Financial Inclusion of Micro, Small and Medium Enterprises (MSMEs)
in Kenya, Malawi and Zambia
In 2021, SIVIO Institute conducted a study of MSMEs in Zimbabwe and
developed the SIVIO Institute Financial Inclusion Index (SI-FIndex) to
compare the level of Financial Inclusion of enterprises in the 10
provinces of Zimbabwe.
In 2023, with support through the Mozilla IRL Fund we expanded the
study to Kenya, Malawi and Zambia focusing on the capital cities. The
goal is to expand the SI-FIndex to compare the level of Financial
Inclusion of MSMEs operating in the capital cities of the four countries
as listed below:
- Nairobi, Kenya
- Lilongwe, Malawi
- Lusaka, Zambia
- Harare, Zimbabwe
NB: To add Zimbabwe to the mix is a little bit more complicated than
the other 3 so will look into adding once completed with the index
methodology
Definitions
Financial Inclusion is qualified as the access to affordable
and useful formal financial products and services for MSMEs
within the capital cities of the surveyed countries
Methodology
The data for Zimbabwe is pulled from the 2021 study while the
expansion survey was conducted September - November 2023. The target was
to compare 100 enterprises with the distribution of 60 micro
enterprises, 30 small and 10 medium. In the end, we used a total of 80
enterprises broken down as 53 micro enterprises and 27 bigger
enterprises (21 small + 6 medium).
The SI-FIndex assesses the level of financial inclusion across
dimensions and assesses each variable on a 0-1 normalised scale. The 5
dimensions are assessed across several relevant variables (which is
explained in more depth below in each section), and the averaged across
to produce the final Financial Inclusion Score.
Financial Inclusion Dimensions
- Compliance
- Full Compliance
- Partial Compliance
- Not Compliant
- Access
- Formal Financial Inclusion
- Informal Financial Inclusion
- Financial Exclusion
- Barriers (of those who do not have access)
- Knowledge
- Affordability
- Documentation
- Trust
- Compatibility
- Bureaucracy
- Complicated System
- Usage (of those who do have access)
- bank account
- mobile money account
- business insurance products
- information/knowledge
- Digital
Data manipulation
The data is cleaned and sampled according to the breakdown below:
Note: [will add the code base for the final copy of the report]
Sampling
Level of sample: size of enterprise across the 3 countries. Taken the
minimum number from each of the countries
Micro: 53 (Kenya limit)
Small: 21 (Zambia limit)
Medium: 6 (Malawi limit)
Total: 80 enterprises
# write.csv(data_index, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex data.csv")
data_index = read.csv(file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex data.csv")
country
|
size_Business
|
n
|
Kenya
|
Micro Enterprise
|
53
|
Kenya
|
Small/Medium Enterprise
|
27
|
Malawi
|
Micro Enterprise
|
53
|
Malawi
|
Small/Medium Enterprise
|
27
|
Zambia
|
Micro Enterprise
|
53
|
Zambia
|
Small/Medium Enterprise
|
27
|
Equality Measures
Equality Measures under which the data is grouped for analysis
- Country of Operation
- Gender of Business Owner
- Age of Business Owner
- Size of Business
- Location of Business
Compliance
Compliance looks at how the enterprise is registered in the country
of operation.Is the enterprise registered as a business and secondarily,
is it registered to pay taxes.
Question 1: Is your business officially registered in the country you
operate? (Yes=1, No=0)
Question 2: Is your business registered for tax purposes? (Yes=1,
No=0)
The answers to the two questions above are the criteria . They are
explained below:
- The answers to the two questions above are the 2
criteria under which Compliance is assessed
- The criteria names in the data set are business_registration,
tax_registration
An enterprise is consider fully compliant (1) if it is both
registered as a business and registered for tax purposes. If it is
registered but not for tax purposes, then it is considered partially
compliant (0.5), and if it is not registered at all then it is not
compliant (0)
country
|
compliance_category
|
num_enterprises
|
percent_enterprises
|
Kenya
|
full compliance
|
51
|
64
|
Kenya
|
not compliant
|
21
|
26
|
Kenya
|
partial compliance
|
8
|
10
|
Malawi
|
full compliance
|
21
|
26
|
Malawi
|
not compliant
|
58
|
72
|
Malawi
|
partial compliance
|
1
|
1
|
Zambia
|
full compliance
|
47
|
59
|
Zambia
|
not compliant
|
32
|
40
|
Zambia
|
partial compliance
|
1
|
1
|

In Kenya, Kenya, 64% of enterprises are fully compliant, that is that
they are registered as a business and for tax purposes. An additional
Kenya, 10% are registered as a business, but not for tax. In Malawi and
Zambia most enterprises that are registered are also registered for tax
purposes (Malawi, 26% and Zambia, 59% respectively). Kenya does have the
highest levels of full compliance but this was also influenced by the
timing of the survey, which coincides with the local government
conducting an inspection of informal enterprises in an effort to
formalise and register them.
Access
Three levels of access:
Formal Inclusion (1)
Informal Inclusion (0.5)
Exclusion (0)
The distinction across the 3 levels is described in the table
below:
Variable
|
Formal Inclusion
|
Informal Inclusion
|
Exclusion
|
bank account
|
Yes
|
|
No
|
mobile money account
|
|
Yes
|
No
|
loan
|
Microfinance institution, Bank, Mobile Money provider, Order finance
companies, NGOs, Credit Unions, Government, Asset finance
|
Online platforms, Money Clubs, Loan Sharks, Family & Friends
|
Never applied
|
business insurance products
|
Yes
|
|
No
|
pension policy
|
Yes
|
|
No
|
savings account
|
Savings Account (bank or mobile), Stock Market Shares
|
ROSCA or ISAL, Other businesses, FOREX, Cryptocurrency
|
Personal Space or No Plan
|
investments
|
Yes
|
|
No
|
information source
|
Formal Sources
|
Informal, Online and Social Media Sources
|
Nowhere
|
The means of the categories above are calculated to provide the final
two scores for access:
- Formal Inclusion
- Informal Inclusion
The final inclusion score is then calculated as the average of the
two because true inclusion is only as real as the level of access to
formal financial products and services.
Barriers
There are 7 reasons for not having or using financial
products/services
Formal Barriers: those that are client side * Lack
of Knowledge on product or service * Missing
Documentation to use product or service *
Affordability of product or service * Lack of
Trust in product or service
Informal Barriers: those that the service provider
controls * Bureaucracy involved with product or service
* Complicated System * Compatibility
product or service
NOTE: If the respondent acknowledged that the limit to their
access/usage was not due to one of the above reasons but rather a choice
to not use the product/service, then “No Barrier” was recorded.
The financial products/services for which the barriers were assessed
are
- Registration as a business
- Registration for tax purposes
- Access to a bank account
- Access to a mobile money account
- Digital Product Use
- Access to loans
- Offer of Business Insurance Products
- Offer of Pension Policy
- Access to investments
country
|
affordability
|
bureaucracy
|
complicatedSystem
|
knowledge
|
documentation
|
compatibility
|
trust
|
formalBarriers
|
informalBarriers
|
Kenya
|
0.2442417
|
0.0411255
|
0.0700534
|
0.0742971
|
0.0428211
|
0.1523615
|
0.0677804
|
0.1072850
|
0.0878468
|
Malawi
|
0.2803377
|
0.0166667
|
0.0150535
|
0.2432903
|
0.0414349
|
0.3283893
|
0.0158654
|
0.1452321
|
0.1200365
|
Zambia
|
0.1445668
|
0.0222222
|
0.0559028
|
0.0654818
|
0.0913194
|
0.2103812
|
0.0484375
|
0.0874514
|
0.0961687
|

Usage
- Bank Account
- Time to open account
- Same day (1)
- At least one week (0.5)
- Longer than a week (0)
- Frequency of use
- At least once a week (1)
- At least once per month (0.5)
- Longer period (Once per 6 months, never use it)
- Hold more than 1 type of account
- More than 1 type of service
- Do not experience challenges using
country
|
n
|
bank_openTime
|
bank_frequency
|
bank_MoreThan1Account
|
bank_MoreThan1Service
|
bank_Norestrictions
|
Kenya
|
47
|
0.8191489
|
0.9148936
|
0.0851064
|
0.5319149
|
0.7659574
|
Malawi
|
20
|
0.7000000
|
0.9500000
|
0.0000000
|
0.4500000
|
0.9000000
|
Zambia
|
35
|
0.7857143
|
0.9714286
|
0.0571429
|
0.8857143
|
0.9142857
|
- Mobile Money Account
- Time to open account
- Same day (1)
- At least one week (0.5)
- Longer than a week (0)
- Frequency of use
- Everyday (1)
- A few times a week (0.5)
- At least once a month (0)
- Do not experience challenges when using
country
|
n
|
mm_openTime
|
mm_frequency
|
mm_Norestrictions
|
Kenya
|
58
|
0.8706897
|
0.8620690
|
0.7068966
|
Malawi
|
22
|
0.8636364
|
0.7045455
|
1.0000000
|
Zambia
|
66
|
0.8939394
|
0.9848485
|
0.9848485
|
- Loans
- Successful applications
- Perceptions of Interest Rates
- High (0)
- Fair (1)
- Low (1)
- Ability to Pay Back
- Already paid back (1)
- Will be able to pay back (1)
- Not able (0)
country
|
n
|
loan_success
|
loan_interestRatePerceptions
|
loan_payBack
|
Kenya
|
24
|
0.8750000
|
0.5416667
|
0.8750000
|
Malawi
|
18
|
0.7777778
|
0.3888889
|
0.7777778
|
Zambia
|
23
|
0.9565217
|
0.8695652
|
0.9565217
|
- Business Insurance Products
- Offer Comprehensive business insurance i.e., all risk in last 12
months
- Offer Non-comprehensive business insurance in last 12 months
- Offer staff insurance in last 12 months
- Offer product insurance in last 12 months
country
|
n
|
insurance_comprehensive
|
insurance_noncomprehensive
|
insurance_staff
|
insurance_product
|
Kenya
|
26
|
0.4615385
|
0.0769231
|
0.1538462
|
0.1923077
|
Malawi
|
6
|
0.1666667
|
0.0000000
|
0.1666667
|
0.5000000
|
Zambia
|
16
|
0.8125000
|
0.0000000
|
0.1875000
|
0.1875000
|
country
|
knowledge_mmServices
|
knowledge_investmentsCapitalMarkets
|
knowledge_businessInsuranceProducts
|
knowledge_pensionProducts
|
knowledge_loansCreditCommercialBanks
|
knowledge_loansCreditMicrofinance
|
knowledge_loansCreditROSCAsISALs
|
knowledge_bankingServices
|
knowledge_taxationRegulatoryCompliance
|
knowledge_digitalProductsServices
|
knowledge_internetDigitalLandscape
|
knowledge_onlinePromotion
|
Kenya
|
0.8750
|
0.4750
|
0.5025
|
0.3700
|
0.6725
|
0.6075
|
0.4700
|
0.7875
|
0.775
|
0.8025
|
0.6800
|
0.6000
|
Malawi
|
0.7275
|
0.4575
|
0.2700
|
0.2250
|
0.4925
|
0.4825
|
0.3850
|
0.6625
|
0.550
|
0.5300
|
0.4425
|
0.4550
|
Zambia
|
0.9600
|
0.6200
|
0.6400
|
0.6175
|
0.7500
|
0.7575
|
0.8275
|
0.7275
|
0.640
|
0.7950
|
0.7575
|
0.7225
|
Usage is then quantified:
- Formal Inclusion is the use of formal financial products (bank,
mobile money, investments, loans, insurance)
- Informal Inclusion represents the knowledge of financial products
and services
## Joining, by = "country"
## Joining, by = "country"
## Joining, by = "country"
## Joining, by = "country"
country
|
usage_banking
|
usage_MM
|
usage_loan
|
usage_insur
|
knowledgeAssessment
|
formal_usage
|
informal_usage
|
Kenya
|
0.6234043
|
0.8132184
|
0.7638889
|
0.2211538
|
0.8750
|
0.6054163
|
0.2695837
|
Malawi
|
0.6000000
|
0.8560606
|
0.6481481
|
0.2083333
|
0.7275
|
0.5781355
|
0.1493645
|
Zambia
|
0.7228571
|
0.9545455
|
0.9275362
|
0.2968750
|
0.9600
|
0.7254535
|
0.2345465
|
Digital
- Access
- Landline
- Mobile phone
- Smart phone
- Computer
- Internet
- Usage
- WhatsApp Number
- Phone Number
- Website
- Social media accounts
- Email
- Mobile banking
- Credit/debit card
- Cryptocurrency
- Digital Payment systems
- Money transfer system (includes remittances)
- E-commerce
- Bill payment applications
- Online payment solutions
- Accounting services
Digital Access
country
|
landline
|
mobilePhone
|
smartPhone
|
computer
|
internet
|
access
|
percent_access
|
Kenya
|
0.0625
|
0.6625
|
0.7625
|
0.5375
|
0.6000
|
0.5250
|
52
|
Malawi
|
0.0000
|
0.9500
|
0.4625
|
0.1375
|
0.3125
|
0.3725
|
37
|
Zambia
|
0.0000
|
0.9875
|
0.8625
|
0.2250
|
0.6250
|
0.5400
|
54
|

