Package yang digunakan

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.3
library(ggplot2)
library(graphics)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(magrittr)
## Warning: package 'magrittr' was built under R version 4.1.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.1.3
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.1.3
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(nFactors)
## Warning: package 'nFactors' was built under R version 4.1.3
## Loading required package: lattice
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
library(MVN)
## Warning: package 'MVN' was built under R version 4.1.3
library(mvnormtest)

Analisis Faktor

Persiapan Data

data <- read_excel("Money Supply Data.xlsx")    #Import Data
data
## # A tibble: 48 x 7
##            y     x1     x2      x3       x5     x6     x7
##        <dbl>  <dbl>  <dbl>   <dbl>    <dbl>  <dbl>  <dbl>
##  1 -1273033. -0.199 -0.284 -0.0836 -0.0997  -0.171 -0.237
##  2 -1261402. -0.207 -0.280 -0.112  -0.0729  -0.176 -0.232
##  3 -1219294. -0.200 -0.268 -0.103  -0.0633  -0.171 -0.224
##  4 -1180894. -0.197 -0.246 -0.146  -0.0485  -0.150 -0.216
##  5 -1115518. -0.200 -0.252 -0.177  -0.0384  -0.151 -0.202
##  6 -1128444. -0.243 -0.245 -0.164  -0.0243  -0.149 -0.188
##  7 -1035249. -0.226 -0.207 -0.0858 -0.0136  -0.150 -0.178
##  8 -1039403. -0.205 -0.179 -0.148  -0.00430 -0.145 -0.169
##  9  -957742. -0.155 -0.149 -0.144   0.00962 -0.126 -0.154
## 10  -964953. -0.169 -0.172 -0.153   0.0221  -0.134 -0.152
## # i 38 more rows
# Handling Missing data 
databaru=na.omit(data)
summary(databaru)
##        y                  x1                 x2                 x3         
##  Min.   :-1273033   Min.   :-0.24325   Min.   :-0.28428   Min.   :-0.2316  
##  1st Qu.: -893796   1st Qu.:-0.13949   1st Qu.:-0.12010   1st Qu.:-0.1448  
##  Median : -205979   Median :-0.03196   Median : 0.01906   Median :-0.0326  
##  Mean   : -244129   Mean   :-0.03774   Mean   :-0.03414   Mean   :-0.0200  
##  3rd Qu.:  396569   3rd Qu.: 0.05478   3rd Qu.: 0.07341   3rd Qu.: 0.1087  
##  Max.   :  877343   Max.   : 0.15814   Max.   : 0.10450   Max.   : 0.2292  
##        x5                 x6                 x7          
##  Min.   :-0.21328   Min.   :-0.17583   Min.   :-0.23672  
##  1st Qu.:-0.18614   1st Qu.:-0.11127   1st Qu.:-0.13412  
##  Median : 0.01589   Median :-0.08092   Median :-0.02388  
##  Mean   :-0.00484   Mean   :-0.04935   Mean   :-0.04124  
##  3rd Qu.: 0.12220   3rd Qu.: 0.04301   3rd Qu.: 0.06101  
##  Max.   : 0.19413   Max.   : 0.10198   Max.   : 0.13011

Asumsi Normalitas

H0 : Data berdistribusi normal
H1 : Data tidak berdistribusi normal

#uji normalitas 
shapiro.test(data$x1)
## 
##  Shapiro-Wilk normality test
## 
## data:  data$x1
## W = 0.94948, p-value = 0.03812
shapiro.test(data$x2)
## 
##  Shapiro-Wilk normality test
## 
## data:  data$x2
## W = 0.87964, p-value = 0.0001474
shapiro.test(data$x3)
## 
##  Shapiro-Wilk normality test
## 
## data:  data$x3
## W = 0.93133, p-value = 0.007635
shapiro.test(data$x5)
## 
##  Shapiro-Wilk normality test
## 
## data:  data$x5
## W = 0.89226, p-value = 0.0003571
shapiro.test(data$x6)
## 
##  Shapiro-Wilk normality test
## 
## data:  data$x6
## W = 0.90355, p-value = 0.0008203
shapiro.test(data$x7)
## 
##  Shapiro-Wilk normality test
## 
## data:  data$x7
## W = 0.92558, p-value = 0.004701

Hasil pengujian asumsi normalitas menunjukkan bahwa data yang digunakan tidak berdistribusi normal hal ini dikarenakan p-value < 0,05 dimana H0 ditolak.

KMO dan Bartlett’s Test of Sphericity

#fungsi
kmo <- function(x)
{
  x <- subset(x, complete.cases(x))       # menghilangkan data kosong (NA)
  r <- cor(x)                             # Membuat matrix korelasi
  r2 <- r^2                               # nilai koefisien untuk r squared
  i <- solve(r)                           # Inverse matrix dari matrix korelasi
  d <- diag(i)                            # element diagonal dari inverse matrix
  p2 <- (-i/sqrt(outer(d, d)))^2          # koefisien korelasi Parsial kuadrat
  diag(r2) <- diag(p2) <- 0               # menghapus element diagonal 
  KMO <- sum(r2)/(sum(r2)+sum(p2))
  MSA <- colSums(r2)/(colSums(r2)+colSums(p2))
  return(list(KMO=KMO, MSA=MSA))
}

uji_bart <- function(x)
{
  method <- "Bartlett's test of sphericity"
  data.name <- deparse(substitute(x))
  x <- subset(x, complete.cases(x)) 
  n <- nrow(x)
  p <- ncol(x)
  chisq <- (1-n+(2*p+5)/6)*log(det(cor(x)))
  df <- p*(p-1)/2
  p.value <- pchisq(chisq, df, lower.tail=FALSE)
  names(chisq) <- "Khi-squared"
  names(df) <- "df"
  return(structure(list(statistic=chisq, parameter=df, p.value=p.value,
                        method=method, data.name=data.name), class="htest"))
}

cor(databaru[,2:7])
##            x1          x2         x3          x5         x6         x7
## x1  1.0000000  0.88382829  0.7271341 -0.36671024  0.9585402  0.9825829
## x2  0.8838283  1.00000000  0.7792636 -0.03105515  0.7921972  0.9239690
## x3  0.7271341  0.77926357  1.0000000 -0.12416951  0.6309743  0.7717570
## x5 -0.3667102 -0.03105515 -0.1241695  1.00000000 -0.5168132 -0.3206505
## x6  0.9585402  0.79219720  0.6309743 -0.51681325  1.0000000  0.9497018
## x7  0.9825829  0.92396901  0.7717570 -0.32065053  0.9497018  1.0000000
kmo(databaru[,2:7])
## $KMO
## [1] 0.7823268
## 
## $MSA
##        x1        x2        x3        x5        x6        x7 
## 0.9129754 0.7951975 0.8093099 0.5372378 0.7592669 0.7266169
uji_bart(databaru[,2:7])
## 
##  Bartlett's test of sphericity
## 
## data:  databaru[, 2:7]
## Khi-squared = 480.5, df = 15, p-value < 2.2e-16

Nilai KMO = 0,78 lebih dari 0,5 yang artinya analisis faktor dapat dilanjutkan. Selain itu, pada Bartlett’s test of sphericity didapat nilai p-value = 2,2e^-15 lebih kecil dari 0,05 yang berarti tolak H0 atau terdapat korelasi antar variabel.

