# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibbletime)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062307228 -0.0029351611 0.0366062683 0.052132728 4.992292e-02
## 2013-02-28 0.0058903340 -0.0231052945 -0.0129694920 0.016176052 1.267794e-02
## 2013-03-28 0.0009849996 -0.0102354792 0.0129694920 0.040258030 3.726854e-02
## 2013-04-30 0.0096395843 0.0120850916 0.0489678212 0.001222116 1.902948e-02
## 2013-05-31 -0.0202142209 -0.0494834671 -0.0306557453 0.041976623 2.333564e-02
## 2013-06-28 -0.0157781628 -0.0547284208 -0.0271443858 -0.001402890 -1.343405e-02
## 2013-07-31 0.0026877865 0.0131596687 0.0518601145 0.063541090 5.038561e-02
## 2013-08-30 -0.0082981319 -0.0257056452 -0.0197459878 -0.034743440 -3.045117e-02
## 2013-09-30 0.0111438572 0.0695889871 0.0753384250 0.063873909 3.115588e-02
## 2013-10-31 0.0082916996 0.0408613786 0.0320816706 0.034233954 4.526658e-02
## 2013-11-29 -0.0025092432 -0.0025942093 0.0054496048 0.041661092 2.920693e-02
## 2013-12-31 -0.0055831500 -0.0040742789 0.0215279517 0.012892172 2.559637e-02
## 2014-01-31 0.0152911846 -0.0903229335 -0.0534132452 -0.035775528 -3.588492e-02
## 2014-02-28 0.0037572105 0.0332206934 0.0595051292 0.045257439 4.451045e-02
## 2014-03-31 -0.0014817166 0.0380218576 -0.0046026588 0.013315639 8.261088e-03
## 2014-04-30 0.0081832572 0.0077729803 0.0165295249 -0.023184344 6.927879e-03
## 2014-05-30 0.0117215529 0.0290909612 0.0158284495 0.006205095 2.294088e-02
## 2014-06-30 -0.0005758613 0.0237339705 0.0091653784 0.037718895 2.043519e-02
## 2014-07-31 -0.0025120158 0.0135553791 -0.0263800245 -0.052009486 -1.352921e-02
## 2014-08-29 0.0114308528 0.0279046093 0.0018007060 0.043657784 3.870510e-02
## 2014-09-30 -0.0061673343 -0.0808566610 -0.0395984610 -0.061260610 -1.389249e-02
## 2014-10-31 0.0105841894 0.0140964731 -0.0026549836 0.068875058 2.327794e-02
## 2014-11-28 0.0065492318 -0.0155413094 0.0006254588 0.004773810 2.710122e-02
## 2014-12-31 0.0014752309 -0.0404420753 -0.0407468108 0.025295556 -2.539621e-03
## 2015-01-30 0.0203147784 -0.0068958566 0.0062266082 -0.054628117 -3.007702e-02
## 2015-02-27 -0.0089883400 0.0431361521 0.0614504843 0.056915007 5.468158e-02
## 2015-03-31 0.0037405796 -0.0150862344 -0.0143887809 0.010156202 -1.583005e-02
## 2015-04-30 -0.0032331741 0.0662816348 0.0358165271 -0.018417616 9.785923e-03
## 2015-05-29 -0.0043836631 -0.0419111998 0.0019526300 0.007509872 1.277430e-02
## 2015-06-30 -0.0108256249 -0.0297467198 -0.0316786705 0.004171475 -2.052168e-02
## 2015-07-31 0.0085851282 -0.0651780633 0.0201144512 -0.027375710 2.233829e-02
## 2015-08-31 -0.0033636431 -0.0925124330 -0.0771525852 -0.047268128 -6.288709e-02
## 2015-09-30 0.0080808855 -0.0318249004 -0.0451948477 -0.038464595 -2.584694e-02
## 2015-10-30 0.0006857931 0.0618083383 0.0640260250 0.063589443 8.163489e-02
## 2015-11-30 -0.0038984764 -0.0255606789 -0.0075557898 0.024415465 3.648612e-03
## 2015-12-31 -0.0019190319 -0.0389468317 -0.0235951923 -0.052157126 -1.743342e-02
## 2016-01-29 0.0123303874 -0.0516366464 -0.0567577281 -0.060306518 -5.106891e-02
## 2016-02-29 0.0088315622 -0.0082115117 -0.0339138171 0.020604896 -8.263023e-04
## 2016-03-31 0.0087086818 0.1218789290 0.0637456903 0.089910442 6.510012e-02
## 2016-04-29 0.0025461104 