 value 4.534951
iter  70 value 4.529778
iter  80 value 4.521897
iter  90 value 4.518399
iter 100 value 4.515255
final  value 4.515255 
stopped after 100 iterations
# weights:  11
initial  value 117.566896 
iter  10 value 99.821528
iter  20 value 41.822832
iter  30 value 41.456701
final  value 41.455409 
converged
# weights:  27
initial  value 104.109096 
iter  10 value 41.536623
iter  20 value 40.545023
iter  30 value 4.042435
iter  40 value 3.836364
iter  50 value 3.821130
iter  60 value 3.813836
iter  70 value 3.809543
iter  80 value 3.808246
iter  90 value 3.805747
iter 100 value 3.801647
final  value 3.801647 
stopped after 100 iterations
# weights:  43
initial  value 111.712213 
iter  10 value 30.144180
iter  20 value 5.178092
iter  30 value 4.493806
iter  40 value 4.481492
iter  50 value 4.481201
final  value 4.481201 
converged
# weights:  11
initial  value 115.025169 
iter  10 value 54.984499
iter  20 value 40.248475
iter  30 value 38.243482
final  value 38.243049 
converged
# weights:  27
initial  value 100.547664 
iter  10 value 57.363840
iter  20 value 22.072417
iter  30 value 20.602671
iter  40 value 20.280841
iter  50 value 20.252680
iter  60 value 20.233915
final  value 20.233901 
converged
# weights:  43
initial  value 116.001766 
iter  10 value 46.776881
iter  20 value 21.438582
iter  30 value 18.488175
iter  40 value 17.967164
iter  50 value 17.546645
iter  60 value 17.448399
iter  70 value 17.422766
iter  80 value 17.413144
iter  90 value 17.412282
final  value 17.412247 
converged
# weights:  11
initial  value 94.659862 
iter  10 value 39.671416
iter  20 value 18.717270
iter  30 value 8.009920
iter  40 value 4.659287
iter  50 value 4.638841
iter  60 value 4.616173
iter  70 value 4.598341
iter  80 value 4.597235
iter  90 value 4.596675
iter 100 value 4.595654
final  value 4.595654 
stopped after 100 iterations
# weights:  27
initial  value 118.831495 
iter  10 value 74.663303
iter  20 value 5.452225
iter  30 value 4.733582
iter  40 value 4.707186
iter  50 value 4.701689
iter  60 value 4.684112
iter  70 value 4.681363
iter  80 value 4.679016
iter  90 value 4.670623
iter 100 value 4.667168
final  value 4.667168 
stopped after 100 iterations
# weights:  43
initial  value 107.056712 
iter  10 value 20.629809
iter  20 value 4.989110
iter  30 value 4.818154
iter  40 value 4.798528
iter  50 value 4.731347
iter  60 value 4.707396
iter  70 value 4.677866
iter  80 value 4.232454
iter  90 value 3.554975
iter 100 value 2.834472
final  value 2.834472 
stopped after 100 iterations
# weights:  11
initial  value 109.354324 
iter  10 value 67.375272
iter  20 value 16.280476
iter  30 value 4.927699
iter  40 value 4.500107
iter  50 value 4.480113
iter  60 value 4.473220
iter  70 value 4.472530
iter  80 value 4.467932
iter  90 value 4.467225
iter 100 value 4.461960
final  value 4.461960 
stopped after 100 iterations
# weights:  27
initial  value 99.087362 
iter  10 value 38.688492
iter  20 value 31.435657
iter  30 value 20.529781
iter  40 value 5.011195
iter  50 value 4.591822
iter  60 value 4.526600
iter  70 value 4.520238
iter  80 value 4.481221
iter  90 value 4.464242
iter 100 value 4.454926
final  value 4.454926 
stopped after 100 iterations
# weights:  43
initial  value 137.300427 
iter  10 value 37.460293
iter  20 value 11.037341
iter  30 value 9.535331
iter  40 value 7.550543
iter  50 value 7.545003
iter  60 value 7.544973
iter  70 value 7.544853
final  value 7.544852 
converged
# weights:  11
initial  value 98.097787 
iter  10 value 49.023342
iter  20 value 47.473137
iter  30 value 38.677928
final  value 38.668815 
converged
# weights:  27
initial  value 104.219864 
iter  10 value 45.887717
iter  20 value 36.937118
iter  30 value 22.211357
iter  40 value 20.899953
iter  50 value 20.688780
iter  60 value 20.633782
iter  70 value 20.633471
iter  70 value 20.633471
iter  70 value 20.633471
final  value 20.633471 
converged
# weights:  43
initial  value 121.007461 
iter  10 value 31.521160
iter  20 value 22.935027
iter  30 value 20.358511
iter  40 value 18.588230
iter  50 value 18.230150
iter  60 value 18.179822
iter  70 value 18.151539
iter  80 value 18.142507
iter  90 value 18.138811
iter 100 value 18.138760
final  value 18.138760 
stopped after 100 iterations
# weights:  11
initial  value 102.635138 
iter  10 value 88.188747
