knitr::include_graphics("img2.gif")
Conformación de la matriz
Los análisis se realizaron con la matriz de datos de la tesis de Fran, que cuenta con 1128 casos con las variables sexo, edad, categoría, club, horas, TiempoC, Motiv-#, Satis-#, PVQR-#,YSVQ-#, los 10/19/4 valores de Schwartz en su versión cruda, centrada y Z, y lo mismo con los tres valores en el deporte (Competencia, Moral y Status).
Escalamiento multidimensional (MDS)
Schwartz (19 valores)
Se realizó un análisis MDS ordinal bidimensional como técnica confirmatoria de la estructura circular de valores en deportistas adolescentes. Este enfoque especifica una configuración de partida que asigna a cada ítem su lugar en la estructura circular de valores teorizada. Los 19 valores se representan en 19 sectores, cada uno de los cuales abarca un ángulo aproximado de 18.95 grados. Las coordenadas se determinaron trigonométricamente tomando como referencia al círculo unitario. Para realizar el análisis MDS, se utilizaron las puntuaciones crudas de los valores.
coords_teoricas <- data.frame(Width=rep(NA,57),
Height=rep(NA,57))
rownames(coords_teoricas) <- c("sdt01","ses02","hed03","coi04","unc05","pod06","hum07","unn08","fac09","sti10",
"bec11","por12","sep13","unt14","cor15","sda16","ach17","tra18","bed19","por20",
"unn21","coi22","sdt23","fac24","bec25","sep26","bed27","sti28","pod29","sda30",
"cor31","ach32","tra33","unt34","ses35","hed36","unc37","hum38","sdt39","tra40",
"pod41","cor42","sti43","por44","unn45","hed46","bec47","ach48","fac49","ses50",
"coi51","unc52","sep53","hum54","bed55","sda56","unt57")
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "hed")] <- c(rep(cos(1*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "hed")] <- c(rep(sin(1*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sti")] <- c(rep(cos(2*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sti")] <- c(rep(sin(2*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sda")] <- c(rep(cos(3*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sda")] <- c(rep(sin(3*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sdt")] <- c(rep(cos(4*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sdt")] <- c(rep(sin(4*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "bed")] <- c(rep(cos(5*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "bed")] <- c(rep(sin(5*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "bec")] <- c(rep(cos(6*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "bec")] <- c(rep(sin(6*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "unt")] <- c(rep(cos(7*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "unt")] <- c(rep(sin(7*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "unc")] <- c(rep(cos(8*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "unc")] <- c(rep(sin(8*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "unn")] <- c(rep(cos(9*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "unn")] <- c(rep(sin(9*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "hum")] <- c(rep(cos(10*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "hum")] <- c(rep(sin(10*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "coi")] <- c(rep(cos(11*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "coi")] <- c(rep(sin(11*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "cor")] <- c(rep(cos(12*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "cor")] <- c(rep(sin(12*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "tra")] <- c(rep(cos(13*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "tra")] <- c(rep(sin(13*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "ses")] <- c(rep(cos(14*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "ses")] <- c(rep(sin(14*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sep")] <- c(rep(cos(15*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sep")] <- c(rep(sin(15*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "fac")] <- c(rep(cos(16*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "fac")] <- c(rep(sin(16*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "por")] <- c(rep(cos(17*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "por")] <- c(rep(sin(17*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "pod")] <- c(rep(cos(18*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "pod")] <- c(rep(sin(18*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "ach")] <- c(rep(cos(19*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "ach")] <- c(rep(sin(19*360/19*(pi/180)),3))
plot(coords_teoricas$Width, coords_teoricas$Height,col="white", xlab="", ylab="", asp=1, main="Coordenadas teóricas")
text(coords_teoricas$Width,coords_teoricas$Height, labels = stringr::str_sub(rownames(coords_teoricas),1,3))
En sentido horario: Self-direction Thought (sdt), Self-direction Action (sda), Stimulation (sti), Hedonism (hed), Achievement (ach), Power Dominance (pod), Power Resources (por), Face (fac), Security Personal (sep), Security Societal (ses), Tradition (tra), Conformity Rules (cor), Conformity Interpersonal (coi), Humility (hum), Universalism Nature (unn), Universalism Concern (unc), Universalism Tolerance (unt), Benevolence Caring (bec), Benevolence Dependability (bed).
r <- cor(base[24:80])
diss <- sim2diss(r, method="corr")
res <- mds(delta=diss, type="ordinal", init = coords_teoricas) ## ordinal MDS
res
##
## Call:
## mds(delta = diss, type = "ordinal", init = coords_teoricas)
##
## Model: Symmetric SMACOF
## Number of objects: 57
## Stress-1 value: 0.202
## Number of iterations: 61
# Permutation test para ver si el Stress es menor que el de data permutada
permu <- permtest(res, verbose = F)
permu
##
## Call: permtest.smacof(object = res, verbose = F)
##
## SMACOF Permutation Test
## Number of objects: 57
## Number of replications (permutations): 100
##
## Observed stress value: 0.202
## p-value: <0.001
El valor de stress-1 observado es bastante regular (0.2), lo que indica un ajuste subótimo de los datos al modelo circular de Schwartz. Sin embargo, el test de hipótesis de datos permutados arrojó un p-valor significativo, indicando que este valor de stress es significativamente menor que aquellos obtenidos con datos permutados al azar.
at <- 3
ap <- 2
ac <- 4
c <- 7
plot(res, xlab="",ylab="", xlim=c(-1,1),ylim=c(-1,1), pch=20, cex=3, asp=1, col=c(ac,c,1,c,at,ap,1,at,1,ac,at,ap,c,at,c,ac,ap,c,at,ap,at,c,ac,1,at,c,at,ac,ap,ac,c,ap,c,at,c,1,at,1,ac,c,ap,c,ac,ap,at,1,at,ap,1,c,c,at,c,1,at,ac,at),
main="MDS")
Los colores indican pertenencia a un mismo valor de orden superior (azul: apertura al cambio; rojo: autopromoción; amarillo: conservación; verde: autotrascendencia).
Si bien los cuatro valores de orden superior (autotrascendencia, autopromoción, apertura al cambio y conservación) se encuentran en el lugar esperado, los valores básicos se encuentran muy mezclados al interior de cada una de estas dimensiones. Por ejemplo, no es posible discriminar la ubicación en la estructura circular entre Poder-dominancia y Poder-recursos, ni tampoco entre Seguridad-personal y Seguridad-social. Además, Universalismo aparece en la periferia de benevolencia (algo que ya fue reportado en otros estudios). El ítem 17 (achievement) se encuentra entre los ítems de apertura al cambio, cuando debería ser parte de autopromoción.
CONCLUSIÓN
No sé si haría mucho foco en este análisis. El resultado da más o menos…
Schwartz integrado con Lee et al
Se realizó el mismo procedimiento, pero se incluyeron en el análisis los ítems de la escala de valores en el deporte (Lee et al., 2001). Para ubicar los valores de Lee et al., se utilizó el centro de aquella dimensión de los valores de schwartz con la que más fuertemente correlacionó cada valor (Competencia en el centro de apertura al cambio, Status en el centro de autopromoción y Moral en el centro de autotrascendencia).
coords_teoricas <- data.frame(Width=rep(NA,57+13),
Height=rep(NA,57+13))
rownames(coords_teoricas) <- c("sdt01","ses02","hed03","coi04","unc05","pod06","hum07","unn08","fac09","sti10",
"bec11","por12","sep13","unt14","cor15","sda16","ach17","tra18","bed19","por20",
"unn21","coi22","sdt23","fac24","bec25","sep26","bed27","sti28","pod29","sda30",
"cor31","ach32","tra33","unt34","ses35","hed36","unc37","hum38","sdt39","tra40",
"pod41","cor42","sti43","por44","unn45","hed46","bec47","ach48","fac49","ses50",
"coi51","unc52","sep53","hum54","bed55","sda56","unt57",
"STA_01","MOR_02","STA_03","COM_04","MOR_05","MOR_06","STA_07","COM_08",
"STA09","MOR_10","COM_11","MOR_12","COM_13")
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "hed")] <- c(rep(cos(1*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "hed")] <- c(rep(sin(1*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sti")] <- c(rep(cos(2*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sti")] <- c(rep(sin(2*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sda")] <- c(rep(cos(3*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sda")] <- c(rep(sin(3*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sdt")] <- c(rep(cos(4*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sdt")] <- c(rep(sin(4*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "bed")] <- c(rep(cos(5*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "bed")] <- c(rep(sin(5*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "bec")] <- c(rep(cos(6*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "bec")] <- c(rep(sin(6*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "unt")] <- c(rep(cos(7*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "unt")] <- c(rep(sin(7*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "unc")] <- c(rep(cos(8*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "unc")] <- c(rep(sin(8*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "unn")] <- c(rep(cos(9*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "unn")] <- c(rep(sin(9*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "hum")] <- c(rep(cos(10*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "hum")] <- c(rep(sin(10*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "coi")] <- c(rep(cos(11*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "coi")] <- c(rep(sin(11*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "cor")] <- c(rep(cos(12*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "cor")] <- c(rep(sin(12*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "tra")] <- c(rep(cos(13*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "tra")] <- c(rep(sin(13*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "ses")] <- c(rep(cos(14*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "ses")] <- c(rep(sin(14*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sep")] <- c(rep(cos(15*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sep")] <- c(rep(sin(15*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "fac")] <- c(rep(cos(16*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "fac")] <- c(rep(sin(16*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "por")] <- c(rep(cos(17*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "por")] <- c(rep(sin(17*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "pod")] <- c(rep(cos(18*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "pod")] <- c(rep(sin(18*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "ach")] <- c(rep(cos(19*360/19*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "ach")] <- c(rep(sin(19*360/19*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "COM")] <- rep(mean(c(cos(1*360/19*(pi/180)),cos(2*360/19*(pi/180)),cos(3*360/19*(pi/180)),cos(4*360/19*(pi/180)))),4)
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "COM")] <- rep(mean(c(sin(1*360/19*(pi/180)),sin(2*360/19*(pi/180)),sin(3*360/19*(pi/180)),sin(4*360/19*(pi/180)))),4)
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "MOR")] <- rep(mean(c(cos(5*360/19*(pi/180)),cos(6*360/19*(pi/180)),cos(7*360/19*(pi/180)),cos(8*360/19*(pi/180)),cos(9*360/19*(pi/180)))),5)
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "MOR")] <- rep(mean(c(sin(5*360/19*(pi/180)),sin(6*360/19*(pi/180)),sin(7*360/19*(pi/180)),sin(8*360/19*(pi/180)),sin(9*360/19*(pi/180)))),5)
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "STA")] <- rep(mean(c(cos(17*360/19*(pi/180)),cos(18*360/19*(pi/180)),cos(19*360/19*(pi/180)))),4)
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "STA")] <- rep(mean(c(sin(17*360/19*(pi/180)),sin(18*360/19*(pi/180)),sin(19*360/19*(pi/180)))),4)
plot(coords_teoricas$Width, coords_teoricas$Height,col="white", xlab="", ylab="", asp=1, main="Coordenadas teóricas")
text(coords_teoricas$Width,coords_teoricas$Height, labels = stringr::str_sub(rownames(coords_teoricas),1,3))
En sentido horario: Competencia (COM) se ubica en el centro de apertura al cambio por presentar la correlación más alta (r = .334); Satuts (STA) en el centro de autopromoción, coincidiendo con Poder-dominancia, por el mismo motivo (r = .512); y Moral (MOR) en el centro de autotrascendencia (r = .465).
r <- cor(base[24:93])
diss <- sim2diss(r, method="corr")
res <- mds(delta=diss, type="ordinal", init = coords_teoricas) ## ordinal MDS
res
##
## Call:
## mds(delta = diss, type = "ordinal", init = coords_teoricas)
##
## Model: Symmetric SMACOF
## Number of objects: 70
## Stress-1 value: 0.209
## Number of iterations: 51
# Permutation test para ver si el Stress es menor que el de data permutada
permu <- permtest(res, verbose = F)
permu
##
## Call: permtest.smacof(object = res, verbose = F)
##
## SMACOF Permutation Test
## Number of objects: 70
## Number of replications (permutations): 100
##
## Observed stress value: 0.209
## p-value: <0.001
El valor de stress-1 observado es bastante regular (0.21), similar al de valores sin los ítems de Lee et al, lo que indica un ajuste subótimo de los datos al modelo circular. Sin embargo, el test de hipótesis de datos permutados arrojó un p-valor significativo, indicando que este valor de stress es significativamente menor que aquellos obtenidos con datos permutados al azar.
mor <- 3
sta <- 2
com <- 4
plot(res, xlab="",ylab="", xlim=c(-1,1),ylim=c(-1,1), pch=20, cex=3, asp=1, col=c(rep(1,57),sta,mor,sta,com,mor,mor,sta,com,sta,mor,com,mor,com),
main="MDS")
Los colores indican pertenencia a un mismo valor (azul: Competencia; rojo: Status; verde: Moral).
La distribución de los ítems de Schwartz es prácticamente igual a la anterior (sin los de Lee et al). Competencia se ubica junto con Apertura al cambio, pero en el límite con autopromoción (probablemente por achievement). Algo parecido sucede con Status, que se ubica en autopromoción pero tendiente a la apertura al cambio. Es posible que esta población perciba a la búsqueda de status más como una intención de conseguir logros deportivos que como una forma de ejercer poder. Finalmente, los valores morales se ubican en el límite entre autotrascendencia y conservación (donde estaría ubicado humildad), a excepción del ítem 5, que se encuentra más francamente dentro de conservación.
CONCLUSIÓN
Es una pena que no se arme el círculo de Schwartz un poquito más, porque puede ser interesante esta superposición de modelos.
Schwartz (10 valores)
Se aplicó el mismo análisis pero considerando el modelo de 10 valores. Los 10 valores se representan en 9 sectores, cada uno de los cuales abarca un ángulo aproximado de 40 grados, con tradición y conformidad en el mismo sector (el primero en la periferia del segundo). Las coordenadas se determinaron trigonométricamente tomando como referencia al círculo unitario. Para realizar el análisis MDS, se utilizaron las puntuaciones crudas de los valores.
datos <- base[,24:80]
colnames(datos) <- c("sfd01","sec02","hed03","cnf04","uni05","pwr06","hum07","uni08","fac09","sti10",
"ben11","pwr12","sec13","uni14","cnf15","sfd16","ach17","tra18","ben19","pwr20",
"uni21","cnf22","sfd23","fac24","ben25","sec26","ben27","sti28","pwr29","sfd30",
"cnf31","ach32","tra33","uni34","sec35","hed36","uni37","hum38","sfd39","tra40",
"pwr41","cnf42","sti43","pwr44","uni45","hed46","ben47","ach48","fac49","sec50",
"cnf51","uni52","sec53","hum54","ben55","sfd56","uni57")
datos <- datos[,c(1:6,8,10:23,25:37,39:48,50:53,55:57)]
coords_teoricas <- data.frame(Width=rep(NA,51),
Height=rep(NA,51))
rownames(coords_teoricas) <- c("sfd01","sec02","hed03","cnf04","uni05","pwr06","uni08","sti10",
"ben11","pwr12","sec13","uni14","cnf15","sfd16","ach17","tra18","ben19","pwr20",
"uni21","cnf22","sfd23","ben25","sec26","ben27","sti28","pwr29","sfd30",
"cnf31","ach32","tra33","uni34","sec35","hed36","uni37","sfd39","tra40",
"pwr41","cnf42","sti43","pwr44","uni45","hed46","ben47","ach48","sec50",
"cnf51","uni52","sec53","ben55","sfd56","uni57")
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "ben")] <- c(rep(cos(1*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "ben")] <- c(rep(sin(1*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "uni")] <- c(rep(cos(2*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "uni")] <- c(rep(sin(2*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sfd")] <- c(rep(cos(3*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sfd")] <- c(rep(sin(3*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sti")] <- c(rep(cos(4*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sti")] <- c(rep(sin(4*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "hed")] <- c(rep(cos(5*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "hed")] <- c(rep(sin(5*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "ach")] <- c(rep(cos(6*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "ach")] <- c(rep(sin(6*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "pwr")] <- c(rep(cos(7*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "pwr")] <- c(rep(sin(7*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "sec")] <- c(rep(cos(8*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "sec")] <- c(rep(sin(8*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "tra")] <- c(rep(cos(9*360/9*(pi/180)),3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "tra")] <- c(rep(sin(9*360/9*(pi/180)),3))
coords_teoricas$Width[startsWith(rownames(coords_teoricas), "cnf")] <- c(rep(cos(9*360/9*(pi/180))/2,3))
coords_teoricas$Height[startsWith(rownames(coords_teoricas), "cnf")] <- c(rep(sin(9*360/9*(pi/180))/2,3))
plot(coords_teoricas$Width, coords_teoricas$Height,col="white", xlab="", ylab="", asp=1, main="Coordenadas teóricas")
text(coords_teoricas$Width,coords_teoricas$Height, labels = stringr::str_sub(rownames(coords_teoricas),1,3))
En sentido horario: Universalism (uni), Benevolence (ben), Conformity (cnf), Tradition (tra), Security (sec), Power (pwr), Achievement (ach), Hedonism (hed), Stimulation (sti), Self-Direction (sfd).
r <- cor(datos)
diss <- sim2diss(r, method="corr")
res <- mds(delta=diss, type="ordinal", init = coords_teoricas) ## ordinal MDS
res
##
## Call:
## mds(delta = diss, type = "ordinal", init = coords_teoricas)
##
## Model: Symmetric SMACOF
## Number of objects: 51
## Stress-1 value: 0.187
## Number of iterations: 49
# Permutation test para ver si el Stress es menor que el de data permutada
permu <- permtest(res, verbose = F)
permu
##
## Call: permtest.smacof(object = res, verbose = F)
##
## SMACOF Permutation Test
## Number of objects: 51
## Number of replications (permutations): 100
##
## Observed stress value: 0.187
## p-value: <0.001
El valor de stress-1 observado mejora un poco respecto al obtenido con el modelo de 19 valores (0.187), pero sigue sin ser ideal. Obviamente, el test de hipótesis de datos permutados también arrojó un p-valor significativo.
at <- 3
ap <- 2
ac <- 4
c <- 7
plot(res, xlab="",ylab="", xlim=c(-1.1,1.1),ylim=c(-1.2,1), pch=20, cex=3, asp=1,
col=c(ac,c,1,c,at, # 5
ap,at,ac,at,ap, # 10
c,at,c,ac,ap, # 15
c,at,ap,at,c, # 20
ac,at,c,at,ac, # 25
ap,ac,c,ap,c, # 30
at,c,1,at,ac, # 35
c,ap,c,ac,ap, # 40
at,1,at,ap,c, # 45
c,at,c,at,ac,
at),
main="MDS")
Los colores indican pertenencia a un mismo valor de orden superior (azul: apertura al cambio; rojo: autopromoción; amarillo: conservación; verde: autotrascendencia).