Digital Usage
country
|
mobileBanking
|
creditCard
|
cryptocurrency
|
digitalPayments
|
moneyTransfer
|
socialMedia
|
email
|
whatsapp
|
phoneNumber
|
website
|
ecommerce
|
billPaymentSystem
|
onlinePaymentSystem
|
accountingSystem
|
usage
|
percent_usage
|
Kenya
|
0.5750
|
0.2125
|
0.05
|
0.075
|
0.0375
|
0.2875
|
0.2500
|
0.5125
|
0.525
|
0.2125
|
0.0875
|
0.0625
|
0.1500
|
0.0750
|
0.2223214
|
22
|
Malawi
|
0.2500
|
0.0250
|
0.00
|
0.000
|
0.0000
|
0.3375
|
0.0125
|
0.4875
|
0.775
|
0.0000
|
0.0000
|
0.0000
|
0.0000
|
0.0125
|
0.1357143
|
14
|
Zambia
|
0.3125
|
0.3000
|
0.00
|
0.100
|
0.0125
|
0.3500
|
0.3125
|
0.8125
|
0.975
|
0.1500
|
0.0000
|
0.0000
|
0.0625
|
0.0000
|
0.2419643
|
24
|

Financial Inclusion
Compliance + Barriers + Access + Usage + Digital
tibble(
"Dimension" = c("Compliance",
"Barriers",
"Access",
"Usage",
"Digital"),
"Formal Inclusion" = c("Registered as a business & for tax reasons (full compliance)",
"Affordability, Documention, Knowledge, Trust",
"Formal Services & Products",
"Use of services & products (banks, mobile money, loans, insurance",
"Use of digital products"),
"Informal Inclusion" = c("Registered but not for tax (partial compliance)",
"Compatability, Bureaucracy, Complicated Syste,",
"Informal Services & Products",
"Self assessment of knowledge",
"Access but not use of digital products"),
"Exclusion" = c("",
"",
"",
"",
"")
)%>%
kable() %>%
kable_styling()
Dimension
|
Formal Inclusion
|
Informal Inclusion
|
Exclusion
|
Compliance
|
Registered as a business & for tax reasons (full compliance)
|
Registered but not for tax (partial compliance)
|
|
Barriers
|
Affordability, Documention, Knowledge, Trust
|
Compatability, Bureaucracy, Complicated Syste,
|
|
Access
|
Formal Services & Products
|
Informal Services & Products
|
|
Usage
|
Use of services & products (banks, mobile money, loans, insurance
|
Self assessment of knowledge
|
|
Digital
|
Use of digital products
|
Access but not use of digital products
|
|
## Joining, by = c("country", "FI")
## Joining, by = c("country", "FI")
## Joining, by = c("country", "FI")
## Joining, by = c("country", "FI")
## `summarise()` has grouped output by 'country'. You can override using the
## `.groups` argument.
country
|
FI
|
Compliance
|
Access
|
Barriers
|
Usage
|
Digital
|
FIscore
|
0
|
Kenya
|
Exclusion
|
26
|
32
|
80
|
12
|
48
|
23
|
0
|
Kenya
|
Formal Inclusion
|
64
|
42
|
11
|
61
|
22
|
46
|
0
|
Kenya
|
Informal Inclusion
|
10
|
26
|
9
|
27
|
30
|
31
|
0
|
Malawi
|
Exclusion
|
72
|
53
|
73
|
27
|
63
|
40
|
0
|
Malawi
|
Formal Inclusion
|
26
|
25
|
15
|
58
|
14
|
35
|
0
|
Malawi
|
Informal Inclusion
|
1
|
22
|
12
|
15
|
23
|
25
|
0
|
Zambia
|
Exclusion
|
40
|
39
|
82
|
4
|
46
|
25
|
0
|
Zambia
|
Formal Inclusion
|
59
|
32
|
9
|
73
|
24
|
47
|
0
|
Zambia
|
Informal Inclusion
|
1
|
28
|
10
|
23
|
30
|
29
|
0
|
Export Data
write.csv(compliance_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex compliance data.csv")
write.csv(access_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex access data.csv")
write.csv(barrier_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex barriers data.csv")
write.csv(usage_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex usage data.csv")
write.csv(digital_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex digital data.csv")
write.csv(financialInclusion_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/FIndex inclusion data.csv")
Gender of Business Owner
# NB: the levels that have # before are not considered in the run analysis. This allows one to change the level at which the analysis is performed.
level = c("country",
"gender_Owner"
# "age_Owner",
# "size_Business",
# "location_Business",
# "sector_Business",
)
Compliance
country
|
gender_Owner
|
compliance_category
|
num_enterprises
|
percent_enterprises
|
Kenya
|
Men Led
|
full compliance
|
31
|
39
|
Kenya
|
Men Led
|
not compliant
|
15
|
19
|
Kenya
|
Men Led
|
partial compliance
|
7
|
9
|
Kenya
|
Women Led
|
full compliance
|
20
|
25
|
Kenya
|
Women Led
|
not compliant
|
6
|
8
|
Kenya
|
Women Led
|
partial compliance
|
1
|
1
|
Malawi
|
Men Led
|
full compliance
|
13
|
16
|
Malawi
|
Men Led
|
not compliant
|
41
|
51
|
Malawi
|
Men Led
|
partial compliance
|
1
|
1
|
Malawi
|
Women Led
|
full compliance
|
8
|
10
|
Malawi
|
Women Led
|
not compliant
|
17
|
21
|
Zambia
|
Men Led
|
full compliance
|
27
|
34
|
Zambia
|
Men Led
|
not compliant
|
14
|
18
|
Zambia
|
Men Led
|
partial compliance
|
1
|
1
|
Zambia
|
Women Led
|
full compliance
|
20
|
25
|
Zambia
|
Women Led
|
not compliant
|
18
|
22
|

Barriers
country
|
gender_Owner
|
affordability
|
bureaucracy
|
complicatedSystem
|
knowledge
|
documentation
|
compatibility
|
trust
|
formalBarriers
|
informalBarriers
|
Kenya
|
Men Led
|
0.2819756
|
0.0644928
|
0.0652983
|
0.0875961
|
0.0573772
|
0.2150943
|
0.0751142
|
0.1255158
|
0.1149618
|
Kenya
|
Women Led
|
0.2555556
|
NaN
|
0.1069136
|
0.0727513
|
0.0370370
|
0.1283386
|
0.2222222
|
0.1468915
|
0.1176261
|
Malawi
|
Men Led
|
0.2745942
|
0.0250000
|
0.0215201
|
0.2671999
|
0.0577236
|
0.3200246
|
0.0229798
|
0.1556244
|
0.1221816
|
Malawi
|
Women Led
|
0.3344494
|
NaN
|
NaN
|
0.3112745
|
NaN
|
0.3466606
|
NaN
|
0.3228619
|
0.3466606
|
Zambia
|
Men Led
|
0.1290233
|
NaN
|
0.0480392
|
0.0482633
|
0.1107143
|
0.3319444
|
0.0404762
|
0.0821193
|
0.1899918
|
Zambia
|
Women Led
|
0.1711423
|
0.0400000
|
0.0799794
|
0.1078452
|
0.0755556
|
0.2230279
|
0.0557276
|
0.1025676
|
0.1143357
|
## Warning: Removed 6 rows containing missing values (geom_col).
## Warning: Removed 6 rows containing missing values (geom_label).