0.0040791611 0.0219749044 0.021044040 3.933750e-03
## 2016-05-31 0.0001352650 -0.0376284923 -0.0008559461 0.004397251 1.686845e-02
## 2016-06-30 0.0191671881 0.0445822247 -0.0244914914 0.008292281 3.469883e-03
## 2016-07-29 0.0054291958 0.0524421864 0.0390002493 0.049348286 3.582168e-02
## 2016-08-31 -0.0021563142 0.0087987068 0.0053269927 0.011261006 1.197111e-03
## 2016-09-30 0.0005160494 0.0248729243 0.0132789601 0.008614745 5.783827e-05
## 2016-10-31 -0.0082047585 -0.0083123775 -0.0224037486 -0.038134827 -1.748917e-02
## 2016-11-30 -0.0259894982 -0.0451615512 -0.0179746195 0.125246673 3.617625e-02
## 2016-12-30 0.0025377923 -0.0025303202 0.0267032300 0.031491692 2.006908e-02
## 2017-01-31 0.0021260169 0.0644314819 0.0323816675 -0.012143972 1.773650e-02
## 2017-02-28 0.0064379832 0.0172579649 0.0118364539 0.013428986 3.853912e-02
## 2017-03-31 -0.0005530493 0.0361890651 0.0318056038 -0.006533415 1.249217e-03
## 2017-04-28 0.0090293346 0.0168663300 0.0239523267 0.005107722 9.877204e-03
## 2017-05-31 0.0068473355 0.0280597379 0.0348101874 -0.022862543 1.401414e-02
## 2017-06-30 -0.0001824948 0.0092239365 0.0029559205 0.029151706 6.354761e-03
## 2017-07-31 0.0033339863 0.0565943231 0.0261877986 0.007481816 2.034595e-02
## 2017-08-31 0.0093694586 0.0232439097 -0.0004481055 -0.027564930 2.913519e-03
## 2017-09-29 -0.0057322919 -0.0004462722 0.0233427009 0.082321460 1.994908e-02
## 2017-10-31 0.0009781554 0.0322785182 0.0166538307 0.005916585 2.329051e-02
## 2017-11-30 -0.0014844651 -0.0038968552 0.0068698020 0.036912945 3.010800e-02
## 2017-12-29 0.0047403831 0.0369254638 0.0133983589 -0.003731152 1.205500e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398354e-05 0.0001042092 4.178287e-05 -7.812061e-05 -9.031108e-06
## EEM 1.042092e-04 0.0017547124 1.039018e-03 6.437744e-04 6.795430e-04
## EFA 4.178287e-05 0.0010390177 1.064237e-03 6.490277e-04 6.975404e-04
## IJS -7.812061e-05 0.0006437744 6.490277e-04 1.565450e-03 8.290259e-04
## SPY -9.031108e-06 0.0006795430 6.975404e-04 8.290259e-04 7.408302e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003874085 0.009257151 0.005815632 0.005684466 0.002330251
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
# Standard deviation of portfolio
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
# Figure 10.1 Contribution to Standard Deviation ----
asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
gather(key = "asset", value = "contribution") %>%
ggplot(aes(asset, contribution)) +
geom_col(fill = "cornflowerblue") +
theme(plot.title = element_text(hjust = 0.5)) +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
labs(title = "Percent Contribution to Portfolio Standard Deviation",
y = "Percent Contribution to Risk",
x = NULL)
# Figure 10.2 Weight versus Contribution ----
asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
gather(key = "asset", value = "contribution") %>%
add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%
ggplot(aes(asset, value, fill = type)) +
geom_col(position = "dodge") +
theme(plot.title = element_text(hjust = 0.5)) +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme_tq() +
scale_fill_tq() +
labs(title = "Percent Contribution to Volatility",
y = "percent",
x = "asset")