Si bien los cuatro valores de orden superior (autotrascendencia, autopromoción, apertura al cambio y conservación) se encuentran en el lugar esperado y los valores básicos están mejor agrupados, las ubicaciones están raras. Por ejemplo, universalismo se encuentra en la periferia de benevolencia, los 3 valores de conservación están rotados, autodirección están en la periferia de estimulación. Además, el ítem 17 (achievement) se encuentra entre los ítems de apertura al cambio, cuando debería ser parte de autopromoción.
CONCLUSIÓN
Con 10 valores funciona mejor que con 19, pero no sé si lo suficientemente mejor como para que se justifique a nivel teórico.
Descriptivos y diferenciales por sexo
Schwartz (19 valores)
Se estimaron las fiabilidades para cada valor, media y desvío estándar y diferenciales según sexo.
tabla_s19_sexo <- data.frame(Valores=c("Universalismo-Naturaleza",
"Universalismo-Preocupación",
"Universalismo-Tolerancia",
"Benevolencia-Cuidado",
"Benevolencia-Dependencia",
"Seguridad-Personal",
"Seguridad-Social",
"Conformidad-Reglas",
"Conformidad-Interpersonal",
"Tradición",
"Logro",
"Poder-Dominancia",
"Poder-Recursos",
"Autodirección-Pensamiento",
"Autodirección-Acción",
"Estimulación",
"Hedonismo",
"Apariencia",
"Humildad"),
"Rango"=rep("1 - 6",19),
"Alfa de Cronbach"=c(round(alpha(base[,startsWith(colnames(base),"unn")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"unc")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"unt")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"bec")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"bed")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"sep")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"ses")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"cor")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"coi")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"tra")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"ach")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"pod")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"por")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"sdt")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"sda")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"sti")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"hed")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"fac")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"hum")])$total$std.alpha,2)),
"M (SD)"=c(paste0(round(mean(base$Uni_nat),2)," (",round(sd(base$Uni_nat),2),")"),
paste0(round(mean(base$Uni_con),2)," (",round(sd(base$Uni_con),2),")"),
paste0(round(mean(base$Uni_Tol),2)," (",round(sd(base$Uni_Tol),2),")"),
paste0(round(mean(base$Ben_Car),2)," (",round(sd(base$Ben_Car),2),")"),
paste0(round(mean(base$Ben_Dep),2)," (",round(sd(base$Ben_Dep),2),")"),
paste0(round(mean(base$Sec_Per),2)," (",round(sd(base$Sec_Per),2),")"),
paste0(round(mean(base$Sec_Soc),2)," (",round(sd(base$Sec_Soc),2),")"),
paste0(round(mean(base$Con_Rul),2)," (",round(sd(base$Con_Rul),2),")"),
paste0(round(mean(base$Con_Int),2)," (",round(sd(base$Con_Int),2),")"),
paste0(round(mean(base$Tradic),2)," (",round(sd(base$Tradic),2),")"),
paste0(round(mean(base$Achiev),2)," (",round(sd(base$Achiev),2),")"),
paste0(round(mean(base$Po_Dom),2)," (",round(sd(base$Po_Dom),2),")"),
paste0(round(mean(base$Po_Res),2)," (",round(sd(base$Po_Res),2),")"),
paste0(round(mean(base$SD_Thought),2)," (",round(sd(base$SD_Thought),2),")"),
paste0(round(mean(base$SD_Action),2)," (",round(sd(base$SD_Action),2),")"),
paste0(round(mean(base$Stimu),2)," (",round(sd(base$Stimu),2),")"),
paste0(round(mean(base$Hedon),2)," (",round(sd(base$Hedon),2),")"),
paste0(round(mean(base$Face),2)," (",round(sd(base$Face),2),")"),
paste0(round(mean(base$Humi),2)," (",round(sd(base$Humi),2),")")),
"M (SD)"=c(paste0(round(mean(base$Uni_nat[base$sexo==2]),2)," (",round(sd(base$Uni_nat[base$sexo==2]),2),")"), # Mujeres
paste0(round(mean(base$Uni_con[base$sexo==2]),2)," (",round(sd(base$Uni_con[base$sexo==2]),2),")"),
paste0(round(mean(base$Uni_Tol[base$sexo==2]),2)," (",round(sd(base$Uni_Tol[base$sexo==2]),2),")"),
paste0(round(mean(base$Ben_Car[base$sexo==2]),2)," (",round(sd(base$Ben_Car[base$sexo==2]),2),")"),
paste0(round(mean(base$Ben_Dep[base$sexo==2]),2)," (",round(sd(base$Ben_Dep[base$sexo==2]),2),")"),
paste0(round(mean(base$Sec_Per[base$sexo==2]),2)," (",round(sd(base$Sec_Per[base$sexo==2]),2),")"),
paste0(round(mean(base$Sec_Soc[base$sexo==2]),2)," (",round(sd(base$Sec_Soc[base$sexo==2]),2),")"),
paste0(round(mean(base$Con_Rul[base$sexo==2]),2)," (",round(sd(base$Con_Rul[base$sexo==2]),2),")"),
paste0(round(mean(base$Con_Int[base$sexo==2]),2)," (",round(sd(base$Con_Int[base$sexo==2]),2),")"),
paste0(round(mean(base$Tradic[base$sexo==2]),2)," (",round(sd(base$Tradic[base$sexo==2]),2),")"),
paste0(round(mean(base$Achiev[base$sexo==2]),2)," (",round(sd(base$Achiev[base$sexo==2]),2),")"),
paste0(round(mean(base$Po_Dom[base$sexo==2]),2)," (",round(sd(base$Po_Dom[base$sexo==2]),2),")"),
paste0(round(mean(base$Po_Res[base$sexo==2]),2)," (",round(sd(base$Po_Res[base$sexo==2]),2),")"),
paste0(round(mean(base$SD_Thought[base$sexo==2]),2)," (",round(sd(base$SD_Thought[base$sexo==2]),2),")"),
paste0(round(mean(base$SD_Action[base$sexo==2]),2)," (",round(sd(base$SD_Action[base$sexo==2]),2),")"),
paste0(round(mean(base$Stimu[base$sexo==2]),2)," (",round(sd(base$Stimu[base$sexo==2]),2),")"),
paste0(round(mean(base$Hedon[base$sexo==2]),2)," (",round(sd(base$Hedon[base$sexo==2]),2),")"),
paste0(round(mean(base$Face[base$sexo==2]),2)," (",round(sd(base$Face[base$sexo==2]),2),")"),
paste0(round(mean(base$Humi[base$sexo==2]),2)," (",round(sd(base$Humi[base$sexo==2]),2),")")),
"M (SD)"=c(paste0(round(mean(base$Uni_nat[base$sexo==1]),2)," (",round(sd(base$Uni_nat[base$sexo==1]),2),")"), # Varones
paste0(round(mean(base$Uni_con[base$sexo==1]),2)," (",round(sd(base$Uni_con[base$sexo==1]),2),")"),
paste0(round(mean(base$Uni_Tol[base$sexo==1]),2)," (",round(sd(base$Uni_Tol[base$sexo==1]),2),")"),
paste0(round(mean(base$Ben_Car[base$sexo==1]),2)," (",round(sd(base$Ben_Car[base$sexo==1]),2),")"),
paste0(round(mean(base$Ben_Dep[base$sexo==1]),2)," (",round(sd(base$Ben_Dep[base$sexo==1]),2),")"),
paste0(round(mean(base$Sec_Per[base$sexo==1]),2)," (",round(sd(base$Sec_Per[base$sexo==1]),2),")"),
paste0(round(mean(base$Sec_Soc[base$sexo==1]),2)," (",round(sd(base$Sec_Soc[base$sexo==1]),2),")"),
paste0(round(mean(base$Con_Rul[base$sexo==1]),2)," (",round(sd(base$Con_Rul[base$sexo==1]),2),")"),
paste0(round(mean(base$Con_Int[base$sexo==1]),2)," (",round(sd(base$Con_Int[base$sexo==1]),2),")"),
paste0(round(mean(base$Tradic[base$sexo==1]),2)," (",round(sd(base$Tradic[base$sexo==1]),2),")"),
paste0(round(mean(base$Achiev[base$sexo==1]),2)," (",round(sd(base$Achiev[base$sexo==1]),2),")"),
paste0(round(mean(base$Po_Dom[base$sexo==1]),2)," (",round(sd(base$Po_Dom[base$sexo==1]),2),")"),
paste0(round(mean(base$Po_Res[base$sexo==1]),2)," (",round(sd(base$Po_Res[base$sexo==1]),2),")"),
paste0(round(mean(base$SD_Thought[base$sexo==1]),2)," (",round(sd(base$SD_Thought[base$sexo==1]),2),")"),
paste0(round(mean(base$SD_Action[base$sexo==1]),2)," (",round(sd(base$SD_Action[base$sexo==1]),2),")"),
paste0(round(mean(base$Stimu[base$sexo==1]),2)," (",round(sd(base$Stimu[base$sexo==1]),2),")"),
paste0(round(mean(base$Hedon[base$sexo==1]),2)," (",round(sd(base$Hedon[base$sexo==1]),2),")"),
paste0(round(mean(base$Face[base$sexo==1]),2)," (",round(sd(base$Face[base$sexo==1]),2),")"),
paste0(round(mean(base$Humi[base$sexo==1]),2)," (",round(sd(base$Humi[base$sexo==1]),2),")")),
"t"=c(round(t.test(base$Uni_nat[base$sexo==2],base$Uni_nat[base$sexo==1])$statistic,2),
round(t.test(base$Uni_con[base$sexo==2],base$Uni_con[base$sexo==1])$statistic,2),
round(t.test(base$Uni_Tol[base$sexo==2],base$Uni_Tol[base$sexo==1])$statistic,2),
round(t.test(base$Ben_Car[base$sexo==2],base$Ben_Car[base$sexo==1])$statistic,2),
round(t.test(base$Ben_Dep[base$sexo==2],base$Ben_Dep[base$sexo==1])$statistic,2),
round(t.test(base$Sec_Per[base$sexo==2],base$Sec_Per[base$sexo==1])$statistic,2),
round(t.test(base$Sec_Soc[base$sexo==2],base$Sec_Soc[base$sexo==1])$statistic,2),
round(t.test(base$Con_Rul[base$sexo==2],base$Con_Rul[base$sexo==1])$statistic,2),
round(t.test(base$Con_Int[base$sexo==2],base$Con_Int[base$sexo==1])$statistic,2),
round(t.test(base$Tradic[base$sexo==2],base$Tradic[base$sexo==1])$statistic,2),
round(t.test(base$Achiev[base$sexo==2],base$Achiev[base$sexo==1])$statistic,2),
round(t.test(base$Po_Dom[base$sexo==2],base$Po_Dom[base$sexo==1])$statistic,2),
round(t.test(base$Po_Res[base$sexo==2],base$Po_Res[base$sexo==1])$statistic,2),
round(t.test(base$SD_Thought[base$sexo==2],base$SD_Thought[base$sexo==1])$statistic,2),
round(t.test(base$SD_Action[base$sexo==2],base$SD_Action[base$sexo==1])$statistic,2),
round(t.test(base$Stimu[base$sexo==2],base$Stimu[base$sexo==1])$statistic,2),
round(t.test(base$Hedon[base$sexo==2],base$Hedon[base$sexo==1])$statistic,2),
round(t.test(base$Face[base$sexo==2],base$Face[base$sexo==1])$statistic,2),
round(t.test(base$Humi[base$sexo==2],base$Humi[base$sexo==1])$statistic,2)),
"p"=c(round(t.test(base$Uni_nat[base$sexo==2],base$Uni_nat[base$sexo==1])$p.value,3),
round(t.test(base$Uni_con[base$sexo==2],base$Uni_con[base$sexo==1])$p.value,3),
round(t.test(base$Uni_Tol[base$sexo==2],base$Uni_Tol[base$sexo==1])$p.value,3),
round(t.test(base$Ben_Car[base$sexo==2],base$Ben_Car[base$sexo==1])$p.value,3),
round(t.test(base$Ben_Dep[base$sexo==2],base$Ben_Dep[base$sexo==1])$p.value,3),
round(t.test(base$Sec_Per[base$sexo==2],base$Sec_Per[base$sexo==1])$p.value,3),
round(t.test(base$Sec_Soc[base$sexo==2],base$Sec_Soc[base$sexo==1])$p.value,3),
round(t.test(base$Con_Rul[base$sexo==2],base$Con_Rul[base$sexo==1])$p.value,3),
round(t.test(base$Con_Int[base$sexo==2],base$Con_Int[base$sexo==1])$p.value,3),
round(t.test(base$Tradic[base$sexo==2],base$Tradic[base$sexo==1])$p.value,3),
round(t.test(base$Achiev[base$sexo==2],base$Achiev[base$sexo==1])$p.value,3),
round(t.test(base$Po_Dom[base$sexo==2],base$Po_Dom[base$sexo==1])$p.value,3),
round(t.test(base$Po_Res[base$sexo==2],base$Po_Res[base$sexo==1])$p.value,3),
round(t.test(base$SD_Thought[base$sexo==2],base$SD_Thought[base$sexo==1])$p.value,3),
round(t.test(base$SD_Action[base$sexo==2],base$SD_Action[base$sexo==1])$p.value,3),
round(t.test(base$Stimu[base$sexo==2],base$Stimu[base$sexo==1])$p.value,3),
round(t.test(base$Hedon[base$sexo==2],base$Hedon[base$sexo==1])$p.value,3),
round(t.test(base$Face[base$sexo==2],base$Face[base$sexo==1])$p.value,3),
round(t.test(base$Humi[base$sexo==2],base$Humi[base$sexo==1])$p.value,3)),
"d de Cohen"=c(round(cohen.d(Uni_nat~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Uni_con~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Uni_Tol~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Ben_Car~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Ben_Dep~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Sec_Per~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Sec_Soc~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Con_Rul~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Con_Int~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Tradic~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Achiev~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Po_Dom~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Po_Res~sexo, data=base)$cohen.d[2],2),
round(cohen.d(SD_Thought~sexo, data=base)$cohen.d[2],2),