Usage
country
|
gender_Owner
|
n
|
bank_openTime
|
bank_frequency
|
bank_MoreThan1Account
|
bank_MoreThan1Service
|
bank_Norestrictions
|
Kenya
|
Men Led
|
30
|
0.8166667
|
0.9000000
|
0.1333333
|
0.5333333
|
0.7000000
|
Kenya
|
Women Led
|
17
|
0.8235294
|
0.9411765
|
0.0000000
|
0.5294118
|
0.8823529
|
Malawi
|
Men Led
|
15
|
0.6666667
|
0.9333333
|
0.0000000
|
0.5333333
|
0.9333333
|
Malawi
|
Women Led
|
5
|
0.8000000
|
1.0000000
|
0.0000000
|
0.2000000
|
0.8000000
|
Zambia
|
Men Led
|
22
|
0.8181818
|
1.0000000
|
0.0909091
|
0.9090909
|
0.8636364
|
Zambia
|
Women Led
|
13
|
0.7307692
|
0.9230769
|
0.0000000
|
0.8461538
|
1.0000000
|
country
|
gender_Owner
|
n
|
mm_openTime
|
mm_frequency
|
mm_Norestrictions
|
Kenya
|
Men Led
|
41
|
0.8780488
|
0.8292683
|
0.7560976
|
Kenya
|
Women Led
|
17
|
0.8529412
|
0.9411765
|
0.5882353
|
Malawi
|
Men Led
|
16
|
0.9375000
|
0.7187500
|
1.0000000
|
Malawi
|
Women Led
|
6
|
0.6666667
|
0.6666667
|
1.0000000
|
Zambia
|
Men Led
|
36
|
0.9027778
|
0.9861111
|
0.9722222
|
Zambia
|
Women Led
|
30
|
0.8833333
|
0.9833333
|
1.0000000
|
country
|
gender_Owner
|
n
|
loan_success
|
loan_interestRatePerceptions
|
loan_payBack
|
Kenya
|
Men Led
|
18
|
0.8333333
|
0.4444444
|
0.8333333
|
Kenya
|
Women Led
|
6
|
1.0000000
|
0.8333333
|
1.0000000
|
Malawi
|
Men Led
|
10
|
0.8000000
|
0.1000000
|
0.8000000
|
Malawi
|
Women Led
|
8
|
0.7500000
|
0.7500000
|
0.7500000
|
Zambia
|
Men Led
|
10
|
1.0000000
|
0.8000000
|
1.0000000
|
Zambia
|
Women Led
|
13
|
0.9230769
|
0.9230769
|
0.9230769
|
country
|
gender_Owner
|
n
|
insurance_comprehensive
|
insurance_noncomprehensive
|
insurance_staff
|
insurance_product
|
Kenya
|
Men Led
|
17
|
0.5294118
|
0.0588235
|
0.1176471
|
0.1176471
|
Kenya
|
Women Led
|
9
|
0.3333333
|
0.1111111
|
0.2222222
|
0.3333333
|
Malawi
|
Men Led
|
5
|
0.2000000
|
0.0000000
|
0.2000000
|
0.6000000
|
Malawi
|
Women Led
|
1
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
Zambia
|
Men Led
|
12
|
0.8333333
|
0.0000000
|
0.2500000
|
0.2500000
|
Zambia
|
Women Led
|
4
|
0.7500000
|
0.0000000
|
0.0000000
|
0.0000000
|
country
|
gender_Owner
|
knowledge_mmServices
|
knowledge_investmentsCapitalMarkets
|
knowledge_businessInsuranceProducts
|
knowledge_pensionProducts
|
knowledge_loansCreditCommercialBanks
|
knowledge_loansCreditMicrofinance
|
knowledge_loansCreditROSCAsISALs
|
knowledge_bankingServices
|
knowledge_taxationRegulatoryCompliance
|
knowledge_digitalProductsServices
|
knowledge_internetDigitalLandscape
|
knowledge_onlinePromotion
|
Kenya
|
Men Led
|
0.8830189
|
0.5056604
|
0.5396226
|
0.3849057
|
0.6679245
|
0.5962264
|
0.4943396
|
0.7773585
|
0.7584906
|
0.8150943
|
0.6641509
|
0.5622642
|
Kenya
|
Women Led
|
0.8592593
|
0.4148148
|
0.4296296
|
0.3407407
|
0.6814815
|
0.6296296
|
0.4222222
|
0.8074074
|
0.8074074
|
0.7777778
|
0.7111111
|
0.6740741
|
Malawi
|
Men Led
|
0.7272727
|
0.4509091
|
0.2836364
|
0.2254545
|
0.4872727
|
0.4836364
|
0.3309091
|
0.6400000
|
0.5527273
|
0.5454545
|
0.4036364
|
0.4072727
|
Malawi
|
Women Led
|
0.7280000
|
0.4720000
|
0.2400000
|
0.2240000
|
0.5040000
|
0.4800000
|
0.5040000
|
0.7120000
|
0.5440000
|
0.4960000
|
0.5280000
|
0.5600000
|
Zambia
|
Men Led
|
0.9714286
|
0.7190476
|
0.7523810
|
0.7047619
|
0.8000000
|
0.7857143
|
0.8238095
|
0.7714286
|
0.7142857
|
0.8190476
|
0.7809524
|
0.7666667
|
Zambia
|
Women Led
|
0.9473684
|
0.5105263
|
0.5157895
|
0.5210526
|
0.6947368
|
0.7263158
|
0.8315789
|
0.6789474
|
0.5578947
|
0.7684211
|
0.7315789
|
0.6736842
|
## Joining, by = c("country", "gender_Owner")
## Joining, by = c("country", "gender_Owner")
## Joining, by = c("country", "gender_Owner")
## Joining, by = c("country", "gender_Owner")
## `summarise()` has grouped output by 'country'. You can override using the
## `.groups` argument.
country
|
gender_Owner
|
usage_banking
|
usage_MM
|
usage_loan
|
usage_insur
|
knowledgeAssessment
|
formal_usage
|
informal_usage
|
Kenya
|
Men Led
|
0.6166667
|
0.8211382
|
0.7037037
|
0.2058824
|
0.8830189
|
0.5868477
|
0.2961711
|
Kenya
|
Women Led
|
0.6352941
|
0.7941176
|
0.9444444
|
0.2500000
|
0.8592593
|
0.6559641
|
0.2032952
|
Malawi
|
Men Led
|
0.6133333
|
0.8854167
|
0.5666667
|
0.2500000
|
0.7272727
|
0.5788542
|
0.1484186
|
Malawi
|
Women Led
|
0.5600000
|
0.7777778
|
0.7500000
|
0.0000000
|
0.7280000
|
0.5219444
|
0.2060556
|
Zambia
|
Men Led
|
0.7363636
|
0.9537037
|
0.9333333
|
0.3333333
|
0.9714286
|
0.7391835
|
0.2322451
|
Zambia
|
Women Led
|
0.7000000
|
0.9555556
|
0.9230769
|
0.1875000
|
0.9473684
|
0.6915331
|
0.2558353
|
Digital
Digital Access
country
|
gender_Owner
|
landline
|
mobilePhone
|
smartPhone
|
computer
|
internet
|
access
|
percent_access
|
Kenya
|
Men Led
|
0.0754717
|
0.6603774
|
0.7924528
|
0.5660377
|
0.6037736
|
0.5396226
|
54
|
Kenya
|
Women Led
|
0.0370370
|
0.6666667
|
0.7037037
|
0.4814815
|
0.5925926
|
0.4962963
|
50
|
Malawi
|
Men Led
|
0.0000000
|
0.9636364
|
0.3636364
|
0.1818182
|
0.3090909
|
0.3636364
|
36
|
Malawi
|
Women Led
|
0.0000000
|
0.9200000
|
0.6800000
|
0.0400000
|
0.3200000
|
0.3920000
|
39
|
Zambia
|
Men Led
|
0.0000000
|
1.0000000
|
0.9523810
|
0.2857143
|
0.7380952
|
0.5952381
|
60
|
Zambia
|
Women Led
|
0.0000000
|
0.9736842
|
0.7631579
|
0.1578947
|
0.5000000
|
0.4789474
|
48
|

Digital Usage
country
|
gender_Owner
|
mobileBanking
|
creditCard
|
cryptocurrency
|
digitalPayments
|
moneyTransfer
|
socialMedia
|
email
|
whatsapp
|
phoneNumber
|
website
|
ecommerce
|
billPaymentSystem
|
onlinePaymentSystem
|
accountingSystem
|
usage
|
percent_usage
|
Kenya
|
Men Led
|
0.5471698
|
0.2264151
|
0.0377358
|
0.0943396
|
0.0377358
|
0.2641509
|
0.2830189
|
0.5283019
|
0.5283019
|
0.2452830
|
0.1132075
|
0.0943396
|
0.1509434
|
0.0754717
|
0.2304582
|
23
|
Kenya
|
Women Led
|
0.6296296
|
0.1851852
|
0.0740741
|
0.0370370
|
0.0370370
|
0.3333333
|
0.1851852
|
0.4814815
|
0.5185185
|
0.1481481
|
0.0370370
|
0.0000000
|
0.1481481
|
0.0740741
|
0.2063492
|
21
|
Malawi
|
Men Led
|
0.2181818
|
0.0181818
|
0.0000000
|
0.0000000
|
0.0000000
|
0.2909091
|
0.0181818
|
0.4000000
|
0.8545455
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0181818
|
0.1298701
|
13
|
Malawi
|
Women Led
|
0.3200000
|
0.0400000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.4400000
|
0.0000000
|
0.6800000
|
0.6000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.1485714
|
15
|
Zambia
|
Men Led
|
0.3571429
|
0.4047619
|
0.0000000
|
0.1428571
|
0.0000000
|
0.4047619
|
0.4285714
|
0.9047619
|
0.9761905
|
0.1904762
|
0.0000000
|
0.0000000
|
0.0952381
|
0.0000000
|
0.2789116
|
28
|
Zambia
|
Women Led
|
0.2631579
|
0.1842105
|
0.0000000
|
0.0526316
|
0.0263158
|
0.2894737
|
0.1842105
|
0.7105263
|
0.9736842
|
0.1052632
|
0.0000000
|
0.0000000
|
0.0263158
|
0.0000000
|
0.2011278
|
20
|