iter  20 value 13.866255
iter  30 value 5.932524
iter  40 value 5.277815
iter  50 value 5.195317
iter  60 value 5.188043
iter  70 value 5.144823
iter  80 value 5.074821
iter  90 value 5.049290
iter 100 value 5.044083
final  value 5.044083 
stopped after 100 iterations
# weights:  27
initial  value 108.011517 
iter  10 value 41.222349
iter  20 value 40.727347
iter  30 value 12.694748
iter  40 value 5.581777
iter  50 value 5.079366
iter  60 value 4.986027
iter  70 value 4.911481
iter  80 value 4.689867
iter  90 value 4.564167
iter 100 value 4.538114
final  value 4.538114 
stopped after 100 iterations
# weights:  43
initial  value 102.514132 
iter  10 value 34.285222
iter  20 value 5.069444
iter  30 value 4.845359
iter  40 value 4.595756
iter  50 value 4.101032
iter  60 value 1.845992
iter  70 value 1.676707
iter  80 value 1.237679
iter  90 value 1.087277
iter 100 value 0.958848
final  value 0.958848 
stopped after 100 iterations
# weights:  11
initial  value 114.752199 
iter  10 value 49.092931
iter  20 value 41.475287
iter  30 value 41.455529
final  value 41.455399 
converged
# weights:  27
initial  value 110.667730 
iter  10 value 41.508971
iter  20 value 39.003375
iter  30 value 22.507248
iter  40 value 6.337612
iter  50 value 1.023343
iter  60 value 0.001905
final  value 0.000075 
converged
# weights:  43
initial  value 119.403061 
iter  10 value 41.893004
iter  20 value 6.555182
iter  30 value 4.370311
iter  40 value 1.687630
iter  50 value 0.001831
final  value 0.000061 
converged
# weights:  11
initial  value 117.047639 
iter  10 value 50.088679
iter  20 value 38.594761
final  value 38.587845 
converged
# weights:  27
initial  value 102.607004 
iter  10 value 22.261648
iter  20 value 18.884951
iter  30 value 18.699313
iter  40 value 18.662764
final  value 18.657358 
converged
# weights:  43
initial  value 97.258151 
iter  10 value 37.753569
iter  20 value 20.316256
iter  30 value 18.584031
iter  40 value 17.781769
iter  50 value 17.521181
iter  60 value 17.468606
iter  70 value 17.269122
iter  80 value 17.228317
iter  90 value 17.225894
final  value 17.225893 
converged
# weights:  11
initial  value 101.142188 
iter  10 value 25.990107
iter  20 value 6.386457
iter  30 value 3.704326
iter  40 value 3.227261
iter  50 value 2.726838
iter  60 value 2.548899
iter  70 value 2.546901
iter  80 value 2.546344
iter  90 value 2.544349
iter 100 value 2.542189
final  value 2.542189 
stopped after 100 iterations
# weights:  27
initial  value 104.206896 
iter  10 value 7.665683
iter  20 value 1.696907
iter  30 value 0.675475
iter  40 value 0.590520
iter  50 value 0.528816
iter  60 value 0.503296
iter  70 value 0.483200
iter  80 value 0.431426
iter  90 value 0.410266
iter 100 value 0.382347
final  value 0.382347 
stopped after 100 iterations
# weights:  43
initial  value 108.421523 
iter  10 value 63.112211
iter  20 value 5.523619
iter  30 value 0.472608
iter  40 value 0.400093
iter  50 value 0.383952
iter  60 value 0.371918
iter  70 value 0.363483
iter  80 value 0.357365
iter  90 value 0.350342
iter 100 value 0.335421
final  value 0.335421 
stopped after 100 iterations
# weights:  11
initial  value 102.168531 
iter  10 value 95.012592
iter  20 value 41.022818
final  value 40.819795 
converged
# weights:  27
initial  value 110.610627 
iter  10 value 39.730305
iter  20 value 7.215392
iter  30 value 4.616564
iter  40 value 4.451421
iter  50 value 4.449964
iter  60 value 4.449946
final  value 4.449946 
converged
# weights:  43
initial  value 106.206328 
iter  10 value 34.249771
iter  20 value 4.325622
iter  30 value 0.442849
iter  40 value 0.000639
final  value 0.000073 
converged
# weights:  11
initial  value 112.676997 
iter  10 value 96.260114
iter  20 value 45.527785
iter  30 value 38.436835
final  value 38.417434 
converged
# weights:  27
initial  value 110.053176 
iter  10 value 63.602459
iter  20 value 46.263482
iter  30 value 27.066640
iter  40 value 19.961946
iter  50 value 19.738523
iter  60 value 19.374096
iter  70 value 19.235135
final  value 19.234828 
converged
# weights:  43
initial  value 135.874490 
iter  10 value 37.768236
iter  20 value 23.442607
iter  30 value 19.120916
iter  40 value 18.254385
iter  50 value 18.122840
iter  60 value 17.987732
iter  70 value 17.965580
iter  80 value 17.964713
final  value 17.964585 
converged
# weights:  11
initial  value 100.370849 