round(cohen.d(SD_Action~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Stimu~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Hedon~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Face~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Humi~sexo, data=base)$cohen.d[2],2)),
color=rep(NA,19),
check.names = F)
tabla_s19_sexo$`d de Cohen` <- ifelse(tabla_s19_sexo$`d de Cohen`<0,(-1)*tabla_s19_sexo$`d de Cohen`, tabla_s19_sexo$`d de Cohen`)
tabla_s19_sexo$color <- ifelse(tabla_s19_sexo$p<.05&tabla_s19_sexo$t<0,"#daaaaa",
ifelse(tabla_s19_sexo$p<.05&tabla_s19_sexo$t>0,"#a5c3c6",NA))
tabla_s19_sexo$p <- ifelse(tabla_s19_sexo$p==0,"< .001", tabla_s19_sexo$p)
tabla <- kable(tabla_s19_sexo[1:9],
"html",
booktabs = T,
align = c("r"),
caption = "Descriptivos valores Schwartz (19) y diferencial por sexo") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s19_sexo)){
if(!is.na(tabla_s19_sexo$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s19_sexo$color[i])
}
}
tabla <- add_header_above(tabla, c("","","","Global"=1,"Fem"=1,"Masc"=1,"","",""))
tabla
| Valores | Rango | Alfa de Cronbach | M (SD) | M (SD).1 | M (SD).2 | t | p | d de Cohen |
|---|---|---|---|---|---|---|---|---|
| Universalismo-Naturaleza | 1 - 6 | 0.79 | 4.13 (1.09) | 4.27 (1.09) | 4.06 (1.09) | 2.95 | 0.003 | 0.19 |
| Universalismo-Preocupación | 1 - 6 | 0.65 | 4.98 (0.84) | 5.23 (0.72) | 4.87 (0.86) | 7.25 | < .001 | 0.44 |
| Universalismo-Tolerancia | 1 - 6 | 0.55 | 4.67 (0.84) | 4.88 (0.79) | 4.58 (0.84) | 5.65 | < .001 | 0.36 |
| Benevolencia-Cuidado | 1 - 6 | 0.62 | 5.3 (0.66) | 5.5 (0.53) | 5.21 (0.69) | 7.56 | < .001 | 0.44 |
| Benevolencia-Dependencia | 1 - 6 | 0.69 | 5.39 (0.69) | 5.56 (0.58) | 5.31 (0.72) | 6.16 | < .001 | 0.37 |
| Seguridad-Personal | 1 - 6 | 0.54 | 4.76 (0.82) | 4.84 (0.85) | 4.72 (0.8) | 2.07 | 0.039 | 0.14 |
| Seguridad-Social | 1 - 6 | 0.69 | 4.52 (1.07) | 4.61 (1.06) | 4.48 (1.07) | 1.94 | 0.053 | 0.13 |
| Conformidad-Reglas | 1 - 6 | 0.69 | 4.11 (1.07) | 4.23 (1.09) | 4.06 (1.06) | 2.38 | 0.017 | 0.16 |
| Conformidad-Interpersonal | 1 - 6 | 0.61 | 4.26 (0.97) | 4.46 (0.9) | 4.18 (1) | 4.60 | < .001 | 0.29 |
| Tradición | 1 - 6 | 0.75 | 3.35 (1.22) | 3.28 (1.22) | 3.39 (1.22) | -1.36 | 0.175 | 0.09 |
| Logro | 1 - 6 | 0.51 | 4.48 (0.9) | 4.39 (0.92) | 4.52 (0.88) | -2.12 | 0.034 | 0.14 |
| Poder-Dominancia | 1 - 6 | 0.73 | 2.56 (1.1) | 2.24 (1.05) | 2.7 (1.09) | -6.70 | < .001 | 0.43 |
| Poder-Recursos | 1 - 6 | 0.77 | 2.8 (1.18) | 2.36 (1.02) | 2.98 (1.19) | -8.86 | < .001 | 0.54 |
| Autodirección-Pensamiento | 1 - 6 | 0.60 | 4.86 (0.76) | 4.99 (0.74) | 4.81 (0.76) | 3.66 | < .001 | 0.23 |
| Autodirección-Acción | 1 - 6 | 0.57 | 4.85 (0.77) | 4.94 (0.82) | 4.8 (0.74) | 2.67 | 0.008 | 0.18 |
| Estimulación | 1 - 6 | 0.60 | 4.64 (0.87) | 4.81 (0.86) | 4.57 (0.86) | 4.23 | < .001 | 0.27 |
| Hedonismo | 1 - 6 | 0.58 | 5.42 (0.63) | 5.54 (0.6) | 5.36 (0.64) | 4.56 | < .001 | 0.29 |
| Apariencia | 1 - 6 | 0.65 | 4.37 (1.05) | 4.34 (1.01) | 4.38 (1.07) | -0.53 | 0.597 | 0.03 |
| Humildad | 1 - 6 | 0.29 | 4.4 (0.84) | 4.52 (0.86) | 4.36 (0.83) | 2.96 | 0.003 | 0.20 |
En la mayoría de valores las mujeres puntuaron más alto que los varones. Estos últimos sólo puntuaron más alto en logro, poder-dominancia y poder-recursos. En seguridad-social, tradición y apariencia no hubo diferencias significativas. En cuanto al tamaño del efecto, todas las diferencias fueron pequeñas, a excepción de poder-recursos, que fue moderada.
Schwartz (4 valores)
Para los cuatro valores de orden superior también se estimaron las fiabilidades para cada valor, media y desvío estándar y diferenciales según sexo. Dada la configuración observada en el MDS, hedonismo se lo consideró parte de apertura al cambio. Humildad y apariencia no se incluyeron en este análisis. El primero por estar repartido entre autotrascendencia y conservación, y el segundo por estar equidistante entre conservación y autopromoción.
tabla_s4_sexo <- data.frame(Valores=c("Auto-Trascendencia",
"Conservación",
"Auto-Promoción",
"Apertura al Cambio"),
"Rango"=rep("1 - 6",4),
"Alfa de Cronbach"=c(round(alpha(base[,startsWith(colnames(base),"un")|
startsWith(colnames(base),"be")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"ses")|
startsWith(colnames(base),"sep")|
startsWith(colnames(base),"co")|
startsWith(colnames(base),"tra")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"ach")|
startsWith(colnames(base),"po")])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"sd")|
startsWith(colnames(base),"sti")|
startsWith(colnames(base),"hed")])$total$std.alpha,2)),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4),2)," (",round(sd(base$SelfTrasc_4),2),")"),
paste0(round(mean(base$Conser_4),2)," (",round(sd(base$Conser_4),2),")"),
paste0(round(mean(base$SelfEnh_4),2)," (",round(sd(base$SelfEnh_4),2),")"),
paste0(round(mean(base$Open_4),2)," (",round(sd(base$Open_4),2),")")),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4[base$sexo==2]),2)," (",round(sd(base$SelfTrasc_4[base$sexo==2]),2),")"), # Mujeres
paste0(round(mean(base$Conser_4[base$sexo==2]),2)," (",round(sd(base$Conser_4[base$sexo==2]),2),")"),
paste0(round(mean(base$SelfEnh_4[base$sexo==2]),2)," (",round(sd(base$SelfEnh_4[base$sexo==2]),2),")"),
paste0(round(mean(base$Open_4[base$sexo==2]),2)," (",round(sd(base$Open_4[base$sexo==2]),2),")")),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4[base$sexo==1]),2)," (",round(sd(base$SelfTrasc_4[base$sexo==1]),2),")"), # Varones
paste0(round(mean(base$Conser_4[base$sexo==1]),2)," (",round(sd(base$Conser_4[base$sexo==1]),2),")"),
paste0(round(mean(base$SelfEnh_4[base$sexo==1]),2)," (",round(sd(base$SelfEnh_4[base$sexo==1]),2),")"),
paste0(round(mean(base$Open_4[base$sexo==1]),2)," (",round(sd(base$Open_4[base$sexo==1]),2),")")),
"t"=c(round(t.test(base$SelfTrasc_4[base$sexo==2],base$SelfTrasc_4[base$sexo==1])$statistic,2),
round(t.test(base$Conser_4[base$sexo==2],base$Conser_4[base$sexo==1])$statistic,2),
round(t.test(base$SelfEnh_4[base$sexo==2],base$SelfEnh_4[base$sexo==1])$statistic,2),
round(t.test(base$Open_4[base$sexo==2],base$Open_4[base$sexo==1])$statistic,2)),
"p"=c(round(t.test(base$SelfTrasc_4[base$sexo==2],base$SelfTrasc_4[base$sexo==1])$p.value,3),
round(t.test(base$Conser_4[base$sexo==2],base$Conser_4[base$sexo==1])$p.value,3),
round(t.test(base$SelfEnh_4[base$sexo==2],base$SelfEnh_4[base$sexo==1])$p.value,3),
round(t.test(base$Open_4[base$sexo==2],base$Open_4[base$sexo==1])$p.value,3)),
"d de Cohen"=c(round(cohen.d(SelfTrasc_4~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Conser_4~sexo, data=base)$cohen.d[2],2),
round(cohen.d(SelfEnh_4~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Open_4~sexo, data=base)$cohen.d[2],2)),
color=rep(NA,4),
check.names = F)
tabla_s4_sexo$`d de Cohen` <- ifelse(tabla_s4_sexo$`d de Cohen`<0,(-1)*tabla_s4_sexo$`d de Cohen`, tabla_s4_sexo$`d de Cohen`)
tabla_s4_sexo$color <- ifelse(tabla_s4_sexo$p<.05&tabla_s4_sexo$t<0,"#daaaaa",
ifelse(tabla_s4_sexo$p<.05&tabla_s4_sexo$t>0,"#a5c3c6",NA))
tabla_s4_sexo$p <- ifelse(tabla_s4_sexo$p==0,"< .001", tabla_s4_sexo$p)
tabla <- kable(tabla_s4_sexo[1:9],
"html",
booktabs = T,
align = c("r"),
caption = "Descriptivos valores Schwartz (4) y diferencial por sexo") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s4_sexo)){
if(!is.na(tabla_s4_sexo$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s4_sexo$color[i])
}
}
tabla <- add_header_above(tabla, c("","","","Global"=1,"Fem"=1,"Masc"=1,"","",""))
tabla
| Valores | Rango | Alfa de Cronbach | M (SD) | M (SD).1 | M (SD).2 | t | p | d de Cohen |
|---|---|---|---|---|---|---|---|---|
| Auto-Trascendencia | 1 - 6 | 0.83 | 4.89 (0.57) | 5.09 (0.51) | 4.81 (0.58) | 8.15 | < .001 | 0.50 |
| Conservación | 1 - 6 | 0.81 | 4.25 (0.63) | 4.33 (0.62) | 4.22 (0.63) | 2.51 | 0.012 | 0.16 |
| Auto-Promoción | 1 - 6 | 0.80 | 3.28 (0.85) | 3 (0.79) | 3.4 (0.85) | -7.66 | < .001 | 0.49 |
| Apertura al Cambio | 1 - 6 | 0.77 | 4.94 (0.55) | 5.07 (0.57) | 4.89 (0.53) | 5.03 | < .001 | 0.34 |
En la mayoría de valores las mujeres puntuaron más alto que los varones. Estos últimos sólo puntuaron más alto en autopromoción. En autopromoción y autotrascendencia las diferencias fueron moderadas. En conservación y apertura al cambio, pequeñas (pero significativas).
Lee et al (3 valores)
Para los tres valores en el deporte también se estimaron las fiabilidades para cada valor, media y desvío estándar y diferenciales según sexo.
tabla_l3_sexo <- data.frame(Valores=c("Competencia",
"Moral",
"Estatus"),
"Rango"=rep("1 - 7",3),
"Alfa de Cronbach"=c(round(alpha(base[,startsWith(colnames(base),"COM")][1:4])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"MOR")][1:5])$total$std.alpha,2),
round(alpha(base[,startsWith(colnames(base),"STA")][1:4])$total$std.alpha,2)),
"M (SD)"=c(paste0(round(mean(base$COMPE),2)," (",round(sd(base$COMPE),2),")"),
paste0(round(mean(base$MORAL),2)," (",round(sd(base$MORAL),2),")"),
paste0(round(mean(base$STATUS),2)," (",round(sd(base$STATUS),2),")")),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$sexo==2]),2)," (",round(sd(base$COMPE[base$sexo==2]),2),")"), # Mujeres
paste0(round(mean(base$MORAL[base$sexo==2]),2)," (",round(sd(base$MORAL[base$sexo==2]),2),")"),
paste0(round(mean(base$STATUS[base$sexo==2]),2)," (",round(sd(base$STATUS[base$sexo==2]),2),")")),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$sexo==1]),2)," (",round(sd(base$COMPE[base$sexo==1]),2),")"), # Varones
paste0(round(mean(base$MORAL[base$sexo==1]),2)," (",round(sd(base$MORAL[base$sexo==1]),2),")"),
paste0(round(mean(base$STATUS[base$sexo==1]),2)," (",round(sd(base$STATUS[base$sexo==1]),2),")")),
"t"=c(round(t.test(base$COMPE[base$sexo==2],base$COMPE[base$sexo==1])$statistic,2),
round(t.test(base$MORAL[base$sexo==2],base$MORAL[base$sexo==1])$statistic,2),
round(t.test(base$STATUS[base$sexo==2],base$STATUS[base$sexo==1])$statistic,2)),
"p"=c(round(t.test(base$COMPE[base$sexo==2],base$COMPE[base$sexo==1])$p.value,3),
round(t.test(base$MORAL[base$sexo==2],base$MORAL[base$sexo==1])$p.value,3),
round(t.test(base$STATUS[base$sexo==2],base$STATUS[base$sexo==1])$p.value,3)),
"d de Cohen"=c(round(cohen.d(COMPE~sexo, data=base)$cohen.d[2],2),
round(cohen.d(MORAL~sexo, data=base)$cohen.d[2],2),
round(cohen.d(STATUS~sexo, data=base)$cohen.d[2],2)),
color=rep(NA,3),
check.names = F)
tabla_l3_sexo$`d de Cohen` <- ifelse(tabla_l3_sexo$`d de Cohen`<0,(-1)*tabla_l3_sexo$`d de Cohen`, tabla_l3_sexo$`d de Cohen`)
tabla_l3_sexo$color <- ifelse(tabla_l3_sexo$p<.05&tabla_l3_sexo$t<0,"#daaaaa",
ifelse(tabla_l3_sexo$p<.05&tabla_l3_sexo$t>0,"#a5c3c6",NA))
tabla_l3_sexo$p <- ifelse(tabla_l3_sexo$p==0,"< .001", tabla_l3_sexo$p)
tabla <- kable(tabla_l3_sexo[1:9],
"html",
booktabs = T,
align = c("r"),
caption = "Descriptivos valores Lee et al. (3) y diferencial por sexo") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_l3_sexo)){
if(!is.na(tabla_l3_sexo$color[i])){
tabla <- row_spec(tabla,i,background = tabla_l3_sexo$color[i])
}
}
tabla <- add_header_above(tabla, c("","","","Global"=1,"Fem"=1,"Masc"=1,"","",""))
tabla
| Valores | Rango | Alfa de Cronbach | M (SD) | M (SD).1 | M (SD).2 | t | p | d de Cohen |
|---|---|---|---|---|---|---|---|---|
| Competencia | 1 - 7 | 0.60 | 6.17 (0.74) | 6.2 (0.75) | 6.16 (0.74) | 0.70 | 0.482 | 0.05 |
| Moral | 1 - 7 | 0.72 | 5.82 (0.8) | 5.98 (0.71) | 5.74 (0.82) | 4.94 | < .001 | 0.30 |
| Estatus | 1 - 7 | 0.71 | 4.36 (1.13) | 3.92 (1.12) | 4.54 (1.09) | -8.56 | < .001 | 0.56 |
Las mujeres puntuaron más alto en valores morales (diferencia pequeña) y los varones puntuaron más alto en valores de estatus (diferencia moderada).