Financial Inclusion
## Joining, by = c("country", "gender_Owner", "FI")
## Joining, by = c("country", "gender_Owner", "FI")
## Joining, by = c("country", "gender_Owner", "FI")
## Joining, by = c("country", "gender_Owner", "FI")
## `summarise()` has grouped output by 'country', 'gender_Owner'. You can override
## using the `.groups` argument.
country
|
gender_Owner
|
FI
|
Compliance
|
Access
|
Barriers
|
Usage
|
Digital
|
FIscore
|
0
|
Kenya
|
Men Led
|
Exclusion
|
19
|
29
|
76
|
12
|
46
|
23
|
0
|
Kenya
|
Men Led
|
Formal Inclusion
|
39
|
44
|
13
|
59
|
23
|
44
|
0
|
Kenya
|
Men Led
|
Informal Inclusion
|
9
|
26
|
11
|
30
|
31
|
33
|
0
|
Kenya
|
Women Led
|
Exclusion
|
8
|
37
|
74
|
14
|
50
|
25
|
0
|
Kenya
|
Women Led
|
Formal Inclusion
|
25
|
38
|
15
|
66
|
21
|
44
|
0
|
Kenya
|
Women Led
|
Informal Inclusion
|
1
|
25
|
12
|
20
|
29
|
31
|
0
|
Malawi
|
Men Led
|
Exclusion
|
51
|
56
|
72
|
27
|
64
|
40
|
0
|
Malawi
|
Men Led
|
Formal Inclusion
|
16
|
25
|
16
|
58
|
13
|
35
|
0
|
Malawi
|
Men Led
|
Informal Inclusion
|
1
|
19
|
12
|
15
|
23
|
26
|
0
|
Malawi
|
Women Led
|
Exclusion
|
21
|
46
|
33
|
27
|
61
|
NA
|
0
|
Malawi
|
Women Led
|
Formal Inclusion
|
10
|
25
|
32
|
52
|
15
|
NA
|
0
|
Malawi
|
Women Led
|
Informal Inclusion
|
NA
|
29
|
35
|
21
|
24
|
NA
|
0
|
Zambia
|
Men Led
|
Exclusion
|
18
|
38
|
73
|
3
|
40
|
23
|
0
|
Zambia
|
Men Led
|
Formal Inclusion
|
34
|
38
|
8
|
74
|
28
|
48
|
0
|
Zambia
|
Men Led
|
Informal Inclusion
|
1
|
24
|
19
|
23
|
32
|
29
|
0
|
Zambia
|
Women Led
|
Exclusion
|
22
|
41
|
78
|
5
|
52
|
NA
|
0
|
Zambia
|
Women Led
|
Formal Inclusion
|
25
|
25
|
10
|
69
|
20
|
NA
|
0
|
Zambia
|
Women Led
|
Informal Inclusion
|
NA
|
33
|
11
|
26
|
28
|
NA
|
0
|
Export Data
write.csv(compliance_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Gender FIndex compliance data.csv")
write.csv(access_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Gender FIndex access data.csv")
write.csv(barrier_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Gender FIndex barriers data.csv")
write.csv(usage_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Gender FIndex usage data.csv")
write.csv(digital_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Gender FIndex digital data.csv")
write.csv(financialInclusion_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Gender FIndex inclusion data.csv")
Age of Business Owner
# NB: the levels that have # before are not considered in the run analysis. This allows one to change the level at which the analysis is performed.
level = c("country",
# "gender_Owner",
"age_Owner"
# "size_Business",
# "location_Business",
# "sector_Business",
)
Compliance
country
|
age_Owner
|
compliance_category
|
num_enterprises
|
percent_enterprises
|
Kenya
|
Owner is older than 35
|
full compliance
|
29
|
36
|
Kenya
|
Owner is older than 35
|
not compliant
|
9
|
11
|
Kenya
|
Owner is older than 35
|
partial compliance
|
4
|
5
|
Kenya
|
Youth Led
|
full compliance
|
22
|
28
|
Kenya
|
Youth Led
|
not compliant
|
12
|
15
|
Kenya
|
Youth Led
|
partial compliance
|
4
|
5
|
Malawi
|
Owner is older than 35
|
full compliance
|
17
|
21
|
Malawi
|
Owner is older than 35
|
not compliant
|
22
|
28
|
Malawi
|
Owner is older than 35
|
partial compliance
|
1
|
1
|
Malawi
|
Youth Led
|
full compliance
|
4
|
5
|
Malawi
|
Youth Led
|
not compliant
|
36
|
45
|
Zambia
|
Owner is older than 35
|
full compliance
|
15
|
19
|
Zambia
|
Owner is older than 35
|
not compliant
|
7
|
9
|
Zambia
|
Owner is older than 35
|
partial compliance
|
1
|
1
|
Zambia
|
Youth Led
|
full compliance
|
32
|
40
|
Zambia
|
Youth Led
|
not compliant
|
25
|
31
|

Barriers
country
|
age_Owner
|
affordability
|
bureaucracy
|
complicatedSystem
|
knowledge
|
documentation
|
compatibility
|
trust
|
formalBarriers
|
informalBarriers
|
Kenya
|
Owner is older than 35
|
0.2545953
|
0.0912698
|
0.1079651
|
0.0774360
|
0.0674603
|
0.1627463
|
0.1011946
|
0.1251715
|
0.1206604
|
Kenya
|
Youth Led
|
0.2647715
|
0.1000000
|
0.0642046
|
0.0882685
|
0.0526316
|
0.1756339
|
0.0784252
|
0.1210242
|
0.1132795
|
Malawi
|
Owner is older than 35
|
0.3802369
|
0.0400000
|
0.0356280
|
0.2258765
|
0.0597643
|
0.3518026
|
0.0250000
|
0.1727194
|
0.1424769
|
Malawi
|
Youth Led
|
0.2814065
|
NaN
|
NaN
|
0.2555431
|
0.0281746
|
0.3657230
|
0.0344828
|
0.1499017
|
0.3657230
|
Zambia
|
Owner is older than 35
|
0.3293492
|
NaN
|
0.1176795
|
0.1700919
|
0.0833333
|
0.2867586
|
0.0772947
|
0.1650173
|
0.2022190
|
Zambia
|
Youth Led
|
0.0860984
|
0.0303030
|
0.0329193
|
0.0469142
|
0.1054545
|
0.2090556
|
0.0371854
|
0.0689131
|
0.0907593
|
## Warning: Removed 3 rows containing missing values (geom_col).
## Warning: Removed 3 rows containing missing values (geom_label).

Usage
country
|
age_Owner
|
n
|
bank_openTime
|
bank_frequency
|
bank_MoreThan1Account
|
bank_MoreThan1Service
|
bank_Norestrictions
|
Kenya
|
Owner is older than 35
|
28
|
0.8035714
|
0.9107143
|
0.1428571
|
0.5000000
|
0.7500000
|
Kenya
|
Youth Led
|
19
|
0.8421053
|
0.9210526
|
0.0000000
|
0.5789474
|
0.7894737
|
Malawi
|
Owner is older than 35
|
15
|
0.7666667
|
0.9333333
|
0.0000000
|
0.4000000
|
0.8666667
|
Malawi
|
Youth Led
|
5
|
0.5000000
|
1.0000000
|
0.0000000
|
0.6000000
|
1.0000000
|
Zambia
|
Owner is older than 35
|
11
|
0.6363636
|
0.9545455
|
0.0909091
|
0.8181818
|
0.9090909
|
Zambia
|
Youth Led
|
24
|
0.8541667
|
0.9791667
|
0.0416667
|
0.9166667
|
0.9166667
|
country
|
age_Owner
|
n
|
mm_openTime
|
mm_frequency
|
mm_Norestrictions
|
Kenya
|
Owner is older than 35
|
30
|
0.8500000
|
0.8500000
|
0.6666667
|
Kenya
|
Youth Led
|
28
|
0.8928571
|
0.8750000
|
0.7500000
|
Malawi
|
Owner is older than 35
|
13
|
0.8846154
|
0.6923077
|
1.0000000
|
Malawi
|
Youth Led
|
9
|
0.8333333
|
0.7222222
|
1.0000000
|
Zambia
|
Owner is older than 35
|
16
|
0.8125000
|
1.0000000
|
1.0000000
|
Zambia
|
Youth Led
|
50
|
0.9200000
|
0.9800000
|
0.9800000
|
country
|
age_Owner
|
n
|
loan_success
|
loan_interestRatePerceptions
|
loan_payBack
|
Kenya
|
Owner is older than 35
|
14
|
0.9285714
|
0.6428571
|
0.9285714
|
Kenya
|
Youth Led
|
10
|
0.8000000
|
0.4000000
|
0.8000000
|
Malawi
|
Owner is older than 35
|
13
|
0.7692308
|
0.3846154
|
0.7692308
|
Malawi
|
Youth Led
|
5
|
0.8000000
|
0.4000000
|
0.8000000
|
Zambia
|
Owner is older than 35
|
4
|
1.0000000
|
0.7500000
|
1.0000000
|
Zambia
|
Youth Led
|
19
|
0.9473684
|
0.8947368
|
0.9473684
|
country
|
age_Owner
|
n
|
insurance_comprehensive
|
insurance_noncomprehensive
|
insurance_staff
|
insurance_product
|
Kenya
|
Owner is older than 35
|
16
|
0.3750000
|
0.125
|
0.1875000
|
0.1250000
|
Kenya
|
Youth Led
|
10
|
0.6000000
|
0.000
|
0.1000000
|
0.3000000
|
Malawi
|
Owner is older than 35
|
3
|
0.3333333
|
0.000
|
0.0000000
|
0.6666667
|
Malawi
|
Youth Led
|
3
|
0.0000000
|
0.000
|
0.3333333
|
0.3333333
|
Zambia
|
Owner is older than 35
|
5
|
0.8000000
|
0.000
|
0.4000000
|
0.4000000
|
Zambia
|
Youth Led
|
11
|
0.8181818
|
0.000
|
0.0909091
|
0.0909091
|
country
|
age_Owner
|
knowledge_mmServices
|
knowledge_investmentsCapitalMarkets
|
knowledge_businessInsuranceProducts
|
knowledge_pensionProducts
|
knowledge_loansCreditCommercialBanks
|
knowledge_loansCreditMicrofinance
|
knowledge_loansCreditROSCAsISALs
|
knowledge_bankingServices
|
knowledge_taxationRegulatoryCompliance
|
knowledge_digitalProductsServices
|
knowledge_internetDigitalLandscape
|
knowledge_onlinePromotion
|
Kenya
|
Owner is older than 35
|
0.8952381
|
0.4571429
|
0.5428571
|
0.4190476
|
0.7428571
|
0.6285714
|
0.5000000
|
0.8285714
|
0.8190476
|
0.8190476
|
0.6952381
|
0.5857143
|
Kenya
|
Youth Led
|
0.8526316
|
0.4947368
|
0.4578947
|
0.3157895
|
0.5947368
|
0.5842105
|
0.4368421
|
0.7421053
|
0.7263158
|
0.7842105
|
0.6631579
|
0.6157895
|
Malawi
|
Owner is older than 35
|
0.7000000
|
0.4550000
|
0.2800000
|
0.2650000
|
0.5400000
|
0.5150000
|
0.4000000
|
0.6350000
|
0.5900000
|
0.5500000
|
0.4100000
|
0.3900000
|
Malawi
|
Youth Led
|
0.7550000
|
0.4600000
|
0.2600000
|
0.1850000
|
0.4450000
|
0.4500000
|
0.3700000
|
0.6900000
|
0.5100000
|
0.5100000
|
0.4750000
|
0.5200000
|
Zambia
|
Owner is older than 35
|
0.9043478
|
0.4608696
|
0.4434783
|
0.4608696
|
0.7304348
|
0.7130435
|
0.8695652
|
0.6956522
|
0.5217391
|
0.7652174
|
0.7304348
|
0.6608696
|
Zambia
|
Youth Led
|
0.9824561
|
0.6842105
|
0.7192982
|
0.6807018
|
0.7578947
|
0.7754386
|
0.8105263
|
0.7403509
|
0.6877193
|
0.8070175
|
0.7684211
|
0.7473684
|
## Joining, by = c("country", "age_Owner")
## Joining, by = c("country", "age_Owner")
## Joining, by = c("country", "age_Owner")
## Joining, by = c("country", "age_Owner")
## `summarise()` has grouped output by 'country'. You can override using the
## `.groups` argument.
country
|
age_Owner
|
usage_banking
|
usage_MM
|
usage_loan
|
usage_insur
|
knowledgeAssessment
|
formal_usage
|
informal_usage
|
Kenya
|
Owner is older than 35
|
0.6214286
|
0.7888889
|
0.8333333
|
0.2031250
|
0.8952381
|
0.6116939
|
0.2835441
|
Kenya
|
Youth Led
|
0.6263158
|
0.8392857
|
0.6666667
|
0.2500000
|
0.8526316
|
0.5955670
|
0.2570645
|
Malawi
|
Owner is older than 35
|
0.5933333
|
0.8589744
|
0.6410256
|
0.2500000
|
0.7000000
|
0.5858333
|
0.1141667
|
Malawi
|
Youth Led
|
0.6200000
|
0.8518519
|
0.6666667
|
0.1666667
|
0.7550000
|
0.5762963
|
0.1787037
|
Zambia
|
Owner is older than 35
|
0.6818182
|
0.9375000
|
0.9166667
|
0.4000000
|
0.9043478
|
0.7339962
|
0.1703516
|
Zambia
|
Youth Led
|
0.7416667
|
0.9600000
|
0.9298246
|
0.2500000
|
0.9824561
|
0.7203728
|
0.2620833
|
Digital
Digital Access
country
|
age_Owner
|
landline
|
mobilePhone
|
smartPhone
|
computer
|
internet
|
access
|
percent_access
|
Kenya
|
Owner is older than 35
|
0.0476190
|
0.7142857
|
0.7380952
|
0.5714286
|
0.6190476
|
0.5380952
|
54
|
Kenya
|
Youth Led
|
0.0789474
|
0.6052632
|
0.7894737
|
0.5000000
|
0.5789474
|
0.5105263
|
51
|
Malawi
|
Owner is older than 35
|
0.0000000
|
0.9750000
|
0.3750000
|
0.1750000
|
0.2750000
|
0.3600000
|
36
|
Malawi
|
Youth Led
|
0.0000000
|
0.9250000
|
0.5500000
|
0.1000000
|
0.3500000
|
0.3850000
|
38
|
Zambia
|
Owner is older than 35
|
0.0000000
|
0.9565217
|
0.6956522
|
0.2173913
|
0.6086957
|
0.4956522
|
50
|
Zambia
|
Youth Led
|
0.0000000
|
1.0000000
|
0.9298246
|
0.2280702
|
0.6315789
|
0.5578947
|
56
|