Penentuan Jumlah Faktor

R=cov(databaru[,2:7])
eigen_data=eigen(R)
ap=parallel(subject = 37, var = 6, rep = 100, cent = 0.05)
nfaktor = nScree(eigen$values, ap$eigen$qevpea)
plotnScree(nfaktor)

Berdasarkan scree plot, hasil acceleration factor adalah 2 yang artinya jumlah faktor yang digunakan sebanyak 2 faktor.

Analisis Faktor

#metode none (tanpa rotasi)
solusi <- fa(r = R, nfactors = 2, rotate = "none", fm = "pa")
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
solusi
## Factor Analysis using method =  pa
## Call: fa(r = R, nfactors = 2, rotate = "none", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##      PA1   PA2   h2      u2 com
## x1  0.98 -0.04 0.97  0.0298 1.0
## x2  0.92  0.38 0.98  0.0166 1.3
## x3  0.75  0.21 0.61  0.3890 1.2
## x5 -0.35  0.74 0.66  0.3388 1.4
## x6  0.95 -0.26 0.98  0.0248 1.1
## x7  1.00  0.03 1.00 -0.0048 1.0
## 
##                        PA1  PA2
## SS loadings           4.41 0.80
## Proportion Var        0.73 0.13
## Cumulative Var        0.73 0.87
## Proportion Explained  0.85 0.15
## Cumulative Proportion 0.85 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## df null model =  15  with the objective function =  10.88
## df of  the model are 4  and the objective function was  1.75 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## Fit based upon off diagonal values = 1

Dapat dilihat pada nilai communalitaies yang dihasilkan lebih dari 0,5 berarti hal tersebut mengindikasikan bahwa variabel memiliki keeratan yang kuat dengan faktor yang terbentuk.


Nilai loading (PA1 dan PA2) menjelaskan besarnya korelasi antar variabel dengan faktor umum. Serta dapat ditentukan bahwa Faktor 1 berisi variabel x1, x2, x3, x6 dan x7 dengan melihat nilai PA1 > 0,5 dan Faktor 2 berisi variabel x5 karena nilai PA2 > 0,5.


Selanjutnya nilai SS Loading PA1 sebesar 4.41 dan PA2 sebesar 0.80 yang berarti total varians keseluruhan variabel dapat dijelaskan oleh faktor 1 sebesar 4.41 sedangkan faktor 2 sebesar 0.80. Sedangkan, Propotion var PA1 sebesar 0.73 dan PA2 sebesar 0.13 yang artinya bahwa proposi total varians variabel asal dapat dijelaskan oleh faktor 1 sebesar 73% dan faktor 2 sebesar 13%.

Analisis MDS dan Clustering

Persiapan Data

data=read.csv("DataMDS_1.csv", header=T, sep=";")
PintuMasuk=data[, 1]
dataMDS3=data[,2:13]
rownames(dataMDS3)= PintuMasuk
dataMDS3                          #Data lengkap
##                        Januari Februari Maret  April    Mei   Juni   Juli
## Ngurah Rai                  18      249  1464   3560   6440   6590   9252
## Soekarno Hatta           34168    38339 85133 100895 176863 134091 158817
## Juanda                      22       25   959   8037  18965  14201  17310
## Kualanamu                  155      115   126    564   8473  13393  19057
## Husein Sastranegara          0        0     0      0      4      3      0
## Adi Sucipto/YIA              0        0     0      7    181    210     84
## Bandara Int'l Lombok         0        0     6      0    383    555    363
## Sam Ratulangi               77       45   119    224    436    669    626
## Minangkabau                  0        0     0      0      0      0      0
## Sultan Syarif Kasim II       2        5     3     13      3      0     28
## Sultan Iskandar Muda        38       41    31      0      0     65   2008
## Ahmad Yani                  47       51    48     61     53     51     35
## Supadio                      0        3     0      4      0      0      0
## Hasanuddin                   0        0     0     33   2217   1588   1580
## Sultan Badaruddin II         0        0     0      6      3     44      0
## LainnyaA                   320      112    80     98    140    901  11070
## Batam                     2435     2176  3414   9403  27810  42293  56258
## Tanjung Uban               222      166   278    585    700    758   1089
## Tanjung Pinang             262      170   329    896   2250   3304   2292
## Tanjung Balai Karimun       43       22    31     72    589   5037   8002
## Tanjung Benoa               16       12    17     19     24     23     19
## LainnyaB                   441      384   590    907   3235   6814   9876
## Jayapura                     0        0     0      0      5      3      7
## Atambua                    248      259   478   1054   2085   2450   2500
## Entikong                    34       30    46    563   2842   6345   2993
## Aruk                        21        8    20    255   1961   3914   5151
## Nanga Badau                  0        0     0      0      3      0     46
## LainnyaC                     0        0     0      0      0      0      0
## Perbatasan Laut           1210     1066  1367   1126    858    787    912
## Perbatasan Darat          1045     1222  1376   1246   1295   1692   2123
##                        Agustus September Oktober November Desember
## Ngurah Rai                8769      9772   12266    15202    18477
## Soekarno Hatta          158352    222339  265517   260496   277290
## Juanda                   29631     49357   57093    56338    53166
## Kualanamu                34078     18140   45053    50149    51052
## Husein Sastranegara          0         0       0        1        0
## Adi Sucipto/YIA            231       160     716     1958     2436
## Bandara Int'l Lombok      2558       412    1211     1152      431
## Sam Ratulangi              465       570     792      816      903
## Minangkabau                  0         0       0        0     1543
## Sultan Syarif Kasim II      65      1136    3578     4671     5785
## Sultan Iskandar Muda        59        64     710     1097     1955
## Ahmad Yani                  33        36      29       32       42
## Supadio                      0         0       0       21        0
## Hasanuddin                9243     15961   15820    14454    10443
## Sultan Badaruddin II      2420         7       2        0        0
## LainnyaA                 13204       676    1117     1262     1473
## Batam                    49770     54577   56990    64464    79907
## Tanjung Uban               642       755     786      546      738
## Tanjung Pinang            3392      3435    3782     3461     4527
## Tanjung Balai Karimun    12270     13748   16024    16746    18635
## Tanjung Benoa               11        56      33       51       67
## LainnyaB                 12966     14568   15688    15919    18202
## Jayapura                     3         9      21       58      154
## Atambua                   4189      3793    3992     4459     3968
## Entikong                     0       623    9566     9831    16094
## Aruk                      5675      5285    6210     5713     7518
## Nanga Badau               1001      1267    1552     1854     2188
## LainnyaC                     0         0       0        0        0
## Perbatasan Laut            926      1068    1427     2113     4228
## Perbatasan Darat          1927      1045    1291     1559     6928
attach(dataMDS3)