iter  10 value 55.628820
iter  20 value 6.118329
iter  30 value 4.936049
iter  40 value 4.889308
iter  50 value 4.849107
iter  60 value 4.831003
iter  70 value 4.828613
iter  80 value 4.822597
iter  90 value 4.821712
iter 100 value 4.821059
final  value 4.821059 
stopped after 100 iterations
# weights:  27
initial  value 102.571870 
iter  10 value 39.590952
iter  20 value 26.181230
iter  30 value 5.407628
iter  40 value 4.904591
iter  50 value 4.890725
iter  60 value 4.869023
iter  70 value 4.842984
iter  80 value 4.836045
iter  90 value 4.830246
iter 100 value 4.826626
final  value 4.826626 
stopped after 100 iterations
# weights:  43
initial  value 98.732387 
iter  10 value 35.316613
iter  20 value 5.390554
iter  30 value 2.663862
iter  40 value 0.847404
iter  50 value 0.744891
iter  60 value 0.604505
iter  70 value 0.518708
iter  80 value 0.486693
iter  90 value 0.468080
iter 100 value 0.455985
final  value 0.455985 
stopped after 100 iterations
# weights:  11
initial  value 106.725037 
iter  10 value 41.396453
iter  20 value 38.982024
iter  30 value 32.220632
iter  40 value 7.894152
iter  50 value 5.028564
iter  60 value 4.635226
iter  70 value 4.552554
iter  80 value 4.474874
iter  90 value 4.460059
iter 100 value 4.437713
final  value 4.437713 
stopped after 100 iterations
# weights:  27
initial  value 108.675148 
iter  10 value 41.680149
iter  20 value 41.456000
iter  30 value 41.455399
final  value 41.455399 
converged
# weights:  43
initial  value 101.915825 
iter  10 value 8.284658
iter  20 value 4.438714
iter  30 value 3.167064
iter  40 value 1.375825
iter  50 value 0.000473
final  value 0.000047 
converged
# weights:  11
initial  value 109.596625 
iter  10 value 61.742011
iter  20 value 38.431839
final  value 38.423071 
converged
# weights:  27
initial  value 98.563207 
iter  10 value 26.055240
iter  20 value 21.535537
iter  30 value 20.412744
iter  40 value 20.056860
final  value 20.055998 
converged
# weights:  43
initial  value 110.473491 
iter  10 value 68.153510
iter  20 value 35.706520
iter  30 value 19.825300
iter  40 value 17.973119
iter  50 value 17.876237
iter  60 value 17.819668
iter  70 value 17.806540
iter  80 value 17.798841
iter  90 value 17.797073
final  value 17.797058 
converged
# weights:  11
initial  value 108.831842 
iter  10 value 74.402800
iter  20 value 34.741073
iter  30 value 31.580688
iter  40 value 21.233924
iter  50 value 7.697030
iter  60 value 5.256134
iter  70 value 5.123540
iter  80 value 5.023297
iter  90 value 4.995329
iter 100 value 4.995162
final  value 4.995162 
stopped after 100 iterations
# weights:  27
initial  value 167.684136 
iter  10 value 41.883107
iter  20 value 41.525148
iter  30 value 41.517622
iter  40 value 41.510500
iter  50 value 41.501599
iter  60 value 24.572062
iter  70 value 7.749578
iter  80 value 5.071912
iter  90 value 5.000681
iter 100 value 4.964058
final  value 4.964058 
stopped after 100 iterations
# weights:  43
initial  value 103.416915 
iter  10 value 41.697711
iter  20 value 41.685748
iter  30 value 40.727594
iter  40 value 8.333599
iter  50 value 4.785044
iter  60 value 4.676934
iter  70 value 4.621426
iter  80 value 4.557545
iter  90 value 4.530304
iter 100 value 4.522346
final  value 4.522346 
stopped after 100 iterations
# weights:  11
initial  value 109.515884 
iter  10 value 70.272253
iter  20 value 40.844613
iter  30 value 40.819615
final  value 40.819543 
converged
# weights:  27
initial  value 102.759925 
iter  10 value 87.575164
iter  20 value 7.754834
iter  30 value 4.468585
iter  40 value 4.072138
iter  50 value 3.470419
iter  60 value 2.526532
iter  70 value 2.381770
iter  80 value 2.308612
iter  90 value 2.078149
iter 100 value 1.715969
final  value 1.715969 
stopped after 100 iterations
# weights:  43
initial  value 112.178451 
iter  10 value 15.334090
iter  20 value 5.091506
iter  30 value 4.462834
iter  40 value 4.450264
iter  50 value 4.449952
iter  60 value 4.449946
iter  60 value 4.449946
iter  60 value 4.449946
final  value 4.449946 
converged
# weights:  11
initial  value 97.974278 
iter  10 value 38.824226
iter  20 value 38.494283
final  value 38.494270 
converged
# weights:  27
initial  value 110.313248 
iter  10 value 53.870664
iter  20 value 26.700481
iter  30 value 22.802635
iter  40 value 21.513535
iter  50 value 19.783460