Digital Usage
country
|
age_Owner
|
mobileBanking
|
creditCard
|
cryptocurrency
|
digitalPayments
|
moneyTransfer
|
socialMedia
|
email
|
whatsapp
|
phoneNumber
|
website
|
ecommerce
|
billPaymentSystem
|
onlinePaymentSystem
|
accountingSystem
|
usage
|
percent_usage
|
Kenya
|
Owner is older than 35
|
0.6428571
|
0.2380952
|
0.0476190
|
0.0714286
|
0.0476190
|
0.2619048
|
0.2857143
|
0.5000000
|
0.6190476
|
0.2380952
|
0.1428571
|
0.0952381
|
0.1428571
|
0.0238095
|
0.2397959
|
24
|
Kenya
|
Youth Led
|
0.5000000
|
0.1842105
|
0.0526316
|
0.0789474
|
0.0263158
|
0.3157895
|
0.2105263
|
0.5263158
|
0.4210526
|
0.1842105
|
0.0263158
|
0.0263158
|
0.1578947
|
0.1315789
|
0.2030075
|
20
|
Malawi
|
Owner is older than 35
|
0.1750000
|
0.0250000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.2500000
|
0.0250000
|
0.4250000
|
0.8250000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0250000
|
0.1250000
|
12
|
Malawi
|
Youth Led
|
0.3250000
|
0.0250000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.4250000
|
0.0000000
|
0.5500000
|
0.7250000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.1464286
|
15
|
Zambia
|
Owner is older than 35
|
0.1739130
|
0.2608696
|
0.0000000
|
0.1739130
|
0.0434783
|
0.3043478
|
0.3478261
|
0.6521739
|
0.9565217
|
0.1304348
|
0.0000000
|
0.0000000
|
0.0434783
|
0.0000000
|
0.2204969
|
22
|
Zambia
|
Youth Led
|
0.3684211
|
0.3157895
|
0.0000000
|
0.0701754
|
0.0000000
|
0.3684211
|
0.2982456
|
0.8771930
|
0.9824561
|
0.1578947
|
0.0000000
|
0.0000000
|
0.0701754
|
0.0000000
|
0.2506266
|
25
|

Financial Inclusion
## Joining, by = c("country", "age_Owner", "FI")
## Joining, by = c("country", "age_Owner", "FI")
## Joining, by = c("country", "age_Owner", "FI")
## Joining, by = c("country", "age_Owner", "FI")
## `summarise()` has grouped output by 'country', 'age_Owner'. You can override
## using the `.groups` argument.
country
|
age_Owner
|
FI
|
Compliance
|
Access
|
Barriers
|
Usage
|
Digital
|
FIscore
|
0
|
Kenya
|
Owner is older than 35
|
Exclusion
|
11
|
30
|
75
|
10
|
46
|
22
|
0
|
Kenya
|
Owner is older than 35
|
Formal Inclusion
|
36
|
44
|
13
|
61
|
24
|
46
|
0
|
Kenya
|
Owner is older than 35
|
Informal Inclusion
|
5
|
25
|
12
|
28
|
30
|
32
|
0
|
Kenya
|
Youth Led
|
Exclusion
|
15
|
34
|
77
|
15
|
49
|
25
|
0
|
Kenya
|
Youth Led
|
Formal Inclusion
|
28
|
40
|
12
|
60
|
20
|
43
|
0
|
Kenya
|
Youth Led
|
Informal Inclusion
|
5
|
26
|
11
|
26
|
31
|
32
|
0
|
Malawi
|
Owner is older than 35
|
Exclusion
|
28
|
49
|
68
|
30
|
64
|
37
|
0
|
Malawi
|
Owner is older than 35
|
Formal Inclusion
|
21
|
31
|
17
|
59
|
12
|
37
|
0
|
Malawi
|
Owner is older than 35
|
Informal Inclusion
|
1
|
20
|
14
|
11
|
24
|
26
|
0
|
Malawi
|
Youth Led
|
Exclusion
|
45
|
56
|
48
|
24
|
62
|
NA
|
0
|
Malawi
|
Youth Led
|
Formal Inclusion
|
5
|
20
|
15
|
58
|
15
|
NA
|
0
|
Malawi
|
Youth Led
|
Informal Inclusion
|
NA
|
24
|
37
|
18
|
23
|
NA
|
0
|
Zambia
|
Owner is older than 35
|
Exclusion
|
9
|
36
|
63
|
10
|
50
|
27
|
0
|
Zambia
|
Owner is older than 35
|
Formal Inclusion
|
19
|
32
|
17
|
73
|
22
|
43
|
0
|
Zambia
|
Owner is older than 35
|
Informal Inclusion
|
1
|
32
|
20
|
17
|
28
|
30
|
0
|
Zambia
|
Youth Led
|
Exclusion
|
31
|
41
|
84
|
2
|
44
|
NA
|
0
|
Zambia
|
Youth Led
|
Formal Inclusion
|
40
|
32
|
7
|
72
|
25
|
NA
|
0
|
Zambia
|
Youth Led
|
Informal Inclusion
|
NA
|
27
|
9
|
26
|
31
|
NA
|
0
|
write.csv(compliance_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Age FIndex compliance data.csv")
write.csv(access_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Age FIndex access data.csv")
write.csv(barrier_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Age FIndex barriers data.csv")
write.csv(usage_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Age FIndex usage data.csv")
write.csv(digital_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Age FIndex digital data.csv")
write.csv(financialInclusion_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Age FIndex inclusion data.csv")
Size of Business
# NB: the levels that have # before are not considered in the run analysis. This allows one to change the level at which the analysis is performed.
level = c("country",
# "gender_Owner",
# "age_Owner",
"size_Business"
# "location_Business",
# "sector_Business",
)
Compliance
country
|
size_Business
|
compliance_category
|
num_enterprises
|
percent_enterprises
|
Kenya
|
Micro Enterprise
|
full compliance
|
26
|
32
|
Kenya
|
Micro Enterprise
|
not compliant
|
20
|
25
|
Kenya
|
Micro Enterprise
|
partial compliance
|
7
|
9
|
Kenya
|
Small/Medium Enterprise
|
full compliance
|
25
|
31
|
Kenya
|
Small/Medium Enterprise
|
not compliant
|
1
|
1
|
Kenya
|
Small/Medium Enterprise
|
partial compliance
|
1
|
1
|
Malawi
|
Micro Enterprise
|
full compliance
|
5
|
6
|
Malawi
|
Micro Enterprise
|
not compliant
|
47
|
59
|
Malawi
|
Micro Enterprise
|
partial compliance
|
1
|
1
|
Malawi
|
Small/Medium Enterprise
|
full compliance
|
16
|
20
|
Malawi
|
Small/Medium Enterprise
|
not compliant
|
11
|
14
|
Zambia
|
Micro Enterprise
|
full compliance
|
20
|
25
|
Zambia
|
Micro Enterprise
|
not compliant
|
32
|
40
|
Zambia
|
Micro Enterprise
|
partial compliance
|
1
|
1
|
Zambia
|
Small/Medium Enterprise
|
full compliance
|
27
|
34
|

Barriers
country
|
size_Business
|
affordability
|
bureaucracy
|
complicatedSystem
|
knowledge
|
documentation
|
compatibility
|
trust
|
formalBarriers
|
informalBarriers
|
Kenya
|
Micro Enterprise
|
0.2726436
|
0.0477688
|
0.0822013
|
0.0672750
|
0.0627846
|
0.1806312
|
0.0911474
|
0.1234626
|
0.1035338
|
Kenya
|
Small/Medium Enterprise
|
0.2437597
|
NaN
|
0.0760452
|
0.1672891
|
0.0462963
|
0.1556437
|
0.0928001
|
0.1375363
|
0.1158445
|
Malawi
|
Micro Enterprise
|
0.2675365
|
0.0208333
|
0.0198506
|
0.2729164
|
0.0440039
|
0.3083833
|
NaN
|
0.1948189
|
0.1163558
|
Malawi
|
Small/Medium Enterprise
|
0.3087797
|
NaN
|
NaN
|
0.2295862
|
0.0555556
|
0.5874224
|
0.0542328
|
0.1620386
|
0.5874224
|
Zambia
|
Micro Enterprise
|
0.1343172
|
0.0222222
|
0.0691824
|
0.0878889
|
0.0913194
|
0.2166238
|
0.0471698
|
0.0901738
|
0.1026761
|
Zambia
|
Small/Medium Enterprise
|
0.2415305
|
NaN
|
0.0526316
|
0.0716342
|
NaN
|
0.3921569
|
0.0639731
|
0.1257126
|
0.2223942
|
## Warning: Removed 6 rows containing missing values (geom_col).
## Warning: Removed 6 rows containing missing values (geom_label).