Asumsi Normalitas

H0 : Data berdistribusi normal
H1 : Data tidak berdistribusi normal

mvn(data = dataMDS3, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic              p value Result
## 1 Mardia Skewness 1009.37348577646 4.96363982643645e-62     NO
## 2 Mardia Kurtosis 12.5601089622425                    0     NO
## 3             MVN             <NA>                 <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling  Januari     9.8691  <0.001      NO    
## 2  Anderson-Darling Februari    10.0639  <0.001      NO    
## 3  Anderson-Darling   Maret     10.2852  <0.001      NO    
## 4  Anderson-Darling   April      9.3929  <0.001      NO    
## 5  Anderson-Darling    Mei       8.6173  <0.001      NO    
## 6  Anderson-Darling   Juni       7.4555  <0.001      NO    
## 7  Anderson-Darling   Juli       7.1034  <0.001      NO    
## 8  Anderson-Darling  Agustus     6.0986  <0.001      NO    
## 9  Anderson-Darling September    7.0837  <0.001      NO    
## 10 Anderson-Darling  Oktober     6.8005  <0.001      NO    
## 11 Anderson-Darling November     6.6114  <0.001      NO    
## 12 Anderson-Darling Desember     6.4688  <0.001      NO    
## 
## $Descriptives
##            n      Mean   Std.Dev Median Min    Max   25th     75th     Skew
## Januari   30  1360.800  6217.047   28.0   0  34168   0.00   241.50 4.890494
## Februari  30  1483.333  6976.815   27.5   0  38339   0.00   169.00 4.906471
## Maret     30  3197.167 15492.220   38.5   0  85133   0.00   440.75 4.924529
## April     30  4320.933 18375.433   85.0   0 100895   4.50   904.25 4.830518
## Mei       30  8593.933 32351.271  512.5   0 176863   4.25  2241.75 4.686211
## Juni      30  8192.700 25142.663  772.5   0 134091  28.25  4756.25 4.248890
## Juli      30 10383.267 30084.098 1334.5   0 158817  29.75  7289.25 4.099574
## Agustus   30 11729.333 30057.223 1464.0   0 158352  39.50  9124.50 3.924918
## September 30 13961.967 41582.086  900.0   0 222339  58.00  8650.25 4.223103
## Oktober   30 17375.533 49503.417 1359.0   0 265517 202.25 11591.00 4.213530
## November  30 17814.100 48904.724 1906.0   0 260496 180.00 13298.25 4.100974
## Desember  30 19605.000 52119.868 3202.0   0 277290 507.75 14681.25 4.068359
##           Kurtosis
## Januari   22.84919
## Februari  22.95927
## Maret     23.08207
## April     22.43377
## Mei       21.40428
## Juni      18.07540
## Juli      16.94253
## Agustus   15.98707
## September 18.07633
## Oktober   18.08334
## November  17.26882
## Desember  16.99655

Berdasarkan hasil dengan menggunakan MVN test, dapat disimpulkan bahwa data tidak berdistribusi normal karena p-value < 0,05 atau H0 ditolak. Maka, perlu ada transformasi data sehingga data berdistribusi normal.

KMO Test

KMO.MSA<- function(x){
  x <- subset(x, complete.cases(x))
  korelasi <- cor(x)
  r2 <- korelasi^2
  i <- solve(korelasi)
  d <- diag(i)
  p2 <- (-i/sqrt(outer(d, d)))^2
  diag(r2) <- diag(p2) <- 0
  Kaiser_Meyer_Olkin <- sum(r2)/(sum(r2)+sum(p2))
  Measure_of_Sampling_Adequacy <- colSums(r2)/(colSums(r2)+colSums(p2))
  return(list(Kaiser_Meyer_Olkin=Kaiser_Meyer_Olkin, Measure_of_Sampling_Adequacy=Measure_of_Sampling_Adequacy))
}
KMO.MSA(dataMDS3)
## $Kaiser_Meyer_Olkin
## [1] 0.744893
## 
## $Measure_of_Sampling_Adequacy
##   Januari  Februari     Maret     April       Mei      Juni      Juli   Agustus 
## 0.7633572 0.7094856 0.6794621 0.7148431 0.7178390 0.7607272 0.8018723 0.8096182 
## September   Oktober  November  Desember 
## 0.7146623 0.8145471 0.8270387 0.6690085

Pada nilai KMO = 0.74 > 0,5 maka analisis dapat dilanjutkan atau measure sample sudah dapat dianalisis.

Asumsi Multikolineartitas

VIF=function(x){
  VIF=diag(solve(cor(x)))
  result=ifelse(VIF>10,"mulicolinearity", "non multicolinearity")
  data1=data.frame(VIF,result)
  return(data1)
}
VIF(dataMDS3)
##                  VIF          result
## Januari   18923.0175 mulicolinearity
## Februari  48009.5272 mulicolinearity
## Maret     16356.3835 mulicolinearity
## April     11845.6393 mulicolinearity
## Mei       13079.5234 mulicolinearity
## Juni       2782.7921 mulicolinearity
## Juli       2004.3251 mulicolinearity
## Agustus    1223.1885 mulicolinearity
## September   907.6747 mulicolinearity
## Oktober    8524.0409 mulicolinearity
## November  11704.2015 mulicolinearity
## Desember  10522.1572 mulicolinearity

Berdasarkan hasil uji multikolinearitas diperoleh bahwa, terdapat multikolinearitas antar variabel.

