This application is to cluster the rock dataset by k-means, with various algorithms. The user can set the varibles, number of cluster and algorithm
- The paired varibles of the dataset
- Number of cluster
- Algorithm
Terence Liu, Ph.D candidate
NJU
This application is to cluster the rock dataset by k-means, with various algorithms. The user can set the varibles, number of cluster and algorithm
shinyUI(pageWithSidebar(
headerPanel('Rock k-means clustering using different algorithms'),
sidebarPanel(
h5('This application is to cluster the rock dataset by k-means, using different
algorithms. The user can set the varibles, number of cluster and algorithm'),
selectInput('xcol', 'X Variable', names(rock)[-1]),
selectInput('ycol', 'Y Variable', names(rock)[-1],
selected=names(rock)[2]),
numericInput('clusters', 'Cluster count', 3,
min = 1, max = 6),
selectInput('algo', 'Algorithm', c("Hartigan-Wong", "Lloyd", "Forgy","MacQueen"))
),
mainPanel(
plotOutput('plot1')
)
))
## Error in eval(expr, envir, enclos): 没有"shinyUI"这个函数
palette(rainbow(6))
shinyServer(function(input, output, session) {
selectedData <- reactive({
rock[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters, algorithm=input$algo)
})
output$plot1 <- renderPlot({
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
})
## Error in eval(expr, envir, enclos): 没有"shinyServer"这个函数
To use the applicaiton, you can
Now, have fun and enjoy it!