Usage
country
|
size_Business
|
n
|
bank_openTime
|
bank_frequency
|
bank_MoreThan1Account
|
bank_MoreThan1Service
|
bank_Norestrictions
|
Kenya
|
Micro Enterprise
|
24
|
0.8541667
|
0.9166667
|
0.0416667
|
0.5000000
|
0.8333333
|
Kenya
|
Small/Medium Enterprise
|
23
|
0.7826087
|
0.9130435
|
0.1304348
|
0.5652174
|
0.6956522
|
Malawi
|
Micro Enterprise
|
5
|
0.8000000
|
0.8000000
|
0.0000000
|
0.0000000
|
1.0000000
|
Malawi
|
Small/Medium Enterprise
|
15
|
0.6666667
|
1.0000000
|
0.0000000
|
0.6000000
|
0.8666667
|
Zambia
|
Micro Enterprise
|
8
|
0.8125000
|
0.8750000
|
0.0000000
|
0.8750000
|
1.0000000
|
Zambia
|
Small/Medium Enterprise
|
27
|
0.7777778
|
1.0000000
|
0.0740741
|
0.8888889
|
0.8888889
|
country
|
size_Business
|
n
|
mm_openTime
|
mm_frequency
|
mm_Norestrictions
|
Kenya
|
Micro Enterprise
|
36
|
0.9305556
|
0.8888889
|
0.7222222
|
Kenya
|
Small/Medium Enterprise
|
22
|
0.7727273
|
0.8181818
|
0.6818182
|
Malawi
|
Micro Enterprise
|
15
|
0.8666667
|
0.6666667
|
1.0000000
|
Malawi
|
Small/Medium Enterprise
|
7
|
0.8571429
|
0.7857143
|
1.0000000
|
Zambia
|
Micro Enterprise
|
42
|
0.9047619
|
0.9761905
|
0.9761905
|
Zambia
|
Small/Medium Enterprise
|
24
|
0.8750000
|
1.0000000
|
1.0000000
|
country
|
size_Business
|
n
|
loan_success
|
loan_interestRatePerceptions
|
loan_payBack
|
Kenya
|
Micro Enterprise
|
15
|
0.8000000
|
0.4000000
|
0.8000000
|
Kenya
|
Small/Medium Enterprise
|
9
|
1.0000000
|
0.7777778
|
1.0000000
|
Malawi
|
Micro Enterprise
|
9
|
0.6666667
|
0.3333333
|
0.6666667
|
Malawi
|
Small/Medium Enterprise
|
9
|
0.8888889
|
0.4444444
|
0.8888889
|
Zambia
|
Micro Enterprise
|
13
|
0.9230769
|
0.9230769
|
0.9230769
|
Zambia
|
Small/Medium Enterprise
|
10
|
1.0000000
|
0.8000000
|
1.0000000
|
country
|
size_Business
|
n
|
insurance_comprehensive
|
insurance_noncomprehensive
|
insurance_staff
|
insurance_product
|
Kenya
|
Micro Enterprise
|
16
|
0.3750000
|
0.0625
|
0.0625000
|
0.0625
|
Kenya
|
Small/Medium Enterprise
|
10
|
0.6000000
|
0.1000
|
0.3000000
|
0.4000
|
Malawi
|
Small/Medium Enterprise
|
6
|
0.1666667
|
0.0000
|
0.1666667
|
0.5000
|
Zambia
|
Small/Medium Enterprise
|
16
|
0.8125000
|
0.0000
|
0.1875000
|
0.1875
|
country
|
size_Business
|
knowledge_mmServices
|
knowledge_investmentsCapitalMarkets
|
knowledge_businessInsuranceProducts
|
knowledge_pensionProducts
|
knowledge_loansCreditCommercialBanks
|
knowledge_loansCreditMicrofinance
|
knowledge_loansCreditROSCAsISALs
|
knowledge_bankingServices
|
knowledge_taxationRegulatoryCompliance
|
knowledge_digitalProductsServices
|
knowledge_internetDigitalLandscape
|
knowledge_onlinePromotion
|
Kenya
|
Micro Enterprise
|
0.8905660
|
0.4490566
|
0.4867925
|
0.3509434
|
0.6452830
|
0.5811321
|
0.4716981
|
0.7698113
|
0.7622642
|
0.8150943
|
0.6452830
|
0.5698113
|
Kenya
|
Small/Medium Enterprise
|
0.8444444
|
0.5259259
|
0.5333333
|
0.4074074
|
0.7259259
|
0.6592593
|
0.4666667
|
0.8222222
|
0.8000000
|
0.7777778
|
0.7481481
|
0.6592593
|
Malawi
|
Micro Enterprise
|
0.7018868
|
0.3584906
|
0.1245283
|
0.0943396
|
0.4000000
|
0.4339623
|
0.3660377
|
0.6075472
|
0.4566038
|
0.4641509
|
0.4037736
|
0.4415094
|
Malawi
|
Small/Medium Enterprise
|
0.7777778
|
0.6518519
|
0.5555556
|
0.4814815
|
0.6740741
|
0.5777778
|
0.4222222
|
0.7703704
|
0.7333333
|
0.6592593
|
0.5185185
|
0.4814815
|
Zambia
|
Micro Enterprise
|
0.9547170
|
0.5283019
|
0.5509434
|
0.5169811
|
0.6679245
|
0.7018868
|
0.7886792
|
0.6339623
|
0.5396226
|
0.7547170
|
0.6754717
|
0.6377358
|
Zambia
|
Small/Medium Enterprise
|
0.9703704
|
0.8000000
|
0.8148148
|
0.8148148
|
0.9111111
|
0.8666667
|
0.9037037
|
0.9111111
|
0.8370370
|
0.8740741
|
0.9185185
|
0.8888889
|
## Joining, by = c("country", "size_Business")
## Joining, by = c("country", "size_Business")
## Joining, by = c("country", "size_Business")
## Joining, by = c("country", "size_Business")
## `summarise()` has grouped output by 'country'. You can override using the
## `.groups` argument.
country
|
size_Business
|
usage_banking
|
usage_MM
|
usage_loan
|
usage_insur
|
knowledgeAssessment
|
formal_usage
|
informal_usage
|
Kenya
|
Micro Enterprise
|
0.6291667
|
0.8472222
|
0.6666667
|
0.1406250
|
0.8905660
|
0.5709201
|
0.3196459
|
Kenya
|
Small/Medium Enterprise
|
0.6173913
|
0.7575758
|
0.9259259
|
0.3500000
|
0.8444444
|
0.6627232
|
0.1817212
|
Malawi
|
Micro Enterprise
|
0.5200000
|
0.8444444
|
0.5555556
|
NaN
|
0.7018868
|
0.6400000
|
0.0618868
|
Malawi
|
Small/Medium Enterprise
|
0.6266667
|
0.8809524
|
0.7407407
|
0.2083333
|
0.7777778
|
0.6141733
|
0.1636045
|
Zambia
|
Micro Enterprise
|
0.7125000
|
0.9523810
|
0.9230769
|
NaN
|
0.9547170
|
0.8626526
|
0.0920644
|
Zambia
|
Small/Medium Enterprise
|
0.7259259
|
0.9583333
|
0.9333333
|
0.2968750
|
0.9703704
|
0.7286169
|
0.2417535
|
Digital
Digital Access
country
|
size_Business
|
landline
|
mobilePhone
|
smartPhone
|
computer
|
internet
|
access
|
percent_access
|
Kenya
|
Micro Enterprise
|
0.0566038
|
0.6415094
|
0.7169811
|
0.4716981
|
0.5283019
|
0.4830189
|
48
|
Kenya
|
Small/Medium Enterprise
|
0.0740741
|
0.7037037
|
0.8518519
|
0.6666667
|
0.7407407
|
0.6074074
|
61
|
Malawi
|
Micro Enterprise
|
0.0000000
|
0.9433962
|
0.4339623
|
0.0754717
|
0.3018868
|
0.3509434
|
35
|
Malawi
|
Small/Medium Enterprise
|
0.0000000
|
0.9629630
|
0.5185185
|
0.2592593
|
0.3333333
|
0.4148148
|
41
|
Zambia
|
Micro Enterprise
|
0.0000000
|
0.9811321
|
0.7924528
|
0.0754717
|
0.4716981
|
0.4641509
|
46
|
Zambia
|
Small/Medium Enterprise
|
0.0000000
|
1.0000000
|
1.0000000
|
0.5185185
|
0.9259259
|
0.6888889
|
69
|