Transformasi Data

data=read.csv("DataMDS.csv", header=T, sep=";")
PM=data[, 1]
dataMDS=data[,2:4]
rownames(dataMDS)= PM
dataMDS                 #Data di transformasi berdasarkan rata-rata quarter
##                           Q1     Q2     Q3
## Ngurah Rai              1323   7763  13929
## Soekarno Hatta         64634 157031 256411
## Juanda                  2261  20027  53989
## Kualanamu                240  18750  41099
## Husein Sastranegara        0      2      0
## Adi Sucipto/YIA            2    177   1318
## Bandara Int'l Lombok       2    965    802
## Sam Ratulangi            116    549    770
## Minangkabau                0      0    514
## Sultan Syarif Kasim II     6     24   3793
## Sultan Iskandar Muda      28    533    957
## Ahmad Yani                52     43     35
## Supadio                    2      0      5
## Hasanuddin                 8   3657  14170
## Sultan Badaruddin II       2    617      2
## LainnyaA                 153   6329   1132
## Batam                   4357  44033  63985
## Tanjung Uban             313    797    706
## Tanjung Pinang           414   2810   3801
## Tanjung Balai Karimun     42   6475  16288
## Tanjung Benoa             16     19     52
## LainnyaB                 581   8223  16094
## Jayapura                   0      5     61
## Atambua                  510   2806   4053
## Entikong                 168   3045   9029
## Aruk                      76   4175   6182
## Nanga Badau                0    263   1715
## Perbatasan Laut         1192    871   2209
## Perbatasan Darat        1222   1759   2706
attach(dataMDS)
logdataMDS <- log10(dataMDS)
srdataMDS <- sqrt(dataMDS)
crdataMDS <- dataMDS^(1/3)
logdataMDS              #Data di transformasi dengan Log
##                               Q1       Q2       Q3
## Ngurah Rai             3.1215598 3.890030 4.143920
## Soekarno Hatta         4.8104610 5.195985 5.408937
## Juanda                 3.3543006 4.301616 4.732305
## Kualanamu              2.3802112 4.273001 4.613831
## Husein Sastranegara         -Inf 0.301030     -Inf
## Adi Sucipto/YIA        0.3010300 2.247973 3.119915
## Bandara Int'l Lombok   0.3010300 2.984527 2.904174
## Sam Ratulangi          2.0644580 2.739572 2.886491
## Minangkabau                 -Inf     -Inf 2.710963
## Sultan Syarif Kasim II 0.7781513 1.380211 3.578983
## Sultan Iskandar Muda   1.4471580 2.726727 2.980912
## Ahmad Yani             1.7160033 1.633468 1.544068
## Supadio                0.3010300     -Inf 0.698970
## Hasanuddin             0.9030900 3.563125 4.151370
## Sultan Badaruddin II   0.3010300 2.790285 0.301030
## LainnyaA               2.1846914 3.801335 3.053846
## Batam                  3.6391876 4.643778 4.806078
## Tanjung Uban           2.4955443 2.901458 2.848805
## Tanjung Pinang         2.6170003 3.448706 3.579898
## Tanjung Balai Karimun  1.6232493 3.811240 4.211868
## Tanjung Benoa          1.2041200 1.278754 1.716003
## LainnyaB               2.7641761 3.915030 4.206664
## Jayapura                    -Inf 0.698970 1.785330
## Atambua                2.7075702 3.448088 3.607777
## Entikong               2.2253093 3.483587 3.955640
## Aruk                   1.8808136 3.620656 3.791129
## Nanga Badau                 -Inf 2.419956 3.234264
## Perbatasan Laut        3.0762763 2.940018 3.344196
## Perbatasan Darat       3.0870712 3.245266 3.432328
srdataMDS               #Data di transformasi dengan Square Root
##                                Q1         Q2         Q3
## Ngurah Rai              36.373067  88.107888 118.021185
## Soekarno Hatta         254.232177 396.271372 506.370418
## Juanda                  47.549974 141.516783 232.355331
## Kualanamu               15.491933 136.930639 202.728883
## Husein Sastranegara      0.000000   1.414214   0.000000
## Adi Sucipto/YIA          1.414214  13.304135  36.304270
## Bandara Int'l Lombok     1.414214  31.064449  28.319605
## Sam Ratulangi           10.770330  23.430749  27.748874
## Minangkabau              0.000000   0.000000  22.671568
## Sultan Syarif Kasim II   2.449490   4.898979  61.587336
## Sultan Iskandar Muda     5.291503  23.086793  30.935417
## Ahmad Yani               7.211103   6.557439   5.916080
## Supadio                  1.414214   0.000000   2.236068
## Hasanuddin               2.828427  60.473135 119.037809
## Sultan Badaruddin II     1.414214  24.839485   1.414214
## LainnyaA                12.369317  79.555012  33.645208
## Batam                   66.007575 209.840416 252.952565
## Tanjung Uban            17.691806  28.231188  26.570661
## Tanjung Pinang          20.346990  53.009433  61.652251
## Tanjung Balai Karimun    6.480741  80.467385 127.624449
## Tanjung Benoa            4.000000   4.358899   7.211103
## LainnyaB                24.103942  90.680759 126.862130
## Jayapura                 0.000000   2.236068   7.810250
## Atambua                 22.583180  52.971691  63.663176
## Entikong                12.961481  55.181519  95.021050
## Aruk                     8.717798  64.614240  78.625696
## Nanga Badau              0.000000  16.217275  41.412558
## Perbatasan Laut         34.525353  29.512709  47.000000
## Perbatasan Darat        34.957117  41.940434  52.019227
crdataMDS               #Data di transformasi dengan Cube Root
##                               Q1        Q2        Q3
## Ngurah Rai             10.977917 19.800517 24.060611
## Soekarno Hatta         40.131650 53.950458 63.530004
## Juanda                 13.125026 27.156386 37.795065
## Kualanamu               6.214465 26.566464 34.509904
## Husein Sastranegara     0.000000  1.259921  0.000000
## Adi Sucipto/YIA         1.259921  5.614672 10.964070
## Bandara Int'l Lombok    1.259921  9.881945  9.290907
## Sam Ratulangi           4.876999  8.188244  9.165656
## Minangkabau             0.000000  0.000000  8.010403
## Sultan Syarif Kasim II  1.817121  2.884499 15.595320
## Sultan Iskandar Muda    3.036589  8.107913  9.854562
## Ahmad Yani              3.732511  3.503398  3.271066
## Supadio                 1.259921  0.000000  1.709976
## Hasanuddin              2.000000 15.406654 24.198584
## Sultan Badaruddin II    1.259921  8.513243  1.259921
## LainnyaA                5.348481 18.497443 10.421946
## Batam                  16.332871 35.312307 39.996875
## Tanjung Uban            6.789661  9.271559  8.904337
## Tanjung Pinang          7.453040 14.111357 15.606276
## Tanjung Balai Karimun   3.476027 18.638599 25.348713
## Tanjung Benoa           2.519842  2.668402  3.732511
## LainnyaB                8.344341 20.184133 25.247672
## Jayapura                0.000000  1.709976  3.936497
## Atambua                 7.989570 14.104658 15.943813
## Entikong                5.517848 14.494251 20.823156
## Aruk                    4.235824 16.102210 18.353110
## Nanga Badau             0.000000  6.406959 11.969832
## Perbatasan Laut        10.602918  9.550059 13.023626
## Perbatasan Darat       10.691133 12.071334 13.935074

Setelah melakukan transformasi data, lalu uji asumsi normalitas pada setiap data transformasi.

