# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311753 -0.0029354841  0.0366064478  0.052133476  4.992261e-02
## 2013-02-28  0.0058912346 -0.0231055201 -0.0129696694  0.016175319  1.267831e-02
## 2013-03-28  0.0009849994 -0.0102350379  0.0129696694  0.040258336  3.726812e-02
## 2013-04-30  0.0096393165  0.0120848714  0.0489677331  0.001221917  1.903029e-02
## 2013-05-31 -0.0202143132 -0.0494832470 -0.0306555723  0.041976532  2.333506e-02
## 2013-06-28 -0.0157779818 -0.0547282986 -0.0271444699 -0.001402890 -1.343394e-02
## 2013-07-31  0.0026878782  0.0131596068  0.0518601944  0.063541012  5.038561e-02
## 2013-08-30 -0.0082980387 -0.0257054581 -0.0197463287 -0.034743171 -3.045106e-02
## 2013-09-30  0.0111432151  0.0695887396  0.0753385173  0.063873387  3.115566e-02
## 2013-10-31  0.0082922475  0.0408610462  0.0320818277  0.034234476  4.526638e-02
## 2013-11-29 -0.0025098794 -0.0025939880  0.0054496043  0.041661092  2.920735e-02
## 2013-12-31 -0.0055830616 -0.0040741678  0.0215280253  0.012892252  2.559617e-02
## 2014-01-31  0.0152919117 -0.0903224452 -0.0534133163 -0.035775278 -3.588472e-02
## 2014-02-28  0.0037567610  0.0332203232  0.0595051246  0.045257345  4.451045e-02
## 2014-03-31 -0.0014818965  0.0380217395 -0.0046026585  0.013315014  8.261281e-03
## 2014-04-30  0.0081835274  0.0077728675  0.0165293759 -0.023184273  6.927492e-03
## 2014-05-30  0.0117209376  0.0290908548  0.0158282324  0.006205572  2.294116e-02
## 2014-06-30 -0.0005749806  0.0237339757  0.0091655973  0.037718736  2.043482e-02
## 2014-07-31 -0.0025123686  0.0135558042 -0.0263795824 -0.052009486 -1.352884e-02
## 2014-08-29  0.0114310294  0.0279045008  0.0018002621  0.043657937  3.870474e-02
## 2014-09-30 -0.0061673343 -0.0808566524 -0.0395983871 -0.061260437 -1.389231e-02
## 2014-10-31  0.0105841894  0.0140965813 -0.0026547524  0.068874579  2.327767e-02
## 2014-11-28  0.0065491454 -0.0155414175  0.0006250736  0.004773962  2.710140e-02
## 2014-12-31  0.0014750586 -0.0404421868 -0.0407465766  0.025295704 -2.539622e-03
## 2015-01-30  0.0203150371 -0.0068956229  0.0062263686 -0.054627952 -3.007684e-02
## 2015-02-27 -0.0089881695  0.0431359184  0.0614506437  0.056914620  5.468141e-02
## 2015-03-31  0.0037403241 -0.0150862344 -0.0143887809  0.010156422 -1.583014e-02
## 2015-04-30 -0.0032328335  0.0662814221  0.0358166738 -0.018417837  9.786096e-03
## 2015-05-29 -0.0043838332 -0.0419110980  0.0019524833  0.007509873  1.277413e-02
## 2015-06-30 -0.0108253644 -0.0297462661 -0.0316788973  0.004171328 -2.052116e-02
## 2015-07-31  0.0085844389 -0.0651784670  0.0201146780 -0.027375187  2.233778e-02
## 2015-08-31 -0.0033639886 -0.0925123720 -0.0771525052 -0.047268272 -6.288674e-02
## 2015-09-30  0.0080818303 -0.0318248313 -0.0451949278 -0.038465001 -2.584712e-02
## 2015-10-30  0.0006853663  0.0618083342  0.0640261035  0.063589922  8.163506e-02
## 2015-11-30 -0.0038982201 -0.0255603443 -0.0075560265  0.024415157  3.648443e-03
## 2015-12-31 -0.0019189459 -0.0389473005 -0.0235950341 -0.052157051 -1.743350e-02
## 2016-01-29  0.0123294527 -0.0516365772 -0.0567578138 -0.060307025 -5.106882e-02
## 2016-02-29  0.0088321572 -0.0082115852 -0.0339139975  0.020605402 -8.262119e-04
## 2016-03-31  0.0087086832  0.1218788723  0.0637457067  0.089910366  6.510028e-02
## 2016-04-29  0.0025461940  0.0040794208  0.0219752355  0.021044190  3.933665e-03
## 2016-05-31  0.0001354312 -0.0376284873 -0.0008560276  0.004397029  1.686812e-02
## 2016-06-30  0.0191668605  0.0445822832 -0.0244914914  0.008292355  3.469884e-03
## 2016-07-29  0.0054295214  0.0524419934  0.0390000887  0.049348220  3.582208e-02
## 2016-08-31 -0.0021561516  0.0087988278  0.0053269936  0.011261352  1.196712e-03
## 2016-09-30  0.0005159681  0.0248725671  0.0132790411  0.008614743  5.775862e-05
## 2016-10-31 -0.0082049209 -0.0083121413 -0.0224038310 -0.038134961 -1.748885e-02
## 2016-11-30 -0.0259897503 -0.0451616758 -0.0179744583  0.125246227  3.617617e-02
## 2016-12-30  0.0025379605 -0.0025301957  0.0267030702  0.031491946  2.006892e-02
## 2017-01-31  0.0021261007  0.0644315990  0.0323818273 -0.012143851  1.773651e-02
## 2017-02-28  0.0064378170  0.0172578478  0.0118363775  0.013428683  3.853934e-02
## 2017-03-31 -0.0005529662  0.0361891761  0.0318057544 -0.006533174  1.249290e-03
## 2017-04-28  0.0090293354  0.0168662190  0.0239522527  0.005108086  9.876988e-03
## 2017-05-31  0.0068473361  0.0280599501  0.0348101874 -0.022862846  1.401435e-02
## 2017-06-30 -0.0001826585  0.0092236192  0.0029560598  0.029151886  6.354619e-03
## 2017-07-31  0.0033344765  0.0565947263  0.0261877950  0.007481575  2.034560e-02
## 2017-08-31  0.0093696180  0.0232437087 -0.0004485126 -0.027564747  2.913726e-03
## 2017-09-29 -0.0057330210 -0.0004462721  0.0233429060  0.082321564  1.994902e-02
## 2017-10-31  0.0009781557  0.0322786091  0.0166537666  0.005916133  2.329078e-02
## 2017-11-30 -0.0014836524 -0.0038970433  0.0068700619  0.036913170  3.010825e-02
## 2017-12-29  0.0047401380  0.0369252818  0.0133983571 -0.003731152  1.205462e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398389e-05 0.0001042088 4.178082e-05 -0.0000781217 -9.031797e-06
## EEM  1.042088e-04 0.0017547083 1.039016e-03  0.0006437718  6.795411e-04
## EFA  4.178082e-05 0.0010390156 1.064239e-03  0.0006490300  6.975402e-04
## IJS -7.812170e-05 0.0006437718 6.490300e-04  0.0015654487  8.290241e-04
## SPY -9.031797e-06 0.0006795411 6.975402e-04  0.0008290241  7.408269e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347488
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874014 0.009257136 0.005815635 0.005684464 0.002330247
rowSums(component_contribution)
## [1] 0.02347488
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311753 -0.0029354841  0.0366064478  0.052133476  4.992261e-02