Digital Usage
country
|
size_Business
|
mobileBanking
|
creditCard
|
cryptocurrency
|
digitalPayments
|
moneyTransfer
|
socialMedia
|
email
|
whatsapp
|
phoneNumber
|
website
|
ecommerce
|
billPaymentSystem
|
onlinePaymentSystem
|
accountingSystem
|
usage
|
percent_usage
|
Kenya
|
Micro Enterprise
|
0.4905660
|
0.1698113
|
0.0377358
|
0.0377358
|
0.0188679
|
0.3018868
|
0.1886792
|
0.4905660
|
0.4528302
|
0.1132075
|
0.0943396
|
0.0188679
|
0.1509434
|
0.0754717
|
0.1886792
|
19
|
Kenya
|
Small/Medium Enterprise
|
0.7407407
|
0.2962963
|
0.0740741
|
0.1481481
|
0.0740741
|
0.2592593
|
0.3703704
|
0.5555556
|
0.6666667
|
0.4074074
|
0.0740741
|
0.1481481
|
0.1481481
|
0.0740741
|
0.2883598
|
29
|
Malawi
|
Micro Enterprise
|
0.2075472
|
0.0188679
|
0.0000000
|
0.0000000
|
0.0000000
|
0.3396226
|
0.0000000
|
0.4339623
|
0.7358491
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.1239892
|
12
|
Malawi
|
Small/Medium Enterprise
|
0.3333333
|
0.0370370
|
0.0000000
|
0.0000000
|
0.0000000
|
0.3333333
|
0.0370370
|
0.5925926
|
0.8518519
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0370370
|
0.1587302
|
16
|
Zambia
|
Micro Enterprise
|
0.1698113
|
0.0943396
|
0.0000000
|
0.0000000
|
0.0188679
|
0.2264151
|
0.1320755
|
0.7358491
|
0.9622642
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.0000000
|
0.1671159
|
17
|
Zambia
|
Small/Medium Enterprise
|
0.5925926
|
0.7037037
|
0.0000000
|
0.2962963
|
0.0000000
|
0.5925926
|
0.6666667
|
0.9629630
|
1.0000000
|
0.4444444
|
0.0000000
|
0.0000000
|
0.1851852
|
0.0000000
|
0.3888889
|
39
|

Financial Inclusion
## Joining, by = c("country", "size_Business", "FI")
## Joining, by = c("country", "size_Business", "FI")
## Joining, by = c("country", "size_Business", "FI")
## Joining, by = c("country", "size_Business", "FI")
## `summarise()` has grouped output by 'country', 'size_Business'. You can
## override using the `.groups` argument.
country
|
size_Business
|
FI
|
Compliance
|
Access
|
Barriers
|
Usage
|
Digital
|
FIscore
|
0
|
Kenya
|
Micro Enterprise
|
Exclusion
|
25
|
36
|
77
|
11
|
52
|
26
|
0
|
Kenya
|
Micro Enterprise
|
Formal Inclusion
|
32
|
37
|
12
|
57
|
19
|
41
|
0
|
Kenya
|
Micro Enterprise
|
Informal Inclusion
|
9
|
27
|
10
|
32
|
29
|
33
|
0
|
Kenya
|
Small/Medium Enterprise
|
Exclusion
|
1
|
25
|
75
|
16
|
39
|
20
|
0
|
Kenya
|
Small/Medium Enterprise
|
Formal Inclusion
|
31
|
52
|
14
|
66
|
29
|
50
|
0
|
Kenya
|
Small/Medium Enterprise
|
Informal Inclusion
|
1
|
23
|
12
|
18
|
32
|
30
|
0
|
Malawi
|
Micro Enterprise
|
Exclusion
|
59
|
57
|
69
|
30
|
65
|
43
|
0
|
Malawi
|
Micro Enterprise
|
Formal Inclusion
|
6
|
18
|
19
|
64
|
12
|
32
|
0
|
Malawi
|
Micro Enterprise
|
Informal Inclusion
|
1
|
25
|
12
|
6
|
23
|
25
|
0
|
Malawi
|
Small/Medium Enterprise
|
Exclusion
|
14
|
44
|
25
|
22
|
59
|
NA
|
0
|
Malawi
|
Small/Medium Enterprise
|
Formal Inclusion
|
20
|
40
|
16
|
61
|
16
|
NA
|
0
|
Malawi
|
Small/Medium Enterprise
|
Informal Inclusion
|
NA
|
16
|
59
|
16
|
25
|
NA
|
0
|
Zambia
|
Micro Enterprise
|
Exclusion
|
40
|
46
|
81
|
5
|
54
|
29
|
0
|
Zambia
|
Micro Enterprise
|
Formal Inclusion
|
25
|
17
|
9
|
86
|
17
|
42
|
0
|
Zambia
|
Micro Enterprise
|
Informal Inclusion
|
1
|
36
|
10
|
9
|
29
|
29
|
0
|
Zambia
|
Small/Medium Enterprise
|
Exclusion
|
NA
|
27
|
65
|
3
|
31
|
NA
|
0
|
Zambia
|
Small/Medium Enterprise
|
Formal Inclusion
|
34
|
61
|
13
|
73
|
39
|
NA
|
0
|
Zambia
|
Small/Medium Enterprise
|
Informal Inclusion
|
NA
|
12
|
22
|
24
|
30
|
NA
|
0
|
Export Data
write.csv(compliance_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Size FIndex compliance data.csv")
write.csv(access_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Size FIndex access data.csv")
write.csv(barrier_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Size FIndex barriers data.csv")
write.csv(usage_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Size FIndex usage data.csv")
write.csv(digital_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Size FIndex digital data.csv")
write.csv(financialInclusion_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Size FIndex inclusion data.csv")
Location of Business
# NB: the levels that have # before are not considered in the run analysis. This allows one to change the level at which the analysis is performed.
level = c("country",
# "gender_Owner",
# "age_Owner",
# "size_Business",
"location_Business"
# "sector_Business",
)
Compliance
country
|
location_Business
|
compliance_category
|
num_enterprises
|
percent_enterprises
|
Kenya
|
Other
|
full compliance
|
10
|
12
|
Kenya
|
Other
|
not compliant
|
4
|
5
|
Kenya
|
Other
|
partial compliance
|
2
|
2
|
Kenya
|
Urban Based
|
full compliance
|
41
|
51
|
Kenya
|
Urban Based
|
not compliant
|
17
|
21
|
Kenya
|
Urban Based
|
partial compliance
|
6
|
8
|
Malawi
|
Other
|
full compliance
|
12
|
15
|
Malawi
|
Other
|
not compliant
|
37
|
46
|
Malawi
|
Other
|
partial compliance
|
1
|
1
|
Malawi
|
Urban Based
|
full compliance
|
9
|
11
|
Malawi
|
Urban Based
|
not compliant
|
21
|
26
|
Zambia
|
Other
|
full compliance
|
10
|
12
|
Zambia
|
Other
|
not compliant
|
18
|
22
|
Zambia
|
Other
|
partial compliance
|
1
|
1
|
Zambia
|
Urban Based
|
full compliance
|
37
|
46
|
Zambia
|
Urban Based
|
not compliant
|
14
|
18
|

Barriers
country
|
location_Business
|
affordability
|
bureaucracy
|
complicatedSystem
|
knowledge
|
documentation
|
compatibility
|
trust
|
formalBarriers
|
informalBarriers
|
Kenya
|
Other
|
0.3689626
|
0.5000000
|
0.1083333
|
0.1321429
|
0.1250000
|
0.1833333
|
0.1250000
|
0.1877764
|
0.2638889
|
Kenya
|
Urban Based
|
0.2326902
|
0.0472689
|
0.0967700
|
0.0681175
|
0.0414726
|
0.1654783
|
0.0768705
|
0.1047877
|
0.1031724
|
Malawi
|
Other
|
0.2648961
|
0.0250000
|
0.0235746
|
0.2463759
|
0.0540541
|
0.3477409
|
0.0251515
|
0.1476194
|
0.1321052
|
Malawi
|
Urban Based
|
0.3531824
|
NaN
|
NaN
|
0.2384311
|
0.0400000
|
0.4462912
|
NaN
|
0.2105378
|
0.4462912
|
Zambia
|
Other
|
0.1581144
|
NaN
|
0.0706076
|
0.0577302
|
0.1027778
|
0.2339286
|
0.0523399
|
0.0927406
|
0.1522681
|
Zambia
|
Urban Based
|
0.1663451
|
0.0400000
|
0.0477817
|
0.0929440
|
0.0914286
|
0.2159192
|
0.0473856
|
0.0995258
|
0.1012336
|
## Warning: Removed 4 rows containing missing values (geom_col).
## Warning: Removed 4 rows containing missing values (geom_label).