mvn(data = dataMDS, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic              p value Result
## 1 Mardia Skewness 221.657147366555 4.80809166773043e-42     NO
## 2 Mardia Kurtosis 19.8436896559753                    0     NO
## 3             MVN             <NA>                 <NA>     NO
## 
## $univariateNormality
##               Test  Variable Statistic   p value Normality
## 1 Anderson-Darling    Q1        9.4919  <0.001      NO    
## 2 Anderson-Darling    Q2        6.9835  <0.001      NO    
## 3 Anderson-Darling    Q3        6.4195  <0.001      NO    
## 
## $Descriptives
##     n     Mean  Std.Dev Median Min    Max 25th  75th     Skew Kurtosis
## Q1 29  2680.00 11950.83     76   0  64634    2   510 4.796147 21.90678
## Q2 29 10060.28 29693.32    965   0 157031  177  6329 4.213894 17.76269
## Q3 29 17786.45 48688.31   2209   0 256411  706 13929 4.080275 16.94530
#mvn(data = logdataMDS, mvnTest = "mardia")
mvn(data = srdataMDS, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic              p value Result
## 1 Mardia Skewness 104.013920025033 8.54544698371292e-18     NO
## 2 Mardia Kurtosis 9.23756087103024                    0     NO
## 3             MVN             <NA>                 <NA>     NO
## 
## $univariateNormality
##               Test  Variable Statistic   p value Normality
## 1 Anderson-Darling    Q1        5.0097  <0.001      NO    
## 2 Anderson-Darling    Q2        2.6025  <0.001      NO    
## 3 Anderson-Darling    Q3        2.5037  <0.001      NO    
## 
## $Descriptives
##     n     Mean   Std.Dev    Median Min      Max      25th      75th     Skew
## Q1 29 22.50345  47.44705  8.717798   0 254.2322  1.414214  22.58318 4.010613
## Q2 29 60.71424  81.25085 31.064449   0 396.2714 13.304135  79.55501 2.592000
## Q3 29 83.36956 105.93849 47.000000   0 506.3704 26.570661 118.02118 2.364583
##     Kurtosis
## Q1 16.664172
## Q2  7.561177
## Q3  6.268713
mvn(data = crdataMDS, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic              p value Result
## 1 Mardia Skewness 50.8772980408918 1.83986991079988e-07     NO
## 2 Mardia Kurtosis 4.41786227101635 9.96819044085662e-06     NO
## 3             MVN             <NA>                 <NA>     NO
## 
## $univariateNormality
##               Test  Variable Statistic   p value Normality
## 1 Anderson-Darling    Q1        2.2602  <0.001      NO    
## 2 Anderson-Darling    Q2        0.9697  0.0125      NO    
## 3 Anderson-Darling    Q3        1.0581  0.0075      NO    
## 
## $Descriptives
##     n      Mean   Std.Dev    Median Min      Max     25th     75th     Skew
## Q1 29  6.215639  7.806063  4.235824   0 40.13165 1.259921  7.98957 2.823033
## Q2 29 13.239916 11.713394  9.881945   0 53.95046 5.614672 18.49744 1.541645
## Q3 29 16.567568 13.941856 13.023626   0 63.53000 8.904337 24.06061 1.443223
##    Kurtosis
## Q1 9.507048
## Q2 2.861226
## Q3 2.269059

Ternyata setelah di transformasi pun data tidak juga berdistribusi normal. Maka, lanjut dengan model yang sederhana.

Analisis MDS

# Cmpute MDS
mds <- dataMDS3 %>%
  dist() %>%          
  cmdscale() %>%
  as_tibble()
## Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if
## `.name_repair` is omitted as of tibble 2.0.0.
## i Using compatibility `.name_repair`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
colnames(mds) <- c("Dim.1", "Dim.2")
# Plot MDS
ggscatter(mds, x = "Dim.1", y = "Dim.2", 
          label = rownames(dataMDS3),
          size = 1,
          repel = TRUE)

