Missing
knitr:: opts_chunk$ set (echo= FALSE , message= FALSE , warning= FALSE
)
suppressPackageStartupMessages (library (tidyverse, quietly= T)); library (haven); library (knitr)
mydata <- read_sav ("Datasett Rebekka 2.sav" )
mydata[! complete.cases (mydata),]
# A tibble: 7 × 5
ID gender context PC Enjoyment
<chr> <dbl+lbl> <dbl+lbl> <dbl> <dbl>
1 3 0 [Jente] 3 [friluftsliv] NA NA
2 7 0 [Jente] 3 [friluftsliv] NA NA
3 17 0 [Jente] 3 [friluftsliv] NA NA
4 25 0 [Jente] 1 [basketball] NA NA
5 29 0 [Jente] 3 [friluftsliv] NA NA
6 16 1 [Gutt] 2 [dans] NA NA
7 36 1 [Gutt] 3 [friluftsliv] 4.75 NA
mydata$ context <- factor (mydata$ context, labels= c ("basket" , "dance" , "free" ))
mydata$ context <- relevel (mydata$ context, "free" )
naniar:: vis_miss (mydata)
Mean levels of PC and Enjoyment across contexts and gender
Mean score plot
Mixed modeling
Our data contains three measurement contexts/conditions, so we can try to model this as a 2-level model he
Level 2: Students
Level 1: Measurement context
Fixed effects: direct effect of context and of PC, and their interaction
Random effect:
Linear mixed model fit by REML ['lmerMod']
Formula: Enjoyment ~ context * PC + (PC | ID)
Data: mydata
REML criterion at convergence: 179.2
Scaled residuals:
Min 1Q Median 3Q Max
-2.35530 -0.48461 0.06902 0.49766 2.46933
Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 0.00000 0.0000
PC 0.01407 0.1186 NaN
Residual 0.17849 0.4225
Number of obs: 104, groups: ID, 37
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.11411 0.71348 2.963
contextbasket 0.15591 0.83557 0.187
contextdance -0.37004 0.78765 -0.470
PC 0.41347 0.17367 2.381
contextbasket:PC -0.02756 0.20686 -0.133
contextdance:PC 0.09394 0.19709 0.477
Correlation of Fixed Effects:
(Intr) cntxtb cntxtd PC cntxtb:PC
contextbskt -0.786
contextdanc -0.886 0.703
PC -0.988 0.776 0.876
cntxtbsk:PC 0.759 -0.991 -0.679 -0.759
cntxtdnc:PC 0.849 -0.674 -0.989 -0.850 0.660
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
For reference: The crude method of just ignoring nestin
Call:
lm(formula = Enjoyment ~ context * PC, data = mydata)
Residuals:
Min 1Q Median 3Q Max
-2.25438 -0.36914 0.04142 0.41459 1.36069
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.359564 0.888510 2.656 0.00924 **
contextbasket 0.071745 1.111378 0.065 0.94866
contextdance -1.016778 1.014859 -1.002 0.31886
PC 0.354964 0.213265 1.664 0.09922 .
contextbasket:PC -0.005934 0.273372 -0.022 0.98273
contextdance:PC 0.268829 0.252436 1.065 0.28952
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6353 on 98 degrees of freedom
(7 observations deleted due to missingness)
Multiple R-squared: 0.2455, Adjusted R-squared: 0.207
F-statistic: 6.379 on 5 and 98 DF, p-value: 3.604e-05