Usage
country
|
location_Business
|
n
|
bank_openTime
|
bank_frequency
|
bank_MoreThan1Account
|
bank_MoreThan1Service
|
bank_Norestrictions
|
Kenya
|
Other
|
11
|
0.7727273
|
1.0000000
|
0.1818182
|
0.6363636
|
0.8181818
|
Kenya
|
Urban Based
|
36
|
0.8333333
|
0.8888889
|
0.0555556
|
0.5000000
|
0.7500000
|
Malawi
|
Other
|
10
|
0.7000000
|
0.9000000
|
0.0000000
|
0.5000000
|
1.0000000
|
Malawi
|
Urban Based
|
10
|
0.7000000
|
1.0000000
|
0.0000000
|
0.4000000
|
0.8000000
|
Zambia
|
Other
|
9
|
0.8333333
|
1.0000000
|
0.0000000
|
0.8888889
|
1.0000000
|
Zambia
|
Urban Based
|
26
|
0.7692308
|
0.9615385
|
0.0769231
|
0.8846154
|
0.8846154
|
country
|
location_Business
|
n
|
mm_openTime
|
mm_frequency
|
mm_Norestrictions
|
Kenya
|
Other
|
14
|
0.8928571
|
0.8214286
|
0.7857143
|
Kenya
|
Urban Based
|
44
|
0.8636364
|
0.8750000
|
0.6818182
|
Malawi
|
Other
|
18
|
0.8611111
|
0.7222222
|
1.0000000
|
Malawi
|
Urban Based
|
4
|
0.8750000
|
0.6250000
|
1.0000000
|
Zambia
|
Other
|
26
|
0.9230769
|
0.9807692
|
1.0000000
|
Zambia
|
Urban Based
|
40
|
0.8750000
|
0.9875000
|
0.9750000
|
country
|
location_Business
|
n
|
loan_success
|
loan_interestRatePerceptions
|
loan_payBack
|
Kenya
|
Other
|
6
|
1.0000000
|
0.8333333
|
1.0000000
|
Kenya
|
Urban Based
|
18
|
0.8333333
|
0.4444444
|
0.8333333
|
Malawi
|
Other
|
13
|
0.7692308
|
0.3846154
|
0.7692308
|
Malawi
|
Urban Based
|
5
|
0.8000000
|
0.4000000
|
0.8000000
|
Zambia
|
Other
|
5
|
0.8000000
|
0.8000000
|
0.8000000
|
Zambia
|
Urban Based
|
18
|
1.0000000
|
0.8888889
|
1.0000000
|
country
|
location_Business
|
n
|
insurance_comprehensive
|
insurance_noncomprehensive
|
insurance_staff
|
insurance_product
|
Kenya
|
Other
|
4
|
0.7500000
|
0.0000000
|
0.0000000
|
0.0000000
|
Kenya
|
Urban Based
|
22
|
0.4090909
|
0.0909091
|
0.1818182
|
0.2272727
|
Malawi
|
Other
|
4
|
0.2500000
|
0.0000000
|
0.2500000
|
0.2500000
|
Malawi
|
Urban Based
|
2
|
0.0000000
|
0.0000000
|
0.0000000
|
1.0000000
|
Zambia
|
Other
|
1
|
1.0000000
|
0.0000000
|
0.0000000
|
1.0000000
|
Zambia
|
Urban Based
|
15
|
0.8000000
|
0.0000000
|
0.2000000
|
0.1333333
|
country
|
location_Business
|
knowledge_mmServices
|
knowledge_investmentsCapitalMarkets
|
knowledge_businessInsuranceProducts
|
knowledge_pensionProducts
|
knowledge_loansCreditCommercialBanks
|
knowledge_loansCreditMicrofinance
|
knowledge_loansCreditROSCAsISALs
|
knowledge_bankingServices
|
knowledge_taxationRegulatoryCompliance
|
knowledge_digitalProductsServices
|
knowledge_internetDigitalLandscape
|
knowledge_onlinePromotion
|
Kenya
|
Other
|
0.9000000
|
0.4875000
|
0.4500000
|
0.2750000
|
0.7250000
|
0.6375000
|
0.4750000
|
0.8500000
|
0.8375000
|
0.8125000
|
0.6250000
|
0.6000000
|
Kenya
|
Urban Based
|
0.8687500
|
0.4718750
|
0.5156250
|
0.3937500
|
0.6593750
|
0.6000000
|
0.4687500
|
0.7718750
|
0.7593750
|
0.8000000
|
0.6937500
|
0.6000000
|
Malawi
|
Other
|
0.7120000
|
0.3960000
|
0.2360000
|
0.1640000
|
0.4800000
|
0.4640000
|
0.3280000
|
0.6160000
|
0.5280000
|
0.4640000
|
0.3680000
|
0.3840000
|
Malawi
|
Urban Based
|
0.7533333
|
0.5600000
|
0.3266667
|
0.3266667
|
0.5133333
|
0.5133333
|
0.4800000
|
0.7400000
|
0.5866667
|
0.6400000
|
0.5666667
|
0.5733333
|
Zambia
|
Other
|
0.9379310
|
0.5517241
|
0.5793103
|
0.5517241
|
0.6965517
|
0.7103448
|
0.8413793
|
0.6620690
|
0.5448276
|
0.7448276
|
0.6896552
|
0.6620690
|
Zambia
|
Urban Based
|
0.9725490
|
0.6588235
|
0.6745098
|
0.6549020
|
0.7803922
|
0.7843137
|
0.8196078
|
0.7647059
|
0.6941176
|
0.8235294
|
0.7960784
|
0.7568627
|
## Joining, by = c("country", "location_Business")
## Joining, by = c("country", "location_Business")
## Joining, by = c("country", "location_Business")
## Joining, by = c("country", "location_Business")
## `summarise()` has grouped output by 'country'. You can override using the
## `.groups` argument.
country
|
location_Business
|
usage_banking
|
usage_MM
|
usage_loan
|
usage_insur
|
knowledgeAssessment
|
formal_usage
|
informal_usage
|
Kenya
|
Other
|
0.6818182
|
0.8333333
|
0.9444444
|
0.1875000
|
0.9000000
|
0.6617740
|
0.2382260
|
Kenya
|
Urban Based
|
0.6055556
|
0.8068182
|
0.7037037
|
0.2272727
|
0.8687500
|
0.5858375
|
0.2829125
|
Malawi
|
Other
|
0.6200000
|
0.8611111
|
0.6410256
|
0.1875000
|
0.7120000
|
0.5774092
|
0.1345908
|
Malawi
|
Urban Based
|
0.5800000
|
0.8333333
|
0.6666667
|
0.2500000
|
0.7533333
|
0.5825000
|
0.1708333
|
Zambia
|
Other
|
0.7444444
|
0.9679487
|
0.8000000
|
0.5000000
|
0.9379310
|
0.7530983
|
0.1848327
|
Zambia
|
Urban Based
|
0.7153846
|
0.9458333
|
0.9629630
|
0.2833333
|
0.9725490
|
0.7268786
|
0.2456705
|
Digital
Digital Access
country
|
location_Business
|
landline
|
mobilePhone
|
smartPhone
|
computer
|
internet
|
access
|
percent_access
|
Kenya
|
Other
|
0.0625
|
0.6250000
|
0.8125000
|
0.6875000
|
0.6250000
|
0.5625000
|
56
|
Kenya
|
Urban Based
|
0.0625
|
0.6718750
|
0.7500000
|
0.5000000
|
0.5937500
|
0.5156250
|
52
|
Malawi
|
Other
|
0.0000
|
0.9400000
|
0.4200000
|
0.1000000
|
0.2000000
|
0.3320000
|
33
|
Malawi
|
Urban Based
|
0.0000
|
0.9666667
|
0.5333333
|
0.2000000
|
0.5000000
|
0.4400000
|
44
|
Zambia
|
Other
|
0.0000
|
0.9655172
|
0.8965517
|
0.0689655
|
0.5172414
|
0.4896552
|
49
|
Zambia
|
Urban Based
|
0.0000
|
1.0000000
|
0.8431373
|
0.3137255
|
0.6862745
|
0.5686275
|
57
|

Digital Usage
country
|
location_Business
|
mobileBanking
|
creditCard
|
cryptocurrency
|
digitalPayments
|
moneyTransfer
|
socialMedia
|
email
|
whatsapp
|
phoneNumber
|
website
|
ecommerce
|
billPaymentSystem
|
onlinePaymentSystem
|
accountingSystem
|
usage
|
percent_usage
|
Kenya
|
Other
|
0.6250000
|
0.3125000
|
0.062500
|
0.1250000
|
0.1250000
|
0.0625000
|
0.1250000
|
0.5000000
|
0.3750000
|
0.1875000
|
0.125000
|
0.250000
|
0.1875000
|
0.1250000
|
0.2276786
|
23
|
Kenya
|
Urban Based
|
0.5625000
|
0.1875000
|
0.046875
|
0.0625000
|
0.0156250
|
0.3437500
|
0.2812500
|
0.5156250
|
0.5625000
|
0.2187500
|
0.078125
|
0.015625
|
0.1406250
|
0.0625000
|
0.2209821
|
22
|
Malawi
|
Other
|
0.2200000
|
0.0000000
|
0.000000
|
0.0000000
|
0.0000000
|
0.2400000
|
0.0000000
|
0.4600000
|
0.7800000
|
0.0000000
|
0.000000
|
0.000000
|
0.0000000
|
0.0000000
|
0.1214286
|
12
|
Malawi
|
Urban Based
|
0.3000000
|
0.0666667
|
0.000000
|
0.0000000
|
0.0000000
|
0.5000000
|
0.0333333
|
0.5333333
|
0.7666667
|
0.0000000
|
0.000000
|
0.000000
|
0.0000000
|
0.0333333
|
0.1595238
|
16
|
Zambia
|
Other
|
0.2068966
|
0.2068966
|
0.000000
|
0.0344828
|
0.0000000
|
0.2068966
|
0.1379310
|
0.8275862
|
0.9655172
|
0.0000000
|
0.000000
|
0.000000
|
0.0000000
|
0.0000000
|
0.1847291
|
18
|
Zambia
|
Urban Based
|
0.3725490
|
0.3529412
|
0.000000
|
0.1372549
|
0.0196078
|
0.4313725
|
0.4117647
|
0.8039216
|
0.9803922
|
0.2352941
|
0.000000
|
0.000000
|
0.0980392
|
0.0000000
|
0.2745098
|
27
|

Financial Inclusion
## Joining, by = c("country", "location_Business", "FI")
## Joining, by = c("country", "location_Business", "FI")
## Joining, by = c("country", "location_Business", "FI")
## Joining, by = c("country", "location_Business", "FI")
## `summarise()` has grouped output by 'country', 'location_Business'. You can
## override using the `.groups` argument.
country
|
location_Business
|
FI
|
Compliance
|
Access
|
Barriers
|
Usage
|
Digital
|
FIscore
|
0
|
Kenya
|
Other
|
Exclusion
|
5
|
31
|
55
|
10
|
44
|
26
|
0
|
Kenya
|
Other
|
Formal Inclusion
|
12
|
48
|
19
|
66
|
23
|
44
|
0
|
Kenya
|
Other
|
Informal Inclusion
|
2
|
21
|
26
|
24
|
33
|
30
|
0
|
Kenya
|
Urban Based
|
Exclusion
|
21
|
32
|
79
|
13
|
48
|
23
|
0
|
Kenya
|
Urban Based
|
Formal Inclusion
|
51
|
41
|
10
|
59
|
22
|
45
|
0
|
Kenya
|
Urban Based
|
Informal Inclusion
|
8
|
27
|
10
|
28
|
30
|
31
|
0
|
Malawi
|
Other
|
Exclusion
|
46
|
52
|
72
|
29
|
67
|
40
|
0
|
Malawi
|
Other
|
Formal Inclusion
|
15
|
25
|
15
|
58
|
12
|
35
|
0
|
Malawi
|
Other
|
Informal Inclusion
|
1
|
23
|
13
|
13
|
21
|
26
|
0
|
Malawi
|
Urban Based
|
Exclusion
|
26
|
53
|
34
|
25
|
56
|
NA
|
0
|
Malawi
|
Urban Based
|
Formal Inclusion
|
11
|
26
|
21
|
58
|
16
|
NA
|
0
|
Malawi
|
Urban Based
|
Informal Inclusion
|
NA
|
21
|
45
|
17
|
28
|
NA
|
0
|
Zambia
|
Other
|
Exclusion
|
22
|
45
|
75
|
6
|
51
|
28
|
0
|
Zambia
|
Other
|
Formal Inclusion
|
12
|
26
|
9
|
75
|
18
|
41
|
0
|
Zambia
|
Other
|
Informal Inclusion
|
1
|
29
|
15
|
18
|
31
|
31
|
0
|
Zambia
|
Urban Based
|
Exclusion
|
18
|
36
|
80
|
3
|
43
|
NA
|
0
|
Zambia
|
Urban Based
|
Formal Inclusion
|
46
|
36
|
10
|
73
|
27
|
NA
|
0
|
Zambia
|
Urban Based
|
Informal Inclusion
|
NA
|
28
|
10
|
25
|
30
|
NA
|
0
|
Export Data
write.csv(compliance_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Location FIndex compliance data.csv")
write.csv(access_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Location FIndex access data.csv")
write.csv(barrier_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Location FIndex barriers data.csv")
write.csv(usage_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Location FIndex usage data.csv")
write.csv(digital_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Location FIndex digital data.csv")
write.csv(financialInclusion_total, file = "C:/Users/Rebekah Cross/Documents/Beks/FI_index/FI 2023/Location FIndex inclusion data.csv")