Jarak Euclidean

euclidean.distance <- function(x) {
  n=nrow(x)
  dist.mat=matrix(0, n, n)
  xj=x[1,]
  for (i in 1:n) {
    for (j in 1:n) {
      yj=x[j,]
      d=sqrt(as.matrix(xj - yj) %*% as.matrix(t(xj - yj)))
      dist.mat[j,i]=d
    }
    xj=x[1+i,]
  rownames(dist.mat)=PintuMasuk
  colnames(dist.mat)=PintuMasuk
  }
  return(dist.mat)
}
D=euclidean.distance(dataMDS3) ;D
##                        Ngurah Rai Soekarno Hatta    Juanda Kualanamu
## Ngurah Rai                  0.000       587886.9  84895.44  65002.57
## Soekarno Hatta         587886.941            0.0 509427.02 532486.28
## Juanda                  84895.438       509427.0      0.00  36774.50
## Kualanamu               65002.574       532486.3  36774.50      0.00
## Husein Sastranegara     32872.503       619921.7 116191.46  96207.21
## Adi Sucipto/YIA         30169.005       617472.4 113598.03  93399.38
## Bandara Int'l Lombok    30634.037       617608.1 113850.96  93665.38
## Sam Ratulangi           30977.177       618025.5 114373.47  94406.38
## Minangkabau             32032.541       619235.3 115495.08  95398.69
## Sultan Syarif Kasim II  26125.295       613428.0 109100.41  88865.72
## Sultan Iskandar Muda    30444.598       617712.8 114090.25  93847.71
## Ahmad Yani              32766.189       619800.6 116095.60  96118.30
## Supadio                 32864.188       619914.3 116182.50  96197.53
## Hasanuddin              15251.972       593091.7  86982.46  69882.71
## Sultan Badaruddin II    32300.034       619295.5 115589.23  95369.42
## LainnyaA                28276.085       611709.0 110057.42  88366.46
## Batam                  126006.505       468328.7  60138.46  73792.58
## Tanjung Uban            30862.848       617795.0 114315.08  94417.53
## Tanjung Pinang          23637.850       610570.6 107127.27  87334.14
## Tanjung Balai Karimun    9852.783       586452.3  81170.08  61307.82
## Tanjung Benoa           32763.667       619811.8 116083.76  96107.22
## LainnyaB                 8463.288       584737.3  80418.22  61049.91
## Jayapura                32746.283       619813.8 116077.30  96081.77
## Atambua                 23240.211       610107.2 106519.57  86745.36
## Entikong                16298.391       601351.0  98144.73  76906.10
## Aruk                    18265.509       605402.4 101765.33  81708.62
## Nanga Badau             29588.173       616781.4 112734.98  92758.41
## LainnyaC                32874.350       619923.9 116192.96  96208.50
## Perbatasan Laut         27776.309       614768.1 111431.16  91343.82
## Perbatasan Darat        25914.915       612964.7 110010.16  89600.20
##                        Husein Sastranegara Adi Sucipto/YIA Bandara Int'l Lombok
## Ngurah Rai                     32872.50251       30169.005            30634.037
## Soekarno Hatta                619921.72910      617472.356           617608.050
## Juanda                        116191.45566      113598.027           113850.958
## Kualanamu                      96207.21196       93399.380            93665.376
## Husein Sastranegara                0.00000        3230.611             3204.737
## Adi Sucipto/YIA                 3230.61062           0.000             3260.502
## Bandara Int'l Lombok            3204.73727        3260.502                0.000
## Sam Ratulangi                   1934.52061        2126.396             2252.272
## Minangkabau                     1543.00843        2303.648             3365.976
## Sultan Syarif Kasim II          8329.04142        5275.068             7345.437
## Sultan Iskandar Muda            3094.33806        2184.311             3469.765
## Ahmad Yani                       150.71828        3165.653             3130.598
## Supadio                           21.21320        3218.947             3198.608
## Hasanuddin                     30303.65508       28063.562            27981.775
## Sultan Badaruddin II            2420.36609        3893.467             1922.232
## LainnyaA                       17415.82266       17071.572            15148.015
## Batam                         158371.35237      155856.680           155975.024
## Tanjung Uban                    2275.60212        2733.623             2364.876
## Tanjung Pinang                  9606.07745        7514.929             7370.295
## Tanjung Balai Karimun          36245.15268       33632.831            33832.654
## Tanjung Benoa                    116.38728        3136.748             3142.841
## LainnyaB                       36973.36604       34463.470            34517.921
## Jayapura                         165.96988        3074.921             3155.069
## Atambua                        10076.00005        8008.234             7601.893
## Entikong                       22474.35470       19509.230            21067.910
## Aruk                           15283.08604       12986.087            12893.554
## Nanga Badau                     3638.55370        1633.047             2721.095
## LainnyaC                           5.09902        3231.632             3206.090
## Perbatasan Laut                 5855.22792        3499.492             4978.217
## Perbatasan Darat                8482.58893        6159.235             7376.906
##                        Sam Ratulangi Minangkabau Sultan Syarif Kasim II
## Ngurah Rai                30977.1774   32032.541              26125.295
## Soekarno Hatta           618025.5350  619235.298             613427.979
## Juanda                   114373.4667  115495.084             109100.409
## Kualanamu                 94406.3759   95398.692              88865.719
## Husein Sastranegara        1934.5206    1543.008               8329.041
## Adi Sucipto/YIA            2126.3958    2303.648               5275.068
## Bandara Int'l Lombok       2252.2715    3365.976               7345.437
## Sam Ratulangi                 0.0000    1829.117               6927.839
## Minangkabau                1829.1170       0.000               7342.384
## Sultan Syarif Kasim II     6927.8393    7342.384                  0.000
## Sultan Iskandar Muda       2034.0978    2434.174               6383.197
## Ahmad Yani                 1822.1871    1508.218               8265.737
## Supadio                    1927.5918    1543.151               8317.838
## Hasanuddin                28666.5105   29808.076              24106.423
## Sultan Badaruddin II       2698.8864    2870.415               8654.231
## LainnyaA                  16499.1609   17353.820              18220.816
## Batam                    156463.0284  157600.375             151930.322
## Tanjung Uban                805.5861    2300.643               7309.201
## Tanjung Pinang             7707.1373    8985.097               6443.176
## Tanjung Balai Karimun     34449.3977   35477.496              29379.607
## Tanjung Benoa              1828.4589    1479.202               8232.727
## LainnyaB                  35122.0658   36240.003              30488.450
## Jayapura                   1828.3709    1390.431               8180.147
## Atambua                    8213.2475    9576.098               6742.937
## Entikong                  20807.9226   21398.407              15047.950
## Aruk                      13409.5274   14587.789              10254.769
## Nanga Badau                2263.4299    2978.500               5086.488
## LainnyaC                   1936.8733    1543.000               8329.602
## Perbatasan Laut            4309.5970    4861.350               4707.065
## Perbatasan Darat           6959.6731    7278.665               5881.513
##                        Sultan Iskandar Muda  Ahmad Yani      Supadio Hasanuddin
## Ngurah Rai                        30444.598  32766.1894  32864.18821   15251.97
## Soekarno Hatta                   617712.795 619800.5680 619914.27881  593091.73
## Juanda                           114090.246 116095.5960 116182.50199   86982.46
## Kualanamu                         93847.706  96118.3016  96197.53143   69882.71
## Husein Sastranegara                3094.338    150.7183     21.21320   30303.66
## Adi Sucipto/YIA                    2184.311   3165.6527   3218.94657   28063.56
## Bandara Int'l Lombok               3469.765   3130.5975   3198.60829   27981.77
## Sam Ratulangi                      2034.098   1822.1871   1927.59176   28666.51
## Minangkabau                        2434.174   1508.2178   1543.15100   29808.08
## Sultan Syarif Kasim II             6383.197   8265.7374   8317.83752   24106.42
## Sultan Iskandar Muda                  0.000   3026.3741   3087.33413   28692.35
## Ahmad Yani                         3026.374      0.0000    147.68886   30222.52
## Supadio                            3087.334    147.6889      0.00000   30294.57
## Hasanuddin                        28692.353  30222.5161  30294.56702       0.00
## Sultan Badaruddin II               3891.131   2390.8241   2420.50656   29648.77
## LainnyaA                          16016.419  17355.4367  17414.53155   28547.51
## Batam                            155923.082 158264.4327 158364.43758  132538.86
## Tanjung Uban                       2208.022   2147.1383   2271.87962   28679.79
## Tanjung Pinang                     7791.412   9493.8820   9600.43541   22277.72
## Tanjung Balai Karimun             33985.201  36156.3609  36236.38943   11927.14
## Tanjung Benoa                      3013.254     94.7312    109.78160   30203.18
## LainnyaB                          34702.863  36875.6334  36965.53368   13296.31
## Jayapura                           2969.168    176.4653    160.38703   30206.64
## Atambua                            8292.704   9965.9231  10068.22978   21408.80
## Entikong                          20093.325  22391.5714  22466.86318   20938.17
## Aruk                              13034.877  15183.2440  15276.83616   17952.67
## Nanga Badau                        2743.837   3565.5253   3628.41246   26909.16
## LainnyaC                           3094.751    153.2449     21.58703   30304.58
## Perbatasan Laut                    4050.707   5734.6023   5847.71716   26413.20
## Perbatasan Darat                   6311.992   8371.1964   8479.12773   25939.25
##                        Sultan Badaruddin II  LainnyaA     Batam Tanjung Uban
## Ngurah Rai                        32300.034  28276.08 126006.50   30862.8481
## Soekarno Hatta                   619295.470 611708.98 468328.72  617794.9629
## Juanda                           115589.225 110057.42  60138.46  114315.0842
## Kualanamu                         