Diferencial por edad
Schwartz (19 valores)
Edad
Se ajustaron modelos lineales para predecir el nivel de los 19 valores básicos de Schwartz según la edad (continua). Se utilizaron los puntajes centrados (como recomienda Schwartz)
mod_unn <- lm.beta(lm(Uni_nat_C~edad, data = base))
mod_unc <- lm.beta(lm(Uni_con_C~edad, data = base))
mod_unt <- lm.beta(lm(Uni_Tol_C~edad, data = base))
mod_bec <- lm.beta(lm(Ben_Car_C~edad, data = base))
mod_bed <- lm.beta(lm(Ben_Dep_C~edad, data = base))
mod_sep <- lm.beta(lm(Sec_Per_C~edad, data = base))
mod_ses <- lm.beta(lm(Sec_Soc_C~edad, data = base))
mod_cor <- lm.beta(lm(Con_Rul_C~edad, data = base))
mod_coi <- lm.beta(lm(Con_Int_C~edad, data = base))
mod_tra <- lm.beta(lm(Tradic_C~edad, data = base))
mod_ach <- lm.beta(lm(Achiev_C~edad, data = base))
mod_pod <- lm.beta(lm(Po_Dom_C~edad, data = base))
mod_por <- lm.beta(lm(Po_Res_C~edad, data = base))
mod_sdt <- lm.beta(lm(SD_Thought_C~edad, data = base))
mod_sda <- lm.beta(lm(SD_Action_C~edad, data = base))
mod_sti <- lm.beta(lm(Stimu_C~edad, data = base))
mod_hed <- lm.beta(lm(Hedon_C~edad, data = base))
mod_fac <- lm.beta(lm(Face_C~edad, data = base))
mod_hum <- lm.beta(lm(Humi_C~edad, data = base))
tabla_s19_edad <- as.data.frame(cbind(Valor=c("Universalismo-Naturaleza",
"Universalismo-Preocupación",
"Universalismo-Tolerancia",
"Benevolencia-Cuidado",
"Benevolencia-Dependencia",
"Seguridad-Personal",
"Seguridad-Social",
"Conformidad-Reglas",
"Conformidad-Interpersonal",
"Tradición",
"Logro",
"Poder-Dominancia",
"Poder-Recursos",
"Autodirección-Pensamiento",
"Autodirección-Acción",
"Estimulación",
"Hedonismo",
"Apariencia",
"Humildad"),
round(rbind(summary(mod_unn)$coef[2,1:4],
summary(mod_unc)$coef[2,1:4],
summary(mod_unt)$coef[2,1:4],
summary(mod_bec)$coef[2,1:4],
summary(mod_bed)$coef[2,1:4],
summary(mod_sep)$coef[2,1:4],
summary(mod_ses)$coef[2,1:4],
summary(mod_cor)$coef[2,1:4],
summary(mod_coi)$coef[2,1:4],
summary(mod_tra)$coef[2,1:4],
summary(mod_ach)$coef[2,1:4],
summary(mod_pod)$coef[2,1:4],
summary(mod_por)$coef[2,1:4],
summary(mod_sdt)$coef[2,1:4],
summary(mod_sda)$coef[2,1:4],
summary(mod_sti)$coef[2,1:4],
summary(mod_hed)$coef[2,1:4],
summary(mod_fac)$coef[2,1:4],
summary(mod_hum)$coef[2,1:4]),2),
round(rbind(summary(mod_unn)$coef[2,5],
summary(mod_unc)$coef[2,5],
summary(mod_unt)$coef[2,5],
summary(mod_bec)$coef[2,5],
summary(mod_bed)$coef[2,5],
summary(mod_sep)$coef[2,5],
summary(mod_ses)$coef[2,5],
summary(mod_cor)$coef[2,5],
summary(mod_coi)$coef[2,5],
summary(mod_tra)$coef[2,5],
summary(mod_ach)$coef[2,5],
summary(mod_pod)$coef[2,5],
summary(mod_por)$coef[2,5],
summary(mod_sdt)$coef[2,5],
summary(mod_sda)$coef[2,5],
summary(mod_sti)$coef[2,5],
summary(mod_hed)$coef[2,5],
summary(mod_fac)$coef[2,5],
summary(mod_hum)$coef[2,5]),3),
round(rbind(summary(mod_unn)$r.squared,
summary(mod_unc)$r.squared,
summary(mod_unt)$r.squared,
summary(mod_bec)$r.squared,
summary(mod_bed)$r.squared,
summary(mod_sep)$r.squared,
summary(mod_ses)$r.squared,
summary(mod_cor)$r.squared,
summary(mod_coi)$r.squared,
summary(mod_tra)$r.squared,
summary(mod_ach)$r.squared,
summary(mod_pod)$r.squared,
summary(mod_por)$r.squared,
summary(mod_sdt)$r.squared,
summary(mod_sda)$r.squared,
summary(mod_sti)$r.squared,
summary(mod_hed)$r.squared,
summary(mod_fac)$r.squared,
summary(mod_hum)$r.squared),2)))
colnames(tabla_s19_edad) <- c("Valor",
"Beta",
"Beta std",
"EE",
"t",
"p",
"R2")
tabla_s19_edad$color <- ifelse(tabla_s19_edad$p<=.05&tabla_s19_edad$Beta<0,"#daaaaa", ifelse(tabla_s19_edad$p<=.05&tabla_s19_edad$Beta>0,"#a5c3c6",NA))
tabla_s19_edad$p <- ifelse(tabla_s19_edad$p==0,"< .001", tabla_s19_edad$p)
tabla_s19_edad$R2 <- ifelse(tabla_s19_edad$R2==0,"< .01", tabla_s19_edad$R2)
tabla <- kable(tabla_s19_edad[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Predicción de valores según edad (continua)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s19_edad)){
if(!is.na(tabla_s19_edad$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s19_edad$color[i])
}
}
tabla
| Valor | Beta | Beta std | EE | t | p | R2 |
|---|---|---|---|---|---|---|
| Universalismo-Naturaleza | -0.01 | -0.02 | 0.01 | -0.75 | 0.452 | < .01 |
| Universalismo-Preocupación | 0.01 | 0.04 | 0.01 | 1.35 | 0.176 | < .01 |
| Universalismo-Tolerancia | 0.04 | 0.12 | 0.01 | 3.96 | < .001 | 0.01 |
| Benevolencia-Cuidado | -0.01 | -0.02 | 0.01 | -0.81 | 0.415 | < .01 |
| Benevolencia-Dependencia | 0 | 0 | 0.01 | -0.12 | 0.907 | < .01 |
| Seguridad-Personal | -0.05 | -0.17 | 0.01 | -5.66 | < .001 | 0.03 |
| Seguridad-Social | -0.04 | -0.11 | 0.01 | -3.83 | < .001 | 0.01 |
| Conformidad-Reglas | -0.04 | -0.09 | 0.01 | -3.17 | 0.002 | 0.01 |
| Conformidad-Interpersonal | -0.01 | -0.03 | 0.01 | -0.96 | 0.337 | < .01 |
| Tradición | -0.05 | -0.1 | 0.01 | -3.51 | < .001 | 0.01 |
| Logro | 0.03 | 0.09 | 0.01 | 3.19 | 0.001 | 0.01 |
| Poder-Dominancia | 0.05 | 0.11 | 0.01 | 3.64 | < .001 | 0.01 |
| Poder-Recursos | 0.03 | 0.05 | 0.01 | 1.83 | 0.068 | < .01 |
| Autodirección-Pensamiento | 0.05 | 0.17 | 0.01 | 5.86 | < .001 | 0.03 |
| Autodirección-Acción | 0.04 | 0.14 | 0.01 | 4.86 | < .001 | 0.02 |
| Estimulación | -0.02 | -0.05 | 0.01 | -1.65 | 0.1 | < .01 |
| Hedonismo | -0.01 | -0.04 | 0.01 | -1.21 | 0.225 | < .01 |
| Apariencia | -0.04 | -0.11 | 0.01 | -3.81 | < .001 | 0.01 |
| Humildad | 0.02 | 0.06 | 0.01 | 2 | 0.046 | < .01 |
La edad predijo significativa y positivamente los valores de universalismo-tolerancia, logro, poder-dominancia, ambas vertientes de autodirección y humildad; y negativamente ambas dimensiones de seguridad, conformidad-reglas, tradición y apariencia. Sin embargo, los tamaños de efecto son todos muy pequeños: los valores en los que más impactaría la edad serían seguridad-personal y autodirección-pensamiento, disminuyendo (seguridad) o aumentando (autodirección) 0.17 desviaciones típicas por cada año que se aumenta. El promedio de los betas estandarizados (en valor absoluto y considerando sólo los significativos) fue de 0.16. Además, la variabilidad de los valores explicada por la edad (\(R^2\)) es despreciable.
Edad (ordinal)
Se ajustaron modelos de regresión lineal para evaluar el efecto de la edad como escala ordinal (“12-13”,“14-15”, “16-17” y “18 o más”). Para las comparaciones post-hoc se utilizó la prueba de tukey. Para los análisis inferenciales se utilizan puntajes centrados, como recomienda Schwartz. En el reporte de las medias se le sumó el promedio global de cada variable (sin discriminar por grupo etario), en puntaje crudo, para reconstruir la escala original (No me cierra porque igual se obtienen puntajes por abajo de 1 y por arriba de 6). El desvío reportado es aquel obtenido con puntajes centrados
mod_unn <- lm(Uni_nat_C~edad_ord, data = base)
mod_unc <- lm(Uni_con_C~edad_ord, data = base)
mod_unt <- lm(Uni_Tol_C~edad_ord, data = base)
mod_bec <- lm(Ben_Car_C~edad_ord, data = base)
mod_bed <- lm(Ben_Dep_C~edad_ord, data = base)
mod_sep <- lm(Sec_Per_C~edad_ord, data = base)
mod_ses <- lm(Sec_Soc_C~edad_ord, data = base)
mod_cor <- lm(Con_Rul_C~edad_ord, data = base)
mod_coi <- lm(Con_Int_C~edad_ord, data = base)
mod_tra <- lm(Tradic_C~edad_ord, data = base)
mod_ach <- lm(Achiev_C~edad_ord, data = base)
mod_pod <- lm(Po_Dom_C~edad_ord, data = base)
mod_por <- lm(Po_Res_C~edad_ord, data = base)
mod_sdt <- lm(SD_Thought_C~edad_ord, data = base)
mod_sda <- lm(SD_Action_C~edad_ord, data = base)
mod_sti <- lm(Stimu_C~edad_ord, data = base)
mod_hed <- lm(Hedon_C~edad_ord, data = base)
mod_fac <- lm(Face_C~edad_ord, data = base)
mod_hum <- lm(Humi_C~edad_ord, data = base)
tabla_s19_edadord <- data.frame(Valores=c("Universalismo-Naturaleza",
"Universalismo-Preocupación",
"Universalismo-Tolerancia",
"Benevolencia-Cuidado",
"Benevolencia-Dependencia",
"Seguridad-Personal",
"Seguridad-Social",
"Conformidad-Reglas",
"Conformidad-Interpersonal",
"Tradición",
"Logro",
"Poder-Dominancia",
"Poder-Recursos",
"Autodirección-Pensamiento",
"Autodirección-Acción",
"Estimulación",
"Hedonismo",
"Apariencia",
"Humildad"),
"M (SD)"=c(paste0(round(mean(base$Uni_nat)+mean(base$Uni_nat_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Uni_nat_C[base$edad_ord=="12-13"]),2),")"), # 12-13
paste0(round(mean(base$Uni_con)+mean(base$Uni_con_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Uni_con_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Uni_Tol)+mean(base$Uni_Tol_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Uni_Tol_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Ben_Car)+mean(base$Ben_Car_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Ben_Car_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Ben_Dep)+mean(base$Ben_Dep_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Ben_Dep_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Sec_Per)+mean(base$Sec_Per_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Sec_Per_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Sec_Soc)+mean(base$Sec_Soc_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Sec_Soc_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Con_Rul)+mean(base$Con_Rul_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Con_Rul_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Con_Int)+mean(base$Con_Int_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Con_Int_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Tradic)+mean(base$Tradic_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Tradic_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Achiev)+mean(base$Achiev_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Achiev_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Po_Dom)+mean(base$Po_Dom_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Po_Dom_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Po_Res)+mean(base$Po_Res_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Po_Res_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$SD_Thought)+mean(base$SD_Thought_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$SD_Thought_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$SD_Action)+mean(base$SD_Action_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$SD_Action_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Stimu)+mean(base$Stimu_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Stimu_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Hedon)+mean(base$Hedon_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Hedon_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Face)+mean(base$Face_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Face_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Humi)+mean(base$Humi_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Humi_C[base$edad_ord=="12-13"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$Uni_nat)+mean(base$Uni_nat_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Uni_nat_C[base$edad_ord=="14-15"]),2),")"), # Late
paste0(round(mean(base$Uni_con)+mean(base$Uni_con_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Uni_con_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Uni_Tol)+mean(base$Uni_Tol_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Uni_Tol_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Ben_Car)+mean(base$Ben_Car_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Ben_Car_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Ben_Dep)+mean(base$Ben_Dep_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Ben_Dep_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Sec_Per)+mean(base$Sec_Per_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Sec_Per_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Sec_Soc)+mean(base$Sec_Soc_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Sec_Soc_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Con_Rul)+mean(base$Con_Rul_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Con_Rul_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Con_Int)+mean(base$Con_Int_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Con_Int_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Tradic)+mean(base$Tradic_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Tradic_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Achiev)+mean(base$Achiev_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Achiev_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Po_Dom)+mean(base$Po_Dom_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Po_Dom_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Po_Res)+mean(base$Po_Res_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Po_Res_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$SD_Thought)+mean(base$SD_Thought_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$SD_Thought_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$SD_Action)+mean(base$SD_Action_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$SD_Action_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Stimu)+mean(base$Stimu_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Stimu_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Hedon)+mean(base$Hedon_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Hedon_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Face)+mean(base$Face_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Face_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Humi)+mean(base$Humi_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Humi_C[base$edad_ord=="14-15"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$Uni_nat)+mean(base$Uni_nat_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Uni_nat_C[base$edad_ord=="16-17"]),2),")"), # Late
paste0(round(mean(base$Uni_con)+mean(base$Uni_con_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Uni_con_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Uni_Tol)+mean(base$Uni_Tol_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Uni_Tol_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Ben_Car)+mean(base$Ben_Car_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Ben_Car_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Ben_Dep)+mean(base$Ben_Dep_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Ben_Dep_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Sec_Per)+mean(base$Sec_Per_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Sec_Per_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Sec_Soc)+mean(base$Sec_Soc_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Sec_Soc_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Con_Rul)+mean(base$Con_Rul_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Con_Rul_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Con_Int)+mean(base$Con_Int_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Con_Int_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Tradic)+mean(base$Tradic_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Tradic_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Achiev)+mean(base$Achiev_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Achiev_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Po_Dom)+mean(base$Po_Dom_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Po_Dom_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Po_Res)+mean(base$Po_Res_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Po_Res_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$SD_Thought)+mean(base$SD_Thought_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$SD_Thought_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$SD_Action)+mean(base$SD_Action_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$SD_Action_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Stimu)+mean(base$Stimu_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Stimu_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Hedon)+mean(base$Hedon_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Hedon_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Face)+mean(base$Face_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Face_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Humi)+mean(base$Humi_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Humi_C[base$edad_ord=="16-17"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$Uni_nat)+mean(base$Uni_nat_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Uni_nat_C[base$edad_ord=="18+"]),2),")"), # Late