iter  60 value 19.438911
iter  70 value 19.337184
final  value 19.337184 
converged
# weights:  43
initial  value 100.541119 
iter  10 value 55.203690
iter  20 value 35.377102
iter  30 value 24.333463
iter  40 value 20.215776
iter  50 value 19.853585
iter  60 value 19.066946
iter  70 value 18.900907
iter  80 value 18.797023
iter  90 value 18.789679
iter 100 value 18.789098
final  value 18.789098 
stopped after 100 iterations
# weights:  11
initial  value 110.189729 
iter  10 value 43.279215
iter  20 value 40.885945
iter  30 value 40.880458
iter  40 value 35.736851
iter  50 value 10.761332
iter  60 value 5.099822
iter  70 value 5.069726
iter  80 value 5.057643
iter  90 value 5.034239
iter 100 value 5.032818
final  value 5.032818 
stopped after 100 iterations
# weights:  27
initial  value 125.097128 
iter  10 value 39.475987
iter  20 value 7.625300
iter  30 value 5.010775
iter  40 value 4.877261
iter  50 value 4.836843
iter  60 value 4.827084
iter  70 value 4.821674
iter  80 value 4.817457
iter  90 value 4.643967
iter 100 value 4.224931
final  value 4.224931 
stopped after 100 iterations
# weights:  43
initial  value 124.180638 
iter  10 value 24.737040
iter  20 value 5.043634
iter  30 value 4.667736
iter  40 value 4.548246
iter  50 value 4.525265
iter  60 value 4.520265
iter  70 value 4.517439
iter  80 value 4.514351
iter  90 value 4.511791
iter 100 value 4.507405
final  value 4.507405 
stopped after 100 iterations
# weights:  11
initial  value 103.662518 
iter  10 value 38.267190
iter  20 value 5.407043
iter  30 value 2.900899
iter  40 value 2.751746
iter  50 value 2.700032
iter  60 value 2.685532
iter  70 value 2.624612
iter  80 value 2.587842
iter  90 value 2.540929
iter 100 value 2.517503
final  value 2.517503 
stopped after 100 iterations
# weights:  27
initial  value 99.402222 
iter  10 value 33.914583
iter  20 value 4.447898
iter  30 value 3.549071
iter  40 value 2.689626
iter  50 value 1.865088
iter  60 value 0.001706
final  value 0.000085 
converged
# weights:  43
initial  value 124.153640 
iter  10 value 44.420629
iter  20 value 4.452503
iter  30 value 4.027622
iter  40 value 2.700108
iter  50 value 1.980338
iter  60 value 0.000523
final  value 0.000079 
converged
# weights:  11
initial  value 96.927130 
iter  10 value 51.926706
iter  20 value 46.518898
iter  30 value 36.618574
final  value 36.577228 
converged
# weights:  27
initial  value 118.880016 
iter  10 value 51.761058
iter  20 value 44.070044
iter  30 value 23.890256
iter  40 value 19.923683
iter  50 value 19.713322
iter  60 value 19.647230
iter  70 value 19.501871
iter  80 value 18.179703
iter  90 value 18.167029
final  value 18.167027 
converged
# weights:  43
initial  value 112.272566 
iter  10 value 53.311779
iter  20 value 38.803263
iter  30 value 18.845837
iter  40 value 17.314790
iter  50 value 17.231567
iter  60 value 16.888968
iter  70 value 16.559424
iter  80 value 16.549053
final  value 16.549053 
converged
# weights:  11
initial  value 116.321690 
iter  10 value 96.525203
iter  20 value 36.796078
iter  30 value 30.880655
iter  40 value 6.811179
iter  50 value 4.254336
iter  60 value 3.599027
iter  70 value 3.554364
iter  80 value 3.532093
iter  90 value 3.494367
iter 100 value 3.494056
final  value 3.494056 
stopped after 100 iterations
# weights:  27
initial  value 150.242224 
iter  10 value 41.507886
iter  20 value 25.448937
iter  30 value 4.623267
iter  40 value 3.547753
iter  50 value 3.516873
iter  60 value 3.467457
iter  70 value 3.460607
iter  80 value 3.457636
iter  90 value 3.452957
iter 100 value 3.451768
final  value 3.451768 
stopped after 100 iterations
# weights:  43
initial  value 131.466952 
iter  10 value 35.006640
iter  20 value 4.690433
iter  30 value 4.618616
iter  40 value 4.596508
iter  50 value 4.539330
iter  60 value 4.124204
iter  70 value 2.873892
iter  80 value 2.654286
iter  90 value 2.620304
iter 100 value 2.601012
final  value 2.601012 
stopped after 100 iterations
# weights:  11
initial  value 110.138896 
iter  10 value 57.451793
iter  20 value 15.488750
iter  30 value 5.804019
iter  40 value 5.285310
iter  50 value 5.116809
iter  60 value 5.060870
iter  70 value 5.051332
iter  80 value 5.050374
iter  90 value 5.048425
iter 100 value 5.045746
final  value 5.045746 
stopped after 100 iterations
Confusion Matrix and Statistics