95369.422  88366.46  73792.58   94417.5314
## Husein Sastranegara                2420.366  17415.82 158371.35    2275.6021
## Adi Sucipto/YIA                    3893.467  17071.57 155856.68    2733.6225
## Bandara Int'l Lombok               1922.232  15148.01 155975.02    2364.8759
## Sam Ratulangi                      2698.886  16499.16 156463.03     805.5861
## Minangkabau                        2870.415  17353.82 157600.38    2300.6434
## Sultan Syarif Kasim II             8654.231  18220.82 151930.32    7309.2005
## Sultan Iskandar Muda               3891.131  16016.42 155923.08    2208.0220
## Ahmad Yani                         2390.824  17355.44 158264.43    2147.1383
## Supadio                            2420.507  17414.53 158364.44    2271.8796
## Hasanuddin                        29648.774  28547.51 132538.86   28679.7904
## Sultan Badaruddin II                  0.000  15658.09 157613.67    2801.6236
## LainnyaA                          15658.089      0.00 148788.04   16100.1811
## Batam                            157613.669 148788.04      0.00  156277.8133
## Tanjung Uban                       2801.624  16100.18 156277.81       0.0000
## Tanjung Pinang                     9021.329  14599.23 148920.92    7550.3262
## Tanjung Balai Karimun             35490.096  30904.13 123892.06   34430.4570
## Tanjung Benoa                      2411.604  17380.44 158265.07    2178.4781
## LainnyaB                          36184.731  30773.64 122174.29   35023.9806
## Jayapura                           2423.036  17391.02 158256.23    2202.1319
## Atambua                            9318.793  14015.13 148521.74    8054.4928
## Entikong                          22592.174  25207.48 139809.39   20954.0461
## Aruk                              14544.987  14414.51 143189.74   13275.1340
## Nanga Badau                        3772.587  16516.76 155198.10    2726.8509
## LainnyaC                           2420.420  17416.08 158373.26    2278.0647
## Perbatasan Laut                    5963.849  16353.66 153424.00    4306.6199
## Perbatasan Darat                   8265.486  15618.78 151312.91    6860.2584
##                        Tanjung Pinang Tanjung Balai Karimun Tanjung Benoa
## Ngurah Rai                  23637.850              9852.783    32763.6675
## Soekarno Hatta             610570.586            586452.336   619811.7719
## Juanda                     107127.274             81170.083   116083.7564
## Kualanamu                   87334.145             61307.823    96107.2243
## Husein Sastranegara          9606.077             36245.153      116.3873
## Adi Sucipto/YIA              7514.929             33632.831     3136.7485
## Bandara Int'l Lombok         7370.295             33832.654     3142.8409
## Sam Ratulangi                7707.137             34449.398     1828.4589
## Minangkabau                  8985.097             35477.496     1479.2021
## Sultan Syarif Kasim II       6443.176             29379.607     8232.7269
## Sultan Iskandar Muda         7791.412             33985.201     3013.2541
## Ahmad Yani                   9493.882             36156.361       94.7312
## Supadio                      9600.435             36236.389      109.7816
## Hasanuddin                  22277.717             11927.142    30203.1800
## Sultan Badaruddin II         9021.329             35490.096     2411.6040
## LainnyaA                    14599.229             30904.131    17380.4381
## Batam                      148920.925            123892.064   158265.0653
## Tanjung Uban                 7550.326             34430.457     2178.4781
## Tanjung Pinang                  0.000             27382.006     9500.6327
## Tanjung Balai Karimun       27382.006                 0.000    36140.7141
## Tanjung Benoa                9500.633             36140.714        0.0000
## LainnyaB                    27758.221              4136.569    36867.4026
## Jayapura                     9499.364             36124.546      109.4989
## Atambua                      1723.672             26753.127     9971.6994
## Entikong                    15414.025             21234.797    22377.7509
## Aruk                         6145.531             21634.504    15180.2283
## Nanga Badau                  6742.545             32764.328     3536.4079
## LainnyaC                     9608.405             36246.096      118.1186
## Perbatasan Laut              5669.708             31590.791     5747.3100
## Perbatasan Darat             5470.232             30082.975     8383.4536
##                          LainnyaB    Jayapura    Atambua  Entikong       Aruk
## Ngurah Rai               8463.288  32746.2831  23240.211  16298.39  18265.509
## Soekarno Hatta         584737.255 619813.8389 610107.224 601351.01 605402.387
## Juanda                  80418.220 116077.3018 106519.573  98144.73 101765.331
## Kualanamu               61049.915  96081.7742  86745.357  76906.10  81708.616
## Husein Sastranegara     36973.366    165.9699  10076.000  22474.35  15283.086
## Adi Sucipto/YIA         34463.470   3074.9206   8008.234  19509.23  12986.087
## Bandara Int'l Lombok    34517.921   3155.0688   7601.893  21067.91  12893.554
## Sam Ratulangi           35122.066   1828.3709   8213.248  20807.92  13409.527
## Minangkabau             36240.003   1390.4312   9576.098  21398.41  14587.789
## Sultan Syarif Kasim II  30488.450   8180.1475   6742.937  15047.95  10254.769
## Sultan Iskandar Muda    34702.863   2969.1682   8292.704  20093.32  13034.877
## Ahmad Yani              36875.633    176.4653   9965.923  22391.57  15183.244
## Supadio                 36965.534    160.3870  10068.230  22466.86  15276.836
## Hasanuddin              13296.309  30206.6421  21408.801  20938.17  17952.672
## Sultan Badaruddin II    36184.731   2423.0361   9318.793  22592.17  14544.987
## LainnyaA                30773.639  17391.0158  14015.129  25207.48  14414.508
## Batam                  122174.294 158256.2316 148521.744 139809.39 143189.744
## Tanjung Uban            35023.981   2202.1319   8054.493  20954.05  13275.134
## Tanjung Pinang          27758.221   9499.3636   1723.672  15414.02   6145.531
## Tanjung Balai Karimun    4136.569  36124.5462  26753.127  21234.80  21634.504
## Tanjung Benoa           36867.403    109.4989   9971.699  22377.75  15180.228
## LainnyaB                    0.000  36857.7377  27179.598  22136.44  21929.478
## Jayapura                36857.738      0.0000   9976.108  22329.04  15171.273
## Atambua                 27179.598   9976.1081      0.000  15845.42   5803.272
## Entikong                22136.436  22329.0400  15845.423      0.00  12928.549
## Aruk                    21929.478  15171.2730   5803.272  12928.55      0.000
## Nanga Badau             33603.493   3505.2582   7090.795  19492.95  12176.554
## LainnyaC                36974.699    166.4151  10077.998  22476.14  15284.740
## Perbatasan Laut         32256.819   5715.6853   6276.016  17644.96  11003.057
## Perbatasan Darat        30614.124   8339.8757   6393.887  15946.39   9680.821
##                        Nanga Badau     LainnyaC Perbatasan Laut
## Ngurah Rai               29588.173  32874.34956       27776.309
## Soekarno Hatta          616781.427 619923.93939      614768.060
## Juanda                  112734.982 116192.95996      111431.159
## Kualanamu                92758.413  96208.50299       91343.824
## Husein Sastranegara       3638.554      5.09902        5855.228
## Adi Sucipto/YIA           1633.047   3231.63163        3499.492
## Bandara Int'l Lombok      2721.095   3206.08999        4978.217
## Sam Ratulangi             2263.430   1936.87325        4309.597
## Minangkabau               2978.500   1543.00000        4861.350
## Sultan Syarif Kasim II    5086.488   8329.60209        4707.065
## Sultan Iskandar Muda      2743.837   3094.75136        4050.707
## Ahmad Yani                3565.525    153.24490        5734.602
## Supadio                   3628.412     21.58703        5847.717
## Hasanuddin               26909.159  30304.58145       26413.205
## Sultan Badaruddin II      3772.587   2420.42021        5963.849
## LainnyaA                 16516.764  17416.08173       16353.658
## Batam                   155198.101 158373.26287      153424.002
## Tanjung Uban              2726.851   2278.06475        4306.620
## Tanjung Pinang            6742.545   9608.40486        5669.708
## Tanjung Balai Karimun    32764.328  36246.09624       31590.791
## Tanjung Benoa             3536.408    118.11858        5747.310
## LainnyaB                 33603.493  36974.69908       32256.819
## Jayapura                  3505.258    166.41514        5715.685
## Atambua                   7090.795  10077.99826        6276.016
## Entikong                 19492.952  22476.14426       17644.964
## Aruk                     12176.554  15284.74046       11003.057
## Nanga Badau                  0.000   3639.06293        3482.370
## LainnyaC                  3639.063      0.00000        5856.576
## Perbatasan Laut           3482.370   5856.57579           0.000
## Perbatasan Darat          6197.319   8483.98014        3340.733
##                        Perbatasan Darat
## Ngurah Rai                    25914.915
## Soekarno Hatta               612964.734
## Juanda                       110010.161
## Kualanamu                     89600.204
## Husein Sastranegara            8482.589
## Adi Sucipto/YIA                6159.235
## Bandara Int'l Lombok           7376.906
## Sam Ratulangi                  6959.673
## Minangkabau                    7278.665
## Sultan Syarif Kasim II         5881.513
## Sultan Iskandar Muda           6311.992
## Ahmad Yani                     8371.196
## Supadio                        8479.128
## Hasanuddin                    25939.252
## Sultan Badaruddin II           8265.486
## LainnyaA                      15618.776
## Batam                        151312.910
## Tanjung Uban                   6860.258
## Tanjung Pinang                 5470.232
## Tanjung Balai Karimun         30082.975
## Tanjung Benoa                  8383.454
## LainnyaB                      30614.124
## Jayapura                       8339.876
## Atambua                        6393.887
## Entikong                      15946.394
## Aruk                           9680.821
## Nanga Badau                    6197.319
## LainnyaC                       8483.980
## Perbatasan Laut                3340.733
## Perbatasan Darat                  0.000