paste0(round(mean(base$Uni_con)+mean(base$Uni_con_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Uni_con_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Uni_Tol)+mean(base$Uni_Tol_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Uni_Tol_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Ben_Car)+mean(base$Ben_Car_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Ben_Car_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Ben_Dep)+mean(base$Ben_Dep_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Ben_Dep_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Sec_Per)+mean(base$Sec_Per_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Sec_Per_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Sec_Soc)+mean(base$Sec_Soc_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Sec_Soc_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Con_Rul)+mean(base$Con_Rul_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Con_Rul_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Con_Int)+mean(base$Con_Int_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Con_Int_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Tradic)+mean(base$Tradic_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Tradic_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Achiev)+mean(base$Achiev_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Achiev_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Po_Dom)+mean(base$Po_Dom_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Po_Dom_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Po_Res)+mean(base$Po_Res_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Po_Res_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$SD_Thought)+mean(base$SD_Thought_C[base$edad_ord=="18+"]),2)," (",round(sd(base$SD_Thought_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$SD_Action)+mean(base$SD_Action_C[base$edad_ord=="18+"]),2)," (",round(sd(base$SD_Action_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Stimu)+mean(base$Stimu_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Stimu_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Hedon)+mean(base$Hedon_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Hedon_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Face)+mean(base$Face_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Face_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Humi)+mean(base$Humi_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Humi_C[base$edad_ord=="18+"]),2),")")),
"F"=c(round(summary(mod_unn)$fstatistic[1],2),
round(summary(mod_unc)$fstatistic[1],2),
round(summary(mod_unt)$fstatistic[1],2),
round(summary(mod_bec)$fstatistic[1],2),
round(summary(mod_bed)$fstatistic[1],2),
round(summary(mod_sep)$fstatistic[1],2),
round(summary(mod_ses)$fstatistic[1],2),
round(summary(mod_cor)$fstatistic[1],2),
round(summary(mod_coi)$fstatistic[1],2),
round(summary(mod_tra)$fstatistic[1],2),
round(summary(mod_ach)$fstatistic[1],2),
round(summary(mod_pod)$fstatistic[1],2),
round(summary(mod_por)$fstatistic[1],2),
round(summary(mod_sdt)$fstatistic[1],2),
round(summary(mod_sda)$fstatistic[1],2),
round(summary(mod_sti)$fstatistic[1],2),
round(summary(mod_hed)$fstatistic[1],2),
round(summary(mod_fac)$fstatistic[1],2),
round(summary(mod_hum)$fstatistic[1],2)),
"p"=c(round(pf(summary(mod_unn)$fstatistic[1],summary(mod_unn)$fstatistic[2],summary(mod_unn)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_unc)$fstatistic[1],summary(mod_unc)$fstatistic[2],summary(mod_unc)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_unt)$fstatistic[1],summary(mod_unt)$fstatistic[2],summary(mod_unt)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_bec)$fstatistic[1],summary(mod_bec)$fstatistic[2],summary(mod_bec)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_bed)$fstatistic[1],summary(mod_bed)$fstatistic[2],summary(mod_bed)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_sep)$fstatistic[1],summary(mod_sep)$fstatistic[2],summary(mod_sep)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_ses)$fstatistic[1],summary(mod_ses)$fstatistic[2],summary(mod_ses)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_cor)$fstatistic[1],summary(mod_cor)$fstatistic[2],summary(mod_cor)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_coi)$fstatistic[1],summary(mod_coi)$fstatistic[2],summary(mod_coi)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_tra)$fstatistic[1],summary(mod_tra)$fstatistic[2],summary(mod_tra)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_ach)$fstatistic[1],summary(mod_ach)$fstatistic[2],summary(mod_ach)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_pod)$fstatistic[1],summary(mod_pod)$fstatistic[2],summary(mod_pod)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_por)$fstatistic[1],summary(mod_por)$fstatistic[2],summary(mod_por)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_sdt)$fstatistic[1],summary(mod_sdt)$fstatistic[2],summary(mod_sdt)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_sda)$fstatistic[1],summary(mod_sda)$fstatistic[2],summary(mod_sda)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_sti)$fstatistic[1],summary(mod_sti)$fstatistic[2],summary(mod_sti)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_hed)$fstatistic[1],summary(mod_hed)$fstatistic[2],summary(mod_hed)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_fac)$fstatistic[1],summary(mod_fac)$fstatistic[2],summary(mod_fac)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_hum)$fstatistic[1],summary(mod_hum)$fstatistic[2],summary(mod_hum)$fstatistic[3], lower.tail = F),3)),
color=rep(NA,19),
check.names = F)
tabla_s19_edadord$color <- ifelse(tabla_s19_edadord$p<=.05,"#a5c3c6",NA)
tabla_s19_edadord$p <- ifelse(tabla_s19_edadord$p==0,"< .001", tabla_s19_edadord$p)
tabla_s19_edadord[1,2:5] <- paste0(tabla_s19_edadord[1,2:5], c(" [A]"," [AB]"," [B]"," [AB]"))
tabla_s19_edadord[2,2:5] <- paste0(tabla_s19_edadord[2,2:5], c(" [AB]"," [A]"," [AB]"," [B]"))
tabla_s19_edadord[3,2:5] <- paste0(tabla_s19_edadord[3,2:5], c(" [A]"," [A]"," [AB]"," [B]"))
tabla_s19_edadord[4,2:5] <- paste0(tabla_s19_edadord[4,2:5], c(" [A]"," [A]"," [A]"," [A]"))
tabla_s19_edadord[5,2:5] <- paste0(tabla_s19_edadord[5,2:5], c(" [A]"," [A]"," [A]"," [A]"))
tabla_s19_edadord[6,2:5] <- paste0(tabla_s19_edadord[6,2:5], c(" [A]"," [B]"," [C]"," [C]"))
tabla_s19_edadord[7,2:5] <- paste0(tabla_s19_edadord[7,2:5], c(" [A]"," [B]"," [B]"," [B]"))
tabla_s19_edadord[8,2:5] <- paste0(tabla_s19_edadord[8,2:5], c(" [A]"," [B]"," [B]"," [B]")) #cor
tabla_s19_edadord[9,2:5] <- paste0(tabla_s19_edadord[9,2:5], c(" [A]"," [B]"," [AB]"," [AB]")) #coi
tabla_s19_edadord[10,2:5] <- paste0(tabla_s19_edadord[10,2:5], c(" [A]"," [B]"," [C]"," [BC]")) #tra
tabla_s19_edadord[11,2:5] <- paste0(tabla_s19_edadord[11,2:5], c(" [A]"," [B]"," [B]"," [B]")) #ach
tabla_s19_edadord[12,2:5] <- paste0(tabla_s19_edadord[12,2:5], c(" [A]"," [B]"," [B]"," [B]")) #pod
tabla_s19_edadord[13,2:5] <- paste0(tabla_s19_edadord[13,2:5], c(" [A]"," [B]"," [B]"," [B]")) #por
tabla_s19_edadord[14,2:5] <- paste0(tabla_s19_edadord[14,2:5], c(" [A]"," [A]"," [B]"," [B]")) #sdt
tabla_s19_edadord[15,2:5] <- paste0(tabla_s19_edadord[15,2:5], c(" [A]"," [AB]"," [C]"," [BC]")) #sda
tabla_s19_edadord[16,2:5] <- paste0(tabla_s19_edadord[16,2:5], c(" [A]"," [A]"," [A]"," [A]"))
tabla_s19_edadord[17,2:5] <- paste0(tabla_s19_edadord[17,2:5], c(" [A]"," [A]"," [A]"," [A]"))
tabla_s19_edadord[18,2:5] <- paste0(tabla_s19_edadord[18,2:5], c(" [A]"," [A]"," [AB]"," [B]")) #fac
tabla_s19_edadord[19,2:5] <- paste0(tabla_s19_edadord[19,2:5], c(" [A]"," [A]"," [A]"," [A]"))
tabla <- kable(tabla_s19_edadord[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Diferenciales por edad (ordinal) en valores Schwartz (19)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s19_edadord)){
if(!is.na(tabla_s19_edadord$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s19_edadord$color[i])
}
}
tabla <- add_header_above(tabla, c("","12-13"=1,"14-15"=1,"16-17"=1,"18+"=1,"",""))
tabla
| Valores | M (SD) | M (SD).1 | M (SD).2 | M (SD).3 | F | p |
|---|---|---|---|---|---|---|
| Universalismo-Naturaleza | 3.99 (0.89) [A] | 3.81 (0.95) [AB] | 3.67 (1.03) [B] | 3.9 (0.94) [AB] | 4.14 | 0.006 |
| Universalismo-Preocupación | 5.61 (0.72) [AB] | 5.49 (0.75) [A] | 5.56 (0.66) [AB] | 5.68 (0.59) [B] | 3.18 | 0.023 |
| Universalismo-Tolerancia | 4.85 (0.76) [A] | 4.9 (0.7) [A] | 5.03 (0.72) [AB] | 5.15 (0.69) [B] | 6.04 | < .001 |
| Benevolencia-Cuidado | 6.18 (0.55) [A] | 6.18 (0.57) [A] | 6.23 (0.52) [A] | 6.13 (0.56) [A] | 0.73 | 0.535 |
| Benevolencia-Dependencia | 6.4 (0.57) [A] | 6.34 (0.61) [A] | 6.39 (0.54) [A] | 6.37 (0.44) [A] | 0.67 | 0.568 |
| Seguridad-Personal | 5.25 (0.64) [A] | 5.13 (0.64) [B] | 4.93 (0.67) [C] | 4.89 (0.56) [C] | 13.20 | < .001 |
| Seguridad-Social | 4.79 (0.81) [A] | 4.62 (0.87) [B] | 4.53 (0.86) [B] | 4.41 (0.9) [B] | 6.34 | < .001 |
| Conformidad-Reglas | 4 (0.94) [A] | 3.79 (0.89) [B] | 3.66 (0.93) [B] | 3.65 (0.94) [B] | 6.42 | < .001 |
| Conformidad-Interpersonal | 4.27 (0.84) [A] | 4.06 (0.85) [B] | 4.06 (0.88) [AB] | 4.12 (0.77) [AB] | 3.73 | 0.011 |
| Tradición | 2.54 (1.04) [A] | 2.29 (1.05) [B] | 2.01 (1.11) [C] | 2.17 (1.05) [BC] | 9.15 | < .001 |
| Logro | 4.33 (0.85) [A] | 4.6 (0.75) [B] | 4.66 (0.69) [B] | 4.61 (0.72) [B] | 9.52 | < .001 |
| Poder-Dominancia | 0.44 (1.08) [A] | 0.77 (1.06) [B] | 0.74 (1.02) [B] | 0.94 (0.96) [B] | 8.27 | < .001 |
| Poder-Recursos | 0.81 (1.17) [A] | 1.3 (1.12) [B] | 1.36 (1.11) [B] | 1.14 (1.02) [B] | 13.21 | < .001 |
| Autodirección-Pensamiento | 5.21 (0.68) [A] | 5.26 (0.66) [A] | 5.5 (0.66) [B] | 5.58 (0.68) [B] | 13.63 | < .001 |
| Autodirección-Acción | 5.14 (0.76) [A] | 5.25 (0.66) [AB] | 5.51 (0.59) [C] | 5.42 (0.62) [BC] | 12.19 | < .001 |
| Estimulación | 4.88 (0.7) [A] | 4.88 (0.76) [A] | 4.91 (0.73) [A] | 4.76 (0.76) [A] | 1.04 | 0.374 |
| Hedonismo | 6.44 (0.58) [A] | 6.42 (0.57) [A] | 6.41 (0.61) [A] | 6.38 (0.48) [A] | 0.34 | 0.799 |
| Apariencia | 4.41 (0.91) [A] | 4.36 (0.91) [A] | 4.26 (0.86) [AB] | 4.03 (0.79) [B] | 5.67 | 0.001 |
| Humildad | 4.32 (0.8) [A] | 4.4 (0.77) [A] | 4.42 (0.73) [A] | 4.52 (0.75) [A] | 1.78 | 0.149 |
mod_unn <- lm(Uni_nat_C~edad_ord, data=base)
mod_unc <- lm(Uni_con_C~edad_ord, data=base)
mod_unt <- lm(Uni_Tol_C~edad_ord, data=base)
mod_bec <- lm(Ben_Car_C~edad_ord, data=base)
mod_bed <- lm(Ben_Dep_C~edad_ord, data=base)
estimaciones<-data.frame(valor=factor(c(rep("unn",4),
rep("unc",4),
rep("unt",4),
rep("bec",4),
rep("bed",4)),
labels = c("unn","unc","unt","bec","bed")),
edad=c(as.data.frame(emmeans(mod_bec, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_unt, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_bed, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_unn, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_unc, pairwise ~ edad_ord)$emmeans)[,1]),
media=c(as.data.frame(emmeans(mod_bec, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_unt, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_bed, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_unn, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_unc, pairwise ~ edad_ord)$emmeans)[,2]))
plot_ST_edadord <- ggplot(data=estimaciones, aes(x=edad,
y=media,
color=valor,
group=valor))+
geom_point(size=10)+
geom_line(lwd=2)+
annotate("text",
x=as.numeric(estimaciones$edad),
y=c(estimaciones$media),
label = c("A", "A","A","A",
"A", "A","AB","B",
"A", "A","A","A",
"A", "AB","B","AB",
"AB", "A","AB","B"),
color=c(rep("white",20)))+
theme_bw()+
ggtitle("Valores de autotrascendencia")+
scale_color_manual(values=c("#e9c46a","#f4a261","#e76f51","#264653","#2a9d8f"))
plot_ST_edadord
Nota: diferentes letras indican diferencias significativas entre grupos etarios en cada valor
Entre los valores de autotrascendencia, el único que parece tener una tendencia clara y creciente es universalismo-tolerancia.
mod_sep <- lm(Sec_Per_C~edad_ord, data=base)
mod_ses <- lm(Sec_Soc_C~edad_ord, data=base)
mod_cor <- lm(Con_Rul_C~edad_ord, data=base)
mod_coi <- lm(Con_Int_C~edad_ord, data=base)
mod_tra <- lm(Tradic_C~edad_ord, data=base)
estimaciones<-data.frame(valor=factor(c(rep("sep",4),
rep("ses",4),
rep("cor",4),
rep("coi",4),
rep("tra",4)),
labels = c("sep","ses","cor","coi","tra")),
edad=c(as.data.frame(emmeans(mod_cor, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_coi, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_ses, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_sep, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_tra, pairwise ~ edad_ord)$emmeans)[,1]),
media=c(as.data.frame(emmeans(mod_cor, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_coi, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_ses, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_sep, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_tra, pairwise ~ edad_ord)$emmeans)[,2]))
plot_C_edadord <- ggplot(data=estimaciones, aes(x=edad,
y=media,
color=valor,
group=valor))+
geom_point(size=10)+
geom_line(lwd=2)+
annotate("text",
x=as.numeric(estimaciones$edad),
y=c(estimaciones$media),
label = c("A", "B","B","B",
"A", "B","AB","AB",
"A", "B","B","B",
"A", "B","C","C",
"A", "B","C","BC"),
color=c(rep("white",20)))+
theme_bw()+
ggtitle("Valores de conservación")+
scale_color_manual(values=c("#e9c46a","#f4a261","#e76f51","#264653","#2a9d8f"))
plot_C_edadord
Nota: diferentes letras indican diferencias significativas entre grupos etarios en cada valor
Los valores de seguridad y conformidad-reglas parecen presentar una tendencia a descender con el paso de los años, principalmente entre los 12-13 y los 14-15 años.
mod_ach <- lm(Achiev_C~edad_ord, data=base)
mod_pod <- lm(Po_Dom_C~edad_ord, data=base)
mod_por <- lm(Po_Res_C~edad_ord, data=base)
estimaciones<-data.frame(valor=factor(c(rep("ach",4),
rep("pod",4),
rep("por",4)),
labels = c("ach","pod","por")),
edad=c(as.data.frame(emmeans(mod_ach, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_pod, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_por, pairwise ~ edad_ord)$emmeans)[,1]),
media=c(as.data.frame(emmeans(mod_ach, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_pod, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_por, pairwise ~ edad_ord)$emmeans)[,2]))
plot_SE_edadord <- ggplot(data=estimaciones, aes(x=edad,
y=media,
color=valor,
group=valor))+
geom_point(size=10)+
geom_line(lwd=2)+
annotate("text",
x=as.numeric(estimaciones$edad),
y=c(estimaciones$media),
label = c("A", "B","B","B",
"A", "B","B","B",
"A", "B","B","B"),
color=c(rep("white",12)))+
theme_bw()+
ggtitle("Valores de autopromoción")+
scale_color_manual(values=c("#e9c46a","#e76f51","#2a9d8f"))
plot_SE_edadord
Nota: diferentes letras indican diferencias significativas entre grupos etarios en cada valor
Los tres valores de autopromoción parecen subir de nivel al inicio de la adolescencia.
mod_sdt <- lm(base$SD_Thought_C~edad_ord, data=base)
mod_sda <- lm(SD_Action_C~edad_ord, data=base)
mod_sti <- lm(Stimu_C~edad_ord, data=base)
mod_hed <- lm(Hedon_C~edad_ord, data=base)
estimaciones<-data.frame(valor=factor(c(rep("sdt",4),
rep("sda",4),
rep("sti",4),
rep("hed",4)),
labels = c("sdt","sda","sti","hed")),
edad=c(as.data.frame(emmeans(mod_sti, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_sda, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_hed, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_sdt, pairwise ~ edad_ord)$emmeans)[,1]),
media=c(as.data.frame(emmeans(mod_sti, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_sda, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_hed, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_sdt, pairwise ~ edad_ord)$emmeans)[,2]))
plot_OC_edadord <- ggplot(data=estimaciones, aes(x=edad,
y=media,
color=valor,
group=valor))+
geom_point(size=10)+
geom_line(lwd=2)+
annotate("text",
x=c(as.numeric(estimaciones$edad)[1:5],
as.numeric(estimaciones$edad)[6],
as.numeric(estimaciones$edad)[7:13],
as.numeric(estimaciones$edad)[14],
as.numeric(estimaciones$edad)[15:16]),
y=c(estimaciones$media[1:5],
estimaciones$media[6]+.05,
estimaciones$media[7:13],
estimaciones$media[14]-.05,
estimaciones$media[15:16]),
label = c("A", "A","A","A",
"A", "AB","C","BC",
"A", "A","A","A",
"A", "A","B","B"),
color=c(rep("white",5),
"#e76f51",
rep("white",7),
"#e9c46a",
rep("white",2)))+
theme_bw()+
ggtitle("Valores de apertura al cambio")+
scale_color_manual(values=c("#e9c46a","#e76f51","#264653","#2a9d8f"))
plot_OC_edadord
Nota: diferentes letras indican diferencias significativas entre grupos etarios en cada valor
Hacia la mitad de la adolescencia parece haber un crecimiento en la importancia que se le da a los valores de autodirección.