## 6 Rolling Component Contribution
calculate_comp_contrib_by_window <- function(asset_returns_wide_tbl,
start = 1,
window = 24,
weights) {
# 1 Define start date
start_date <- rownames(asset_returns_wide_tbl)[start]
# 2 Define end date
end_date <- rownames(asset_returns_wide_tbl)[start + window]
# 3 Subset df
df_subset <- asset_returns_wide_tbl %>%
rownames_to_column(var = "date") %>%
filter(date >= start_date & date < end_date) %>%
column_to_rownames(var = "date")
# 4 Calculate component contribution
component_percentages <-df_subset %>%
calculate_component_contribution(w = weights)
# 5 Add end date to df
component_percentages %>%
mutate(date = ymd(end_date)) %>%
select(date, everything())
}
# Check the custom function
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 1, window = 24,
w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
## date AGG EEM EFA IJS SPY
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-01-30 0.039 0.372 0.256 0.245 0.088
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 2, window = 24,
w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
## date AGG EEM EFA IJS SPY
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-02-27 0.036 0.374 0.249 0.252 0.089
dump(list = c("calculate_component_contribution",
"calculate_comp_contrib_by_window"),
file = "../00_scripts/calculate_comp_contrib_to_portfolio_volatility.R")
# Iterate the custom function
w <- c(0.25,0.25,0.2,0.2,0.1)
window <- 24
rolling_comp_contrib_tbl <- 1:(nrow(asset_returns_wide_tbl) - window) %>%
map_df(.x = ., .f = ~calculate_comp_contrib_by_window(asset_returns_wide_tbl,
start = .x,
weights = w,
window = window))
rolling_comp_contrib_tbl
## # A tibble: 36 × 6
## date AGG EEM EFA IJS SPY
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-01-30 0.039 0.372 0.256 0.245 0.088
## 2 2015-02-27 0.036 0.374 0.249 0.252 0.089
## 3 2015-03-31 0.027 0.37 0.255 0.255 0.092
## 4 2015-04-30 0.027 0.372 0.256 0.252 0.093
## 5 2015-05-29 0.024 0.385 0.254 0.246 0.092
## 6 2015-06-30 0.018 0.383 0.248 0.257 0.094
## 7 2015-07-31 0.014 0.375 0.253 0.261 0.097
## 8 2015-08-31 0.013 0.404 0.237 0.257 0.09
## 9 2015-09-30 0.012 0.407 0.248 0.238 0.094
## 10 2015-10-30 0.003 0.405 0.244 0.243 0.105
## # ℹ 26 more rows
# Figure 10.3 Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%
# Transform data to long form
pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%
# Plot
ggplot(aes(date, contribution, color = asset)) +
geom_line() +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
scale_y_continuous(labels = scales::percent_format()) +
annotate(geom = "text",
x = as.Date("2016-07-01"),
y = 0.03,
color = "red", size = 5,
label = str_glue("AGG dips below zero sometimes, indicating
it reduces the portfolio volatility."))
# Figure 10.4 Stacked Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%
# Transform data to long form
pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%
# Plot
ggplot(aes(date, contribution, fill = asset)) +
geom_area() +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
scale_y_continuous(labels = scales::percent_format()) +
annotate(geom = "text",
x = as.Date("2016-07-01"),
y = 0.08,
color = "red", size = 5,
label = str_glue("AGG dips below zero sometimes, indicating
it reduces the portfolio volatility."))