Score MDS

d <- dist(dataMDS3)
fit <- cmdscale(d, eig=TRUE, k=2)
fit
## $points
##                               [,1]         [,2]
## Ngurah Rai                7796.233  -1054.48980
## Soekarno Hatta         -579878.898  14093.17202
## Juanda                  -71928.124 -18102.17465
## Kualanamu               -49235.764 -28026.59314
## Husein Sastranegara      39965.041   4492.56337
## Adi Sucipto/YIA          37496.604   3345.55862
## Bandara Int'l Lombok     37634.854   3570.27269
## Sam Ratulangi            38065.465   4330.33776
## Minangkabau              39271.087   4060.39634
## Sultan Syarif Kasim II   33410.413   1563.11401
## Sultan Iskandar Muda     37737.384   3576.05398
## Ahmad Yani               39844.965   4561.94525
## Supadio                  39957.538   4487.89474
## Hasanuddin               12856.647  -3123.35057
## Sultan Badaruddin II     39326.120   3846.05268
## LainnyaA                 31488.212     67.40947
## Batam                  -113850.547 -24808.25587
## Tanjung Uban             37841.258   4823.11811
## Tanjung Pinang           30589.444   3411.99069
## Tanjung Balai Karimun     6147.852  -7776.45136
## Tanjung Benoa            39855.076   4493.85153
## LainnyaB                  4515.930  -5338.70569
## Jayapura                 39856.336   4434.50430
## Atambua                  30123.039   3131.73464
## Entikong                 21187.740   -959.36803
## Aruk                     25361.706    653.32427
## Nanga Badau              36802.961   3146.10185
## LainnyaC                 39967.225   4490.51496
## Perbatasan Laut          34810.313   4593.30346
## Perbatasan Darat         32983.889   4016.17435
## 
## $eig
##  [1]  3.855727e+11  2.330639e+09  1.140556e+09  4.213695e+08  2.400745e+08
##  [6]  2.477316e+07  1.694645e+07  7.359355e+06  5.172673e+06  1.456834e+06
## [11]  4.533218e+05  1.913154e+04  4.843609e-06  1.389815e-06  1.221929e-06
## [16]  6.284558e-07  2.873081e-07  2.293425e-07  2.031804e-07  1.017458e-07
## [21]  9.384175e-08  1.894357e-08 -4.200348e-09 -5.135048e-09 -4.908882e-08
## [26] -1.962708e-07 -2.076993e-07 -2.406488e-07 -7.569048e-07 -3.045672e-06
## 
## $x
## NULL
## 
## $ac
## [1] 0
## 
## $GOF
## [1] 0.9952325 0.9952325

Penentuan Jumlah Cluster

a = fviz_nbclust(dataMDS3, kmeans, method = "gap_stat")
plot(a)

Analisis Clustering

# K-means clustering
clust <- kmeans(mds, 3)$cluster %>%
  as.factor()
mds <- mds %>%
  mutate(groups = clust)
# Plot and color by groups
ggscatter(mds, x = "Dim.1", y = "Dim.2", 
          label = rownames(dataMDS3),
          color = "groups",
          palette = "jco",
          size = 1, 
          ellipse = TRUE,
          ellipse.type = "convex",
          repel = TRUE)