Edad (dicotomizada)
Se probó también la edad dicotomizada (como se hizo en Celsi et al. 2023), siendo adolescencia temprana hasta 15 años y adolescencia tardía a partir de los 16. Se reportan directamente los diferenciales según edad. Re reportan medias y SD con datos crudos, pero los análisis inferenciales se realizan con puntajes centrados, como recomienda Schwartz
tabla_s19_edaddic <- data.frame(Valores=c("Universalismo-Naturaleza",
"Universalismo-Preocupación",
"Universalismo-Tolerancia",
"Benevolencia-Cuidado",
"Benevolencia-Dependencia",
"Seguridad-Personal",
"Seguridad-Social",
"Conformidad-Reglas",
"Conformidad-Interpersonal",
"Tradición",
"Logro",
"Poder-Dominancia",
"Poder-Recursos",
"Autodirección-Pensamiento",
"Autodirección-Acción",
"Estimulación",
"Hedonismo",
"Apariencia",
"Humildad"),
"Rango"=rep("1 - 6",19),
"M (SD)"=c(paste0(round(mean(base$Uni_nat[base$edad<16]),2)," (",round(sd(base$Uni_nat[base$edad<16]),2),")"), # Early
paste0(round(mean(base$Uni_con[base$edad<16]),2)," (",round(sd(base$Uni_con[base$edad<16]),2),")"),
paste0(round(mean(base$Uni_Tol[base$edad<16]),2)," (",round(sd(base$Uni_Tol[base$edad<16]),2),")"),
paste0(round(mean(base$Ben_Car[base$edad<16]),2)," (",round(sd(base$Ben_Car[base$edad<16]),2),")"),
paste0(round(mean(base$Ben_Dep[base$edad<16]),2)," (",round(sd(base$Ben_Dep[base$edad<16]),2),")"),
paste0(round(mean(base$Sec_Per[base$edad<16]),2)," (",round(sd(base$Sec_Per[base$edad<16]),2),")"),
paste0(round(mean(base$Sec_Soc[base$edad<16]),2)," (",round(sd(base$Sec_Soc[base$edad<16]),2),")"),
paste0(round(mean(base$Con_Rul[base$edad<16]),2)," (",round(sd(base$Con_Rul[base$edad<16]),2),")"),
paste0(round(mean(base$Con_Int[base$edad<16]),2)," (",round(sd(base$Con_Int[base$edad<16]),2),")"),
paste0(round(mean(base$Tradic[base$edad<16]),2)," (",round(sd(base$Tradic[base$edad<16]),2),")"),
paste0(round(mean(base$Achiev[base$edad<16]),2)," (",round(sd(base$Achiev[base$edad<16]),2),")"),
paste0(round(mean(base$Po_Dom[base$edad<16]),2)," (",round(sd(base$Po_Dom[base$edad<16]),2),")"),
paste0(round(mean(base$Po_Res[base$edad<16]),2)," (",round(sd(base$Po_Res[base$edad<16]),2),")"),
paste0(round(mean(base$SD_Thought[base$edad<16]),2)," (",round(sd(base$SD_Thought[base$edad<16]),2),")"),
paste0(round(mean(base$SD_Action[base$edad<16]),2)," (",round(sd(base$SD_Action[base$edad<16]),2),")"),
paste0(round(mean(base$Stimu[base$edad<16]),2)," (",round(sd(base$Stimu[base$edad<16]),2),")"),
paste0(round(mean(base$Hedon[base$edad<16]),2)," (",round(sd(base$Hedon[base$edad<16]),2),")"),
paste0(round(mean(base$Face[base$edad<16]),2)," (",round(sd(base$Face[base$edad<16]),2),")"),
paste0(round(mean(base$Humi[base$edad<16]),2)," (",round(sd(base$Humi[base$edad<16]),2),")")),
"M (SD)"=c(paste0(round(mean(base$Uni_nat[base$edad>15]),2)," (",round(sd(base$Uni_nat[base$edad>15]),2),")"), # Late
paste0(round(mean(base$Uni_con[base$edad>15]),2)," (",round(sd(base$Uni_con[base$edad>15]),2),")"),
paste0(round(mean(base$Uni_Tol[base$edad>15]),2)," (",round(sd(base$Uni_Tol[base$edad>15]),2),")"),
paste0(round(mean(base$Ben_Car[base$edad>15]),2)," (",round(sd(base$Ben_Car[base$edad>15]),2),")"),
paste0(round(mean(base$Ben_Dep[base$edad>15]),2)," (",round(sd(base$Ben_Dep[base$edad>15]),2),")"),
paste0(round(mean(base$Sec_Per[base$edad>15]),2)," (",round(sd(base$Sec_Per[base$edad>15]),2),")"),
paste0(round(mean(base$Sec_Soc[base$edad>15]),2)," (",round(sd(base$Sec_Soc[base$edad>15]),2),")"),
paste0(round(mean(base$Con_Rul[base$edad>15]),2)," (",round(sd(base$Con_Rul[base$edad>15]),2),")"),
paste0(round(mean(base$Con_Int[base$edad>15]),2)," (",round(sd(base$Con_Int[base$edad>15]),2),")"),
paste0(round(mean(base$Tradic[base$edad>15]),2)," (",round(sd(base$Tradic[base$edad>15]),2),")"),
paste0(round(mean(base$Achiev[base$edad>15]),2)," (",round(sd(base$Achiev[base$edad>15]),2),")"),
paste0(round(mean(base$Po_Dom[base$edad>15]),2)," (",round(sd(base$Po_Dom[base$edad>15]),2),")"),
paste0(round(mean(base$Po_Res[base$edad>15]),2)," (",round(sd(base$Po_Res[base$edad>15]),2),")"),
paste0(round(mean(base$SD_Thought[base$edad>15]),2)," (",round(sd(base$SD_Thought[base$edad>15]),2),")"),
paste0(round(mean(base$SD_Action[base$edad>15]),2)," (",round(sd(base$SD_Action[base$edad>15]),2),")"),
paste0(round(mean(base$Stimu[base$edad>15]),2)," (",round(sd(base$Stimu[base$edad>15]),2),")"),
paste0(round(mean(base$Hedon[base$edad>15]),2)," (",round(sd(base$Hedon[base$edad>15]),2),")"),
paste0(round(mean(base$Face[base$edad>15]),2)," (",round(sd(base$Face[base$edad>15]),2),")"),
paste0(round(mean(base$Humi[base$edad>15]),2)," (",round(sd(base$Humi[base$edad>15]),2),")")),
"t"=c(round(t.test(base$Uni_nat_C[base$edad<16],base$Uni_nat_C[base$edad>15])$statistic,2),
round(t.test(base$Uni_con_C[base$edad<16],base$Uni_con_C[base$edad>15])$statistic,2),
round(t.test(base$Uni_Tol_C[base$edad<16],base$Uni_Tol_C[base$edad>15])$statistic,2),
round(t.test(base$Ben_Car_C[base$edad<16],base$Ben_Car_C[base$edad>15])$statistic,2),
round(t.test(base$Ben_Dep_C[base$edad<16],base$Ben_Dep_C[base$edad>15])$statistic,2),
round(t.test(base$Sec_Per_C[base$edad<16],base$Sec_Per_C[base$edad>15])$statistic,2),
round(t.test(base$Sec_Soc_C[base$edad<16],base$Sec_Soc_C[base$edad>15])$statistic,2),
round(t.test(base$Con_Rul_C[base$edad<16],base$Con_Rul_C[base$edad>15])$statistic,2),
round(t.test(base$Con_Int_C[base$edad<16],base$Con_Int_C[base$edad>15])$statistic,2),
round(t.test(base$Tradic_C[base$edad<16],base$Tradic_C[base$edad>15])$statistic,2),
round(t.test(base$Achiev_C[base$edad<16],base$Achiev_C[base$edad>15])$statistic,2),
round(t.test(base$Po_Dom_C[base$edad<16],base$Po_Dom_C[base$edad>15])$statistic,2),
round(t.test(base$Po_Res_C[base$edad<16],base$Po_Res_C[base$edad>15])$statistic,2),
round(t.test(base$SD_Thought_C[base$edad<16],base$SD_Thought_C[base$edad>15])$statistic,2),
round(t.test(base$SD_Action_C[base$edad<16],base$SD_Action_C[base$edad>15])$statistic,2),
round(t.test(base$Stimu_C[base$edad<16],base$Stimu_C[base$edad>15])$statistic,2),
round(t.test(base$Hedon_C[base$edad<16],base$Hedon_C[base$edad>15])$statistic,2),
round(t.test(base$Face_C[base$edad<16],base$Face_C[base$edad>15])$statistic,2),
round(t.test(base$Humi_C[base$edad<16],base$Humi_C[base$edad>15])$statistic,2)),
"p"=c(round(t.test(base$Uni_nat_C[base$edad<16],base$Uni_nat_C[base$edad>15])$p.value,3),
round(t.test(base$Uni_con_C[base$edad<16],base$Uni_con_C[base$edad>15])$p.value,3),
round(t.test(base$Uni_Tol_C[base$edad<16],base$Uni_Tol_C[base$edad>15])$p.value,3),
round(t.test(base$Ben_Car_C[base$edad<16],base$Ben_Car_C[base$edad>15])$p.value,3),
round(t.test(base$Ben_Dep_C[base$edad<16],base$Ben_Dep_C[base$edad>15])$p.value,3),
round(t.test(base$Sec_Per_C[base$edad<16],base$Sec_Per_C[base$edad>15])$p.value,3),
round(t.test(base$Sec_Soc_C[base$edad<16],base$Sec_Soc_C[base$edad>15])$p.value,3),
round(t.test(base$Con_Rul_C[base$edad<16],base$Con_Rul_C[base$edad>15])$p.value,3),
round(t.test(base$Con_Int_C[base$edad<16],base$Con_Int_C[base$edad>15])$p.value,3),
round(t.test(base$Tradic_C[base$edad<16],base$Tradic_C[base$edad>15])$p.value,3),
round(t.test(base$Achiev_C[base$edad<16],base$Achiev_C[base$edad>15])$p.value,3),
round(t.test(base$Po_Dom_C[base$edad<16],base$Po_Dom_C[base$edad>15])$p.value,3),
round(t.test(base$Po_Res_C[base$edad<16],base$Po_Res_C[base$edad>15])$p.value,3),
round(t.test(base$SD_Thought_C[base$edad<16],base$SD_Thought_C[base$edad>15])$p.value,3),
round(t.test(base$SD_Action_C[base$edad<16],base$SD_Action_C[base$edad>15])$p.value,3),
round(t.test(base$Stimu_C[base$edad<16],base$Stimu_C[base$edad>15])$p.value,3),
round(t.test(base$Hedon_C[base$edad<16],base$Hedon_C[base$edad>15])$p.value,3),
round(t.test(base$Face_C[base$edad<16],base$Face_C[base$edad>15])$p.value,3),
round(t.test(base$Humi_C[base$edad<16],base$Humi_C[base$edad>15])$p.value,3)),
"d de Cohen"=c(round(cohen.d(Uni_nat_C~sexo, data=base)$cohen.d[2],2),
round(cohen.d(Uni_con_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Uni_Tol_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Ben_Car_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Ben_Dep_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Sec_Per_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Sec_Soc_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Con_Rul_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Con_Int_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Tradic_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Achiev_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Po_Dom_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Po_Res_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(SD_Thought_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(SD_Action_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Stimu_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Hedon_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Face_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Humi_C~early_adol, data=base)$cohen.d[2],2)),
color=rep(NA,19),
check.names = F)
tabla_s19_edaddic$`d de Cohen` <- ifelse(tabla_s19_edaddic$`d de Cohen`<0,(-1)*tabla_s19_edaddic$`d de Cohen`, tabla_s19_edaddic$`d de Cohen`)
tabla_s19_edaddic$color <- ifelse(tabla_s19_edaddic$p<.05&tabla_s19_edaddic$t<0,"#daaaaa",
ifelse(tabla_s19_edaddic$p<.05&tabla_s19_edaddic$t>0,"#a5c3c6",NA))
tabla_s19_edaddic$p <- ifelse(tabla_s19_edaddic$p==0,"< .001", tabla_s19_edaddic$p)
tabla <- kable(tabla_s19_edaddic[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Diferenciales por edad dicotomizada valores Schwartz (19)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s19_edaddic)){
if(!is.na(tabla_s19_edaddic$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s19_edaddic$color[i])
}
}
tabla <- add_header_above(tabla, c("","","Early"=1,"Late"=1,"","",""))
tabla
| Valores | Rango | M (SD) | M (SD).1 | t | p | d de Cohen |
|---|---|---|---|---|---|---|
| Universalismo-Naturaleza | 1 - 6 | 4.16 (1.08) | 4.02 (1.11) | 1.39 | 0.165 | 0.13 |
| Universalismo-Preocupación | 1 - 6 | 4.97 (0.87) | 5.01 (0.73) | -1.90 | 0.058 | 0.12 |
| Universalismo-Tolerancia | 1 - 6 | 4.64 (0.84) | 4.78 (0.83) | -3.93 | < .001 | 0.27 |
| Benevolencia-Cuidado | 1 - 6 | 5.31 (0.67) | 5.26 (0.64) | -0.15 | 0.881 | 0.01 |
| Benevolencia-Dependencia | 1 - 6 | 5.4 (0.71) | 5.37 (0.6) | -0.60 | 0.549 | 0.04 |
| Seguridad-Personal | 1 - 6 | 4.83 (0.81) | 4.53 (0.79) | 5.77 | < .001 | 0.39 |
| Seguridad-Social | 1 - 6 | 4.58 (1.07) | 4.34 (1.04) | 3.17 | 0.002 | 0.22 |
| Conformidad-Reglas | 1 - 6 | 4.17 (1.07) | 3.92 (1.06) | 3.11 | 0.002 | 0.22 |
| Conformidad-Interpersonal | 1 - 6 | 4.29 (0.98) | 4.2 (0.96) | 0.60 | 0.548 | 0.04 |
| Tradición | 1 - 6 | 3.44 (1.21) | 3.1 (1.23) | 3.87 | < .001 | 0.27 |
| Logro | 1 - 6 | 4.46 (0.92) | 4.54 (0.81) | -2.58 | 0.01 | 0.17 |
| Poder-Dominancia | 1 - 6 | 2.54 (1.12) | 2.64 (1.03) | -2.17 | 0.03 | 0.15 |
| Poder-Recursos | 1 - 6 | 2.78 (1.2) | 2.84 (1.11) | -1.46 | 0.146 | 0.10 |
| Autodirección-Pensamiento | 1 - 6 | 4.81 (0.76) | 5.04 (0.73) | -6.20 | < .001 | 0.43 |
| Autodirección-Acción | 1 - 6 | 4.79 (0.8) | 5 (0.64) | -5.95 | < .001 | 0.38 |
| Estimulación | 1 - 6 | 4.66 (0.86) | 4.58 (0.88) | 0.67 | 0.505 | 0.05 |
| Hedonismo | 1 - 6 | 5.44 (0.63) | 5.36 (0.64) | 0.76 | 0.446 | 0.05 |
| Apariencia | 1 - 6 | 4.43 (1.06) | 4.17 (0.99) | 3.54 | < .001 | 0.24 |
| Humildad | 1 - 6 | 4.4 (0.84) | 4.43 (0.82) | -1.69 | 0.092 | 0.11 |
Los adolescentes tardíos presentan mayores niveles en universalismo-tolerancia, logro, poder-dominancia y ambas vertientes de autodirección. Por el contrario, los adolescentes tempranos dan mayor relevancia a valores de apariencia, tradición, conformidad-reglas y ambas dimensiones de seguridad. Todas las diferencias tienen un tamaño de efecto pequeño a moderado.