            Reference
Prediction   setosa versicolor virginica
  setosa         16          0         0
  versicolor      0         19         0
  virginica       0          0        15

Overall Statistics
                                     
               Accuracy : 1          
                 95% CI : (0.9289, 1)
    No Information Rate : 0.38       
    P-Value [Acc > NIR] : < 2.2e-16  
                                     
                  Kappa : 1          
                                     
 Mcnemar's Test P-Value : NA         

Statistics by Class:

                     Class: setosa Class: versicolor Class: virginica
Sensitivity                   1.00              1.00              1.0
Specificity                   1.00              1.00              1.0
Pos Pred Value                1.00              1.00              1.0
Neg Pred Value                1.00              1.00              1.0
Prevalence                    0.32              0.38              0.3
Detection Rate                0.32              0.38              0.3
Detection Prevalence          0.32              0.38              0.3
Balanced Accuracy             1.00              1.00              1.0

knn model

Confusion Matrix and Statistics

            Reference
Prediction   setosa versicolor virginica
  setosa         16          0         0
  versicolor      0         19         0
  virginica       0          0        15

Overall Statistics
                                     
               Accuracy : 1          
                 95% CI : (0.9289, 1)
    No Information Rate : 0.38       
    P-Value [Acc > NIR] : < 2.2e-16  
                                     
                  Kappa : 1          
                                     
 Mcnemar's Test P-Value : NA         

Statistics by Class:

                     Class: setosa Class: versicolor Class: virginica
Sensitivity                   1.00              1.00              1.0
Specificity                   1.00              1.00              1.0
Pos Pred Value                1.00              1.00              1.0
Neg Pred Value                1.00              1.00              1.0
Prevalence                    0.32              0.38              0.3
Detection Rate                0.32              0.38              0.3
Detection Prevalence          0.32              0.38              0.3
Balanced Accuracy             1.00              1.00              1.0