Schwartz (4 valores)
Edad
Se ajustaron modelos lineales para predecir el nivel de los 4 valores de orden superior de Schwartz según la edad (continua).
mod_slftrs <- lm.beta(lm(SelfTrasc4_C~edad, data = base))
mod_conser <- lm.beta(lm(Conser4_C~edad, data = base))
mod_slfenh <- lm.beta(lm(SelfEnh4_C~edad, data = base))
mod_op2cha <- lm.beta(lm(Open4_C~edad, data = base))
tabla_s4_edad <- as.data.frame(cbind(Valor=c("Autotrascendencia",
"Conservación",
"Autopromoción",
"Apertura al cambio"),
round(rbind(summary(mod_slftrs)$coef[2,1:4],
summary(mod_conser)$coef[2,1:4],
summary(mod_slfenh)$coef[2,1:4],
summary(mod_op2cha)$coef[2,1:4]),2),
round(rbind(summary(mod_slftrs)$coef[2,5],
summary(mod_conser)$coef[2,5],
summary(mod_slfenh)$coef[2,5],
summary(mod_op2cha)$coef[2,5]),3),
round(rbind(summary(mod_slftrs)$r.squared,
summary(mod_conser)$r.squared,
summary(mod_slfenh)$r.squared,
summary(mod_op2cha)$r.squared),2)))
colnames(tabla_s4_edad) <- c("Valor",
"Beta",
"Beta std",
"EE",
"t",
"p",
"R2")
tabla_s4_edad$color <- ifelse(tabla_s4_edad$p<=.05&tabla_s4_edad$Beta<0,"#daaaaa", ifelse(tabla_s4_edad$p<=.05&tabla_s4_edad$Beta>0,"#a5c3c6",NA))
tabla_s4_edad$p <- ifelse(tabla_s4_edad$p==0,"< .001", tabla_s4_edad$p)
tabla_s4_edad$R2 <- ifelse(tabla_s4_edad$R2==0,"< .01", tabla_s4_edad$R2)
tabla <- kable(tabla_s4_edad[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Predicción de valores de orden superior según edad (continua)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s4_edad)){
if(!is.na(tabla_s4_edad$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s4_edad$color[i])
}
}
tabla
| Valor | Beta | Beta std | EE | t | p | R2 |
|---|---|---|---|---|---|---|
| Autotrascendencia | 0.01 | 0.04 | 0 | 1.35 | 0.176 | < .01 |
| Conservación | -0.03 | -0.2 | 0 | -6.88 | < .001 | 0.04 |
| Autopromoción | 0.03 | 0.11 | 0.01 | 3.65 | < .001 | 0.01 |
| Apertura al cambio | 0.02 | 0.09 | 0.01 | 3.19 | 0.001 | 0.01 |
La edad predijo significativa y positivamente los valores de autopromoción y apertura al cambio, y negativamente los valores de conservación. Sin embargo, los tamaños de efecto son pequeños: por cada año que se aumenta la edad, la conservación disminuye 0.2 desviaciones típicas, y la autopromoción y apertura al cambio aumentan 0.11 y 0.09 desviaciones típicas, respectivamente. Los \(R^2\) de los modelos también son bajos.
Edad (ordinal)
Se ajustaron modelos de regresión lineal para evaluar el efecto de la edad como escala ordinal (“12-13”,“14-15”, “16-17” y “18 o más”). Para las comparaciones post-hoc se utilizó la prueba de tukey. Para los análisis inferenciales se utilizan puntajes centrados, como recomienda Schwartz. En el reporte de las medias se le sumó el promedio global de cada variable (sin discriminar por grupo etario), en puntaje crudo, para reconstruir la escala original (No me cierra porque igual se obtienen puntajes por abajo de 1 y por arriba de 6). El desvío reportado es aquel obtenido con puntajes centrados
mod_ST <- lm(SelfTrasc4_C~edad_ord, data = base)
mod_C <- lm(Conser4_C~edad_ord, data = base)
mod_SE <- lm(SelfEnh4_C~edad_ord, data = base)
mod_OC <- lm(Open4_C~edad_ord, data = base)
tabla_s4_edadord <- data.frame(Valores=c("Autotrascendencia",
"Conservación",
"Autopromoción",
"Apertura al cambio"),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4)+mean(base$SelfTrasc4_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$SelfTrasc4_C[base$edad_ord=="12-13"]),2),")"), # 12-13
paste0(round(mean(base$Conser_4)+mean(base$Conser4_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Conser4_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$SelfEnh_4)+mean(base$SelfEnh4_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$SelfEnh4_C[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$Open_4)+mean(base$Open4_C[base$edad_ord=="12-13"]),2)," (",round(sd(base$Open4_C[base$edad_ord=="12-13"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4)+mean(base$SelfTrasc4_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$SelfTrasc4_C[base$edad_ord=="14-15"]),2),")"), # Late
paste0(round(mean(base$Conser_4)+mean(base$Conser4_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Conser4_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$SelfEnh_4)+mean(base$SelfEnh4_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$SelfEnh4_C[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$Open_4)+mean(base$Open4_C[base$edad_ord=="14-15"]),2)," (",round(sd(base$Open4_C[base$edad_ord=="14-15"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4)+mean(base$SelfTrasc4_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$SelfTrasc4_C[base$edad_ord=="16-17"]),2),")"), # Late
paste0(round(mean(base$Conser_4)+mean(base$Conser4_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Conser4_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$SelfEnh_4)+mean(base$SelfEnh4_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$SelfEnh4_C[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$Open_4)+mean(base$Open4_C[base$edad_ord=="16-17"]),2)," (",round(sd(base$Open4_C[base$edad_ord=="16-17"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4)+mean(base$SelfTrasc4_C[base$edad_ord=="18+"]),2)," (",round(sd(base$SelfTrasc4_C[base$edad_ord=="18+"]),2),")"), # Late
paste0(round(mean(base$Conser_4)+mean(base$Conser4_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Conser4_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$SelfEnh_4)+mean(base$SelfEnh4_C[base$edad_ord=="18+"]),2)," (",round(sd(base$SelfEnh4_C[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$Open_4)+mean(base$Open4_C[base$edad_ord=="18+"]),2)," (",round(sd(base$Open4_C[base$edad_ord=="18+"]),2),")")),
"F"=c(round(summary(mod_ST)$fstatistic[1],2),
round(summary(mod_C)$fstatistic[1],2),
round(summary(mod_SE)$fstatistic[1],2),
round(summary(mod_OC)$fstatistic[1],2)),
"p"=c(round(pf(summary(mod_ST)$fstatistic[1],summary(mod_ST)$fstatistic[2],summary(mod_ST)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_C)$fstatistic[1],summary(mod_C)$fstatistic[2],summary(mod_C)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_SE)$fstatistic[1],summary(mod_SE)$fstatistic[2],summary(mod_SE)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_OC)$fstatistic[1],summary(mod_OC)$fstatistic[2],summary(mod_OC)$fstatistic[3], lower.tail = F),3)),
color=rep(NA,4),
check.names = F)
tabla_s4_edadord$color <- ifelse(tabla_s4_edadord$p<=.05,"#a5c3c6",NA)
tabla_s4_edadord$p <- ifelse(tabla_s4_edadord$p==0,"< .001", tabla_s4_edadord$p)
tabla_s4_edadord[1,2:5] <- paste0(tabla_s4_edadord[1,2:5], c(" [AB]"," [A]"," [AB]"," [B]"))
tabla_s4_edadord[2,2:5] <- paste0(tabla_s4_edadord[2,2:5], c(" [A]"," [B]"," [C]"," [C]"))
tabla_s4_edadord[3,2:5] <- paste0(tabla_s4_edadord[3,2:5], c(" [A]"," [B]"," [B]"," [B]"))
tabla_s4_edadord[4,2:5] <- paste0(tabla_s4_edadord[4,2:5], c(" [A]"," [A]"," [B]"," [AB]"))
tabla <- kable(tabla_s4_edadord[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Diferenciales por edad (ordinal) en valores Schwartz (4)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s4_edadord)){
if(!is.na(tabla_s4_edadord$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s4_edadord$color[i])
}
}
tabla <- add_header_above(tabla, c("","12-13"=1,"14-15"=1,"16-17"=1,"18+"=1,"",""))
tabla
| Valores | M (SD) | M (SD).1 | M (SD).2 | M (SD).3 | F | p |
|---|---|---|---|---|---|---|
| Autotrascendencia | 5.4 (0.38) [AB] | 5.34 (0.38) [A] | 5.38 (0.37) [AB] | 5.45 (0.36) [B] | 3.16 | 0.024 |
| Conservación | 4.23 (0.3) [A] | 4.09 (0.33) [B] | 3.98 (0.35) [C] | 3.97 (0.37) [C] | 25.01 | < .001 |
| Autopromoción | 1.86 (0.8) [A] | 2.22 (0.76) [B] | 2.25 (0.71) [B] | 2.23 (0.69) [B] | 16.13 | < .001 |
| Apertura al cambio | 5.42 (0.42) [A] | 5.45 (0.4) [A] | 5.58 (0.45) [B] | 5.53 (0.4) [AB] | 6.70 | < .001 |
mod_ST <- lm(SelfTrasc4_C~edad_ord, data = base)
mod_C <- lm(Conser4_C~edad_ord, data = base)
mod_SE <- lm(SelfEnh4_C~edad_ord, data = base)
mod_OC <- lm(Open4_C~edad_ord, data = base)
estimaciones<-data.frame(valor=factor(c(rep("SlfTrs",4),
rep("Conser",4),
rep("SlfEnh",4),
rep("OpToCh",4)),
labels = c("SlfTrs","Conser","SlfEnh","OpToCh")),
edad=c(as.data.frame(emmeans(mod_OC, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_ST, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_SE, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_C, pairwise ~ edad_ord)$emmeans)[,1]),
media=c(as.data.frame(emmeans(mod_OC, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_ST, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_SE, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_C, pairwise ~ edad_ord)$emmeans)[,2]))
plot_s4_edadord <- ggplot(data=estimaciones, aes(x=edad,
y=media,
color=valor,
group=valor))+
geom_point(size=10)+
geom_line(lwd=2)+
annotate("text",
x=as.numeric(estimaciones$edad),
y=c(estimaciones$media[1]-0.1,
estimaciones$media[2]+0.1,
estimaciones$media[3],
estimaciones$media[4]+.1,
estimaciones$media[5]+.1,
estimaciones$media[6]-.1,
estimaciones$media[7],
estimaciones$media[8]-.1,
estimaciones$media[9:16]),
label = c("A", "A","B","AB",
"AB", "A","AB","B",
"A", "B","B","B",
"A", "B","C","C"),
color=c("#2a9d8f","#2a9d8f","white","#2a9d8f",
"#e9c46a","#e9c46a","white","#e9c46a",
rep("white",8)))+
theme_bw()+
ggtitle("Valores de orden superior")+
scale_color_manual(values=c("#e9c46a","#e76f51","#264653","#2a9d8f"))
plot_s4_edadord
Nota: diferentes letras indican diferencias significativas entre grupos etarios en cada valor
La conservación parece disminuir progresivamente a medida que se aumenta la edad. La autopromoción aumenta en la adolescencia más temprana. Si bien la autotrascendencia y la apertura al cambio presentan diferencias significativas entre los grupos etarios, no pareciera haber una clara tendencia de cambio en esos valores.
Edad (dicotomizada)
tabla_s4_edaddic <- data.frame(Valores=c("Autotrascendencia",
"Conservación",
"Autopromoción",
"Apertura al cambio"),
"Rango"=rep("1 - 6",4),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4[base$edad<16]),2)," (",round(sd(base$SelfTrasc_4[base$edad<16]),2),")"), # Early
paste0(round(mean(base$Conser_4[base$edad<16]),2)," (",round(sd(base$Conser_4[base$edad<16]),2),")"),
paste0(round(mean(base$SelfEnh_4[base$edad<16]),2)," (",round(sd(base$SelfEnh_4[base$edad<16]),2),")"),
paste0(round(mean(base$Open_4[base$edad<16]),2)," (",round(sd(base$Open_4[base$edad<16]),2),")")),
"M (SD)"=c(paste0(round(mean(base$SelfTrasc_4[base$edad>15]),2)," (",round(sd(base$SelfTrasc_4[base$edad>15]),2),")"), # Late
paste0(round(mean(base$Conser_4[base$edad>15]),2)," (",round(sd(base$Conser_4[base$edad>15]),2),")"),
paste0(round(mean(base$SelfEnh_4[base$edad>15]),2)," (",round(sd(base$SelfEnh_4[base$edad>15]),2),")"),
paste0(round(mean(base$Open_4[base$edad>15]),2)," (",round(sd(base$Open_4[base$edad>15]),2),")")),
"t"=c(round(t.test(base$SelfTrasc4_C[base$edad<16],base$SelfTrasc4_C[base$edad>15])$statistic,2),
round(t.test(base$Conser4_C[base$edad<16],base$Conser4_C[base$edad>15])$statistic,2),
round(t.test(base$SelfEnh4_C[base$edad<16],base$SelfEnh4_C[base$edad>15])$statistic,2),
round(t.test(base$Open4_C[base$edad<16],base$Open4_C[base$edad>15])$statistic,2)),
"p"=c(round(t.test(base$SelfTrasc4_C[base$edad<16],base$SelfTrasc4_C[base$edad>15])$p.value,3),
round(t.test(base$Conser4_C[base$edad<16],base$Conser4_C[base$edad>15])$p.value,3),
round(t.test(base$SelfEnh4_C[base$edad<16],base$SelfEnh4_C[base$edad>15])$p.value,3),
round(t.test(base$Open4_C[base$edad<16],base$Open4_C[base$edad>15])$p.value,3)),
"d de Cohen"=c(round(cohen.d(SelfTrasc4_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Conser4_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(SelfEnh4_C~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(Open4_C~early_adol, data=base)$cohen.d[2],2)),
color=rep(NA,4),
check.names = F)
tabla_s4_edaddic$`d de Cohen` <- ifelse(tabla_s4_edaddic$`d de Cohen`<0,(-1)*tabla_s4_edaddic$`d de Cohen`, tabla_s4_edaddic$`d de Cohen`)
tabla_s4_edaddic$color <- ifelse(tabla_s4_edaddic$p<.05&tabla_s4_edaddic$t<0,"#daaaaa",
ifelse(tabla_s4_edaddic$p<.05&tabla_s4_edaddic$t>0,"#a5c3c6",NA))
tabla_s4_edaddic$p <- ifelse(tabla_s4_edaddic$p==0,"< .001", tabla_s4_edaddic$p)
tabla <- kable(tabla_s4_edaddic[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Diferenciales por edad dicotomizada valores Schwartz (4)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_s4_edaddic)){
if(!is.na(tabla_s4_edaddic$color[i])){
tabla <- row_spec(tabla,i,background = tabla_s4_edaddic$color[i])
}
}
tabla <- add_header_above(tabla, c("","","Early"=1,"Late"=1,"","",""))
tabla
| Valores | Rango | M (SD) | M (SD).1 | t | p | d de Cohen |
|---|---|---|---|---|---|---|
| Autotrascendencia | 1 - 6 | 4.9 (0.58) | 4.89 (0.54) | -1.66 | 0.098 | 0.11 |
| Conservación | 1 - 6 | 4.3 (0.62) | 4.1 (0.62) | 6.35 | < .001 | 0.46 |
| Autopromoción | 1 - 6 | 3.26 (0.87) | 3.34 (0.77) | -2.62 | 0.009 | 0.17 |
| Apertura al cambio | 1 - 6 | 4.93 (0.55) | 4.99 (0.55) | -4.10 | < .001 | 0.29 |
Existen diferencias en conservación a favor de los adolescentes tempranos. Por otro lado, los adolescentes tardíos puntuaron más alto en valores de foco individual (autopromoción y apartura al cambio).
Lee et al (3 valores)
con d de Cohen
Edad
Se ajustaron modelos lineales para predecir el nivel de los 3 valores en el deporte de Lee et al según la edad (continua).
mod_compe <- lm.beta(lm(COMPE~edad, data = base))
mod_moral <- lm.beta(lm(MORAL~edad, data = base))
mod_status <- lm.beta(lm(STATUS~edad, data = base))
tabla_l3_edad <- as.data.frame(cbind(Valor=c("Competencia",
"Moral",
"Estatus"),
round(rbind(summary(mod_compe)$coef[2,1:4],
summary(mod_moral)$coef[2,1:4],
summary(mod_status)$coef[2,1:4]),2),
round(rbind(summary(mod_compe)$coef[2,5],
summary(mod_moral)$coef[2,5],
summary(mod_status)$coef[2,5]),3),
round(rbind(summary(mod_compe)$r.squared,
summary(mod_moral)$r.squared,
summary(mod_status)$r.squared),2)))
colnames(tabla_l3_edad) <- c("Valor",
"Beta",
"Beta std",
"EE",
"t",
"p",
"R2")
tabla_l3_edad$color <- ifelse(tabla_l3_edad$p<=.05&tabla_l3_edad$Beta<0,"#daaaaa", ifelse(tabla_l3_edad$p<=.05&tabla_l3_edad$Beta>0,"#a5c3c6",NA))
tabla_l3_edad$p <- ifelse(tabla_l3_edad$p==0,"< .001", tabla_l3_edad$p)
tabla_l3_edad$R2 <- ifelse(tabla_l3_edad$R2==0,"< .01", tabla_l3_edad$R2)
tabla <- kable(tabla_l3_edad[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Predicción de valores en el deporte según edad (continua)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_l3_edad)){
if(!is.na(tabla_l3_edad$color[i])){
tabla <- row_spec(tabla,i,background = tabla_l3_edad$color[i])
}
}
tabla
| Valor | Beta | Beta std | EE | t | p | R2 |
|---|---|---|---|---|---|---|
| Competencia | -0.03 | -0.1 | 0.01 | -3.28 | 0.001 | 0.01 |
| Moral | -0.07 | -0.2 | 0.01 | -6.79 | < .001 | 0.04 |
| Estatus | 0.01 | 0.02 | 0.01 | 0.75 | 0.455 | < .01 |
La edad predijo significativa y negativamente los valores de competencia y moral. Sin embargo, los tamaños de efecto son muy pequeños: por cada año que se aumenta la edad, los valores de competencia y morales disminuyen 0.01 desviaciones típicas. Los \(R^2\) de los modelos también son bajos.
Edad (ordinal)
Se ajustaron modelos de regresión lineal para evaluar el efecto de la edad como escala ordinal (“12-13”,“14-15”, “16-17” y “18 o más”). Para las comparaciones post-hoc se utilizó la prueba de tukey.
mod_compe <- lm(COMPE~edad_ord, data = base)
mod_moral <- lm(MORAL~edad_ord, data = base)
mod_status <- lm(STATUS~edad_ord, data = base)
tabla_l3_edadord <- data.frame(Valores=c("Competencia",
"Moral",
"Status"),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$edad_ord=="12-13"]),2)," (",round(sd(base$COMPE[base$edad_ord=="12-13"]),2),")"), # 12-13
paste0(round(mean(base$MORAL[base$edad_ord=="12-13"]),2)," (",round(sd(base$MORAL[base$edad_ord=="12-13"]),2),")"),
paste0(round(mean(base$STATUS[base$edad_ord=="12-13"]),2)," (",round(sd(base$STATUS[base$edad_ord=="12-13"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$edad_ord=="14-15"]),2)," (",round(sd(base$COMPE[base$edad_ord=="14-15"]),2),")"), # Late
paste0(round(mean(base$MORAL[base$edad_ord=="14-15"]),2)," (",round(sd(base$MORAL[base$edad_ord=="14-15"]),2),")"),
paste0(round(mean(base$STATUS[base$edad_ord=="14-15"]),2)," (",round(sd(base$STATUS[base$edad_ord=="14-15"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$edad_ord=="16-17"]),2)," (",round(sd(base$COMPE[base$edad_ord=="16-17"]),2),")"), # Late
paste0(round(mean(base$MORAL[base$edad_ord=="16-17"]),2)," (",round(sd(base$MORAL[base$edad_ord=="16-17"]),2),")"),
paste0(round(mean(base$STATUS[base$edad_ord=="16-17"]),2)," (",round(sd(base$STATUS[base$edad_ord=="16-17"]),2),")")),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$edad_ord=="18+"]),2)," (",round(sd(base$COMPE[base$edad_ord=="18+"]),2),")"), # Late
paste0(round(mean(base$MORAL[base$edad_ord=="18+"]),2)," (",round(sd(base$MORAL[base$edad_ord=="18+"]),2),")"),
paste0(round(mean(base$STATUS[base$edad_ord=="18+"]),2)," (",round(sd(base$STATUS[base$edad_ord=="18+"]),2),")")),
"F"=c(round(summary(mod_compe)$fstatistic[1],2),
round(summary(mod_moral)$fstatistic[1],2),
round(summary(mod_status)$fstatistic[1],2)),
"p"=c(round(pf(summary(mod_compe)$fstatistic[1],summary(mod_compe)$fstatistic[2],summary(mod_compe)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_moral)$fstatistic[1],summary(mod_moral)$fstatistic[2],summary(mod_moral)$fstatistic[3], lower.tail = F),3),
round(pf(summary(mod_status)$fstatistic[1],summary(mod_status)$fstatistic[2],summary(mod_status)$fstatistic[3], lower.tail = F),3)),
color=rep(NA,3),
check.names = F)
tabla_l3_edadord$color <- ifelse(tabla_l3_edadord$p<=.05,"#a5c3c6",NA)
tabla_l3_edadord$p <- ifelse(tabla_l3_edadord$p==0,"< .001", tabla_l3_edadord$p)
tabla_l3_edadord[1,2:5] <- paste0(tabla_l3_edadord[1,2:5], c(" [AB]"," [A]"," [A]"," [B]"))
tabla_l3_edadord[2,2:5] <- paste0(tabla_l3_edadord[2,2:5], c(" [A]"," [B]"," [BC]"," [C]"))
tabla_l3_edadord[3,2:5] <- paste0(tabla_l3_edadord[3,2:5], c(" [A]"," [B]"," [AB]"," [AB]"))
tabla <- kable(tabla_l3_edadord[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Diferenciales por edad (ordinal) en valores Lee et al. (3)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_l3_edadord)){
if(!is.na(tabla_l3_edadord$color[i])){
tabla <- row_spec(tabla,i,background = tabla_l3_edadord$color[i])
}
}
tabla <- add_header_above(tabla, c("","12-13"=1,"14-15"=1,"16-17"=1,"18+"=1,"",""))
tabla
| Valores | M (SD) | M (SD).1 | M (SD).2 | M (SD).3 | F | p |
|---|---|---|---|---|---|---|
| Competencia | 6.17 (0.8) [AB] | 6.21 (0.74) [A] | 6.2 (0.66) [A] | 5.96 (0.72) [B] | 3.63 | 0.013 |
| Moral | 6.08 (0.72) [A] | 5.79 (0.79) [B] | 5.71 (0.79) [BC] | 5.52 (0.85) [C] | 16.57 | < .001 |
| Status | 4.09 (1.18) [A] | 4.48 (1.14) [B] | 4.33 (1.06) [AB] | 4.34 (0.99) [AB] | 6.97 | < .001 |
mod_compe <- lm(COMPE~edad_ord, data = base)
mod_moral <- lm(MORAL~edad_ord, data = base)
mod_status <- lm(STATUS~edad_ord, data = base)
estimaciones<-data.frame(valor=factor(c(rep("Competencia",4),
rep("Moral",4),
rep("Status",4)),
labels = c("Competencia","Moral","Status")),
edad=c(as.data.frame(emmeans(mod_compe, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_moral, pairwise ~ edad_ord)$emmeans)[,1],
as.data.frame(emmeans(mod_status, pairwise ~ edad_ord)$emmeans)[,1]),
media=c(as.data.frame(emmeans(mod_compe, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_moral, pairwise ~ edad_ord)$emmeans)[,2],
as.data.frame(emmeans(mod_status, pairwise ~ edad_ord)$emmeans)[,2]))
plot_l3_edadord <- ggplot(data=estimaciones, aes(x=edad,
y=media,
color=valor,
group=valor))+
geom_point(size=10)+
geom_line(lwd=2)+
annotate("text",
x=as.numeric(estimaciones$edad),
y=c(estimaciones$media),
label = c("AB", "A","A","B",
"A", "B","BC","C",
"A", "B","AB","AB"),
color=c(rep("white",12)))+
theme_bw()+
ggtitle("Valores deportivos")+
scale_color_manual(values=c("#e9c46a","#e76f51","#2a9d8f"))
plot_l3_edadord
Nota: diferentes letras indican diferencias significativas entre grupos etarios en cada valor
Los valores morales presentan una tendencia a descender a medida que se aumenta la edad. Los valores de competencia parecen bajar hacia el final de la adolescencia, mientras que los valores de status presentan diferencias significativas pero sin una tendencia clara.
Edad (dicotomizada)
tabla_l3_edaddic <- data.frame(Valores=c("Competencia",
"Moral",
"Estatus"),
"Rango"=rep("1 - 7",3),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$edad<16]),2)," (",round(sd(base$COMPE[base$edad<16]),2),")"), # Early
paste0(round(mean(base$MORAL[base$edad<16]),2)," (",round(sd(base$MORAL[base$edad<16]),2),")"),
paste0(round(mean(base$STATUS[base$edad<16]),2)," (",round(sd(base$STATUS[base$edad<16]),2),")")),
"M (SD)"=c(paste0(round(mean(base$COMPE[base$edad>15]),2)," (",round(sd(base$COMPE[base$edad>15]),2),")"), # Late
paste0(round(mean(base$MORAL[base$edad>15]),2)," (",round(sd(base$MORAL[base$edad>15]),2),")"),
paste0(round(mean(base$STATUS[base$edad>15]),2)," (",round(sd(base$STATUS[base$edad>15]),2),")")),
"t"=c(round(t.test(base$COMPE[base$edad<16],base$COMPE[base$edad>15])$statistic,2),
round(t.test(base$MORAL[base$edad<16],base$MORAL[base$edad>15])$statistic,2),
round(t.test(base$STATUS[base$edad<16],base$STATUS[base$edad>15])$statistic,2)),
"p"=c(round(t.test(base$COMPE[base$edad<16],base$COMPE[base$edad>15])$p.value,3),
round(t.test(base$MORAL[base$edad<16],base$MORAL[base$edad>15])$p.value,3),
round(t.test(base$STATUS[base$edad<16],base$STATUS[base$edad>15])$p.value,3)),
"d de Cohen"=c(round(cohen.d(COMPE~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(MORAL~early_adol, data=base)$cohen.d[2],2),
round(cohen.d(STATUS~early_adol, data=base)$cohen.d[2],2)),
color=rep(NA,3),
check.names = F)
tabla_l3_edaddic$`d de Cohen` <- ifelse(tabla_l3_edaddic$`d de Cohen`<0,(-1)*tabla_l3_edaddic$`d de Cohen`, tabla_l3_edaddic$`d de Cohen`)
tabla_l3_edaddic$color <- ifelse(tabla_l3_edaddic$p<.05&tabla_l3_edaddic$t<0,"#daaaaa",
ifelse(tabla_l3_edaddic$p<.05&tabla_l3_edaddic$t>0,"#a5c3c6",NA))
tabla_l3_edaddic$p <- ifelse(tabla_l3_edaddic$p==0,"< .001", tabla_l3_edaddic$p)
tabla <- kable(tabla_l3_edaddic[1:7],
"html",
booktabs = T,
align = c("r"),
caption = "Diferenciales por edad dicotomizada valores Lee et al. (3)") %>%
kable_styling(full_width = F,
position = "center", font_size = 12)
for(i in 1:nrow(tabla_l3_edaddic)){
if(!is.na(tabla_l3_edaddic$color[i])){
tabla <- row_spec(tabla,i,background = tabla_l3_edaddic$color[i])
}
}
tabla <- add_header_above(tabla, c("","","Early"=1,"Late"=1,"","",""))
tabla
| Valores | Rango | M (SD) | M (SD).1 | t | p | d de Cohen |
|---|---|---|---|---|---|---|
| Competencia | 1 - 7 | 6.2 (0.76) | 6.1 (0.69) | 2.00 | 0.046 | 0.13 |
| Moral | 1 - 7 | 5.88 (0.78) | 5.63 (0.82) | 4.39 | < .001 | 0.31 |
| Estatus | 1 - 7 | 4.36 (1.17) | 4.34 (1.03) | 0.38 | 0.706 | 0.02 |
Aunque son diferencias pequeñas, existen diferencias significativas en competencia y moral, siendo los más pequeños quienes presentan mayores niveles de estas variables.
Correlaciones
Para todas las correlaciones se utilizaron los puntajes centrados de Schwartz.
Schwartz (19 valores) x Lee et al (3 valores)
base_cor <- data.frame("S_unn"=base$Uni_nat_C,
"S_unc"=base$Uni_con_C,
"S_unt"=base$Uni_Tol_C,
"S_bec"=base$Ben_Car_C,
"S_bed"=base$Ben_Dep_C,
"S_sep"=base$Sec_Per_C,
"S_ses"=base$Sec_Soc_C,
"S_cor"=base$Con_Rul_C,
"S_coi"=base$Con_Int_C,
"S_tra"=base$Tradic_C,
"S_ach"=base$Achiev_C,
"S_pod"=base$Po_Dom_C,
"S_por"=base$Po_Res_C,
"S_sdt"=base$SD_Thought_C,
"S_sda"=base$SD_Action_C,
"S_sti"=base$Stimu_C,
"S_hed"=base$Hedon_C,
"S_fac"=base$Face_C,
"S_hum"=base$Humi_C,
"L_Compe"=base$COMPE,
"L_Moral"=base$MORAL,
"L_Status"=base$STATUS)
p_v <- numeric()
for (i in 1:ncol(base_cor)) {
tmp <- c()
for (j in 1:ncol(base_cor)) {
tmp <- c(tmp,cor.test(base_cor[, i], base_cor[, j])$p.value)
}
p_v <- c(p_v,tmp)
}
p_v <- p_v[!duplicated(p_v)][-1]
p_v <- ifelse(p_v<=.05,T,F)
Plot_S19L3 <- base_cor %>% ggcorr(name="r de Pearson",
method = c("everything","pearson"),
size=2.5,
hjust=.75,
nbreaks=6,
label = T,
label_alpha = p_v,
label_round = 3,
label_size = 1.75,
low="#b32323",
high = "#146f76")+
geom_segment(aes(x=19.5,xend=19.5,y=19.5,yend=0.5), color="#61626b", size=1)+
geom_segment(aes(x=19.5,xend=22.5,y=19.5,yend=19.5), color="#61626b", size=1)+
ggtitle("Correlaciones entre Valores Personales (19) y Valores deportivos")
Plot_S19L3
Nota: Los coeficientes que se muestran son los que resultaron estadísticamente significativos
Hay una correlación positiva y tendiente a moderada entre valores deportivos de competencia y los otros dos (morales y de status). En lo que respecta a los valores personales, competencia se vinculó positivamente con logro, autodirección-pensamiento y estimulación, y negativamente con universalismo-preocupación y conformidad-interpersonal, aunque el tamaño de efecto es pequeño. Los valores deportivos morales se vincularon con todos los valores personales (excepto benevolencia-cuidado), entre los que se destacan ambos valores de conformidad (positivamente) y ambos valores de poder (negativamente). Status se vinculó positivamente con los tres valores de autopromoción (i.e., logro, poder-dominancia y poder-recursos) y apariencia, y negativamente con los valores de autotrascendencia (universalismo-naturaleza, universalismo-preocupación, universalismo-tolerancia, benevolencia-cuidado y benevolencia-dependencia), ambas dimensiones de conformidad y humildad
Schwartz (4 valores) x Lee et al (3 valores)
base_cor <- data.frame("S_SlfTrs"=base$SelfTrasc4_C,
"S_Conser"=base$Conser4_C,
"S_SlfEnh"=base$SelfEnh4_C,
"S_OpToCh"=base$Open4_C,
"L_Compe"=base$COMPE,
"L_Moral"=base$MORAL,
"L_Status"=base$STATUS)
p_v <- numeric()
for (i in 1:ncol(base_cor)) {
tmp <- c()
for (j in 1:ncol(base_cor)) {
tmp <- c(tmp,cor.test(base_cor[, i], base_cor[, j])$p.value)
}
p_v <- c(p_v,tmp)
}
p_v <- p_v[!duplicated(p_v)][-1]
p_v <- ifelse(p_v<=.05,T,F)
Plot_S4L3 <- base_cor %>% ggcorr(name="r de Pearson",
method = c("everything","pearson"),
size=3.5,
hjust=.75,
nbreaks=6,
label = T,
label_alpha = p_v,
label_round = 3,
label_size = 3.5,
low="#b32323",
high = "#146f76")+
geom_segment(aes(x=4.5,xend=4.5,y=4.5,yend=0.5), color="#61626b", size=1)+
geom_segment(aes(x=4.5,xend=7.5,y=4.5,yend=4.5), color="#61626b", size=1)+
ggtitle("Correlaciones entre Valores Personales (4) y Valores deportivos")
Plot_S4L3
Nota: Los coeficientes que se muestran son los que resultaron estadísticamente significativos
Si bien los valores de competencia se asociaron con la apertura al cambio, el r es muy bajito. Los valores morales se asociaron a los cuatro valores personales de orden superior, positivamente con los valores de foco personal (apertura al cambio y autopromoción) y negativamente con los valores de foco social (conservación y autotrascendencia). El patrón contrario se observa con los valores de status, a excepción de su relación con *apertura al cambio, que no resultó significativa.