## 2013-02-28  0.0058912346 -0.0231055201 -0.0129696694  0.016175319  1.267831e-02
## 2013-03-28  0.0009849994 -0.0102350379  0.0129696694  0.040258336  3.726812e-02
## 2013-04-30  0.0096393165  0.0120848714  0.0489677331  0.001221917  1.903029e-02
## 2013-05-31 -0.0202143132 -0.0494832470 -0.0306555723  0.041976532  2.333506e-02
## 2013-06-28 -0.0157779818 -0.0547282986 -0.0271444699 -0.001402890 -1.343394e-02
## 2013-07-31  0.0026878782  0.0131596068  0.0518601944  0.063541012  5.038561e-02
## 2013-08-30 -0.0082980387 -0.0257054581 -0.0197463287 -0.034743171 -3.045106e-02
## 2013-09-30  0.0111432151  0.0695887396  0.0753385173  0.063873387  3.115566e-02
## 2013-10-31  0.0082922475  0.0408610462  0.0320818277  0.034234476  4.526638e-02
## 2013-11-29 -0.0025098794 -0.0025939880  0.0054496043  0.041661092  2.920735e-02
## 2013-12-31 -0.0055830616 -0.0040741678  0.0215280253  0.012892252  2.559617e-02
## 2014-01-31  0.0152919117 -0.0903224452 -0.0534133163 -0.035775278 -3.588472e-02
## 2014-02-28  0.0037567610  0.0332203232  0.0595051246  0.045257345  4.451045e-02
## 2014-03-31 -0.0014818965  0.0380217395 -0.0046026585  0.013315014  8.261281e-03
## 2014-04-30  0.0081835274  0.0077728675  0.0165293759 -0.023184273  6.927492e-03
## 2014-05-30  0.0117209376  0.0290908548  0.0158282324  0.006205572  2.294116e-02
## 2014-06-30 -0.0005749806  0.0237339757  0.0091655973  0.037718736  2.043482e-02
## 2014-07-31 -0.0025123686  0.0135558042 -0.0263795824 -0.052009486 -1.352884e-02
## 2014-08-29  0.0114310294  0.0279045008  0.0018002621  0.043657937  3.870474e-02
## 2014-09-30 -0.0061673343 -0.0808566524 -0.0395983871 -0.061260437 -1.389231e-02
## 2014-10-31  0.0105841894  0.0140965813 -0.0026547524  0.068874579  2.327767e-02
## 2014-11-28  0.0065491454 -0.0155414175  0.0006250736  0.004773962  2.710140e-02
## 2014-12-31  0.0014750586 -0.0404421868 -0.0407465766  0.025295704 -2.539622e-03
## 2015-01-30  0.0203150371 -0.0068956229  0.0062263686 -0.054627952 -3.007684e-02
## 2015-02-27 -0.0089881695  0.0431359184  0.0614506437  0.056914620  5.468141e-02
## 2015-03-31  0.0037403241 -0.0150862344 -0.0143887809  0.010156422 -1.583014e-02
## 2015-04-30 -0.0032328335  0.0662814221  0.0358166738 -0.018417837  9.786096e-03
## 2015-05-29 -0.0043838332 -0.0419110980  0.0019524833  0.007509873  1.277413e-02
## 2015-06-30 -0.0108253644 -0.0297462661 -0.0316788973  0.004171328 -2.052116e-02
## 2015-07-31  0.0085844389 -0.0651784670  0.0201146780 -0.027375187  2.233778e-02
## 2015-08-31 -0.0033639886 -0.0925123720 -0.0771525052 -0.047268272 -6.288674e-02
## 2015-09-30  0.0080818303 -0.0318248313 -0.0451949278 -0.038465001 -2.584712e-02
## 2015-10-30  0.0006853663  0.0618083342  0.0640261035  0.063589922  8.163506e-02
## 2015-11-30 -0.0038982201 -0.0255603443 -0.0075560265  0.024415157  3.648443e-03
## 2015-12-31 -0.0019189459 -0.0389473005 -0.0235950341 -0.052157051 -1.743350e-02
## 2016-01-29  0.0123294527 -0.0516365772 -0.0567578138 -0.060307025 -5.106882e-02
## 2016-02-29  0.0088321572 -0.0082115852 -0.0339139975  0.020605402 -8.262119e-04
## 2016-03-31  0.0087086832  0.1218788723  0.0637457067  0.089910366  6.510028e-02
## 2016-04-29  0.0025461940  0.0040794208  0.0219752355  0.021044190  3.933665e-03
## 2016-05-31  0.0001354312 -0.0376284873 -0.0008560276  0.004397029  1.686812e-02
## 2016-06-30  0.0191668605  0.0445822832 -0.0244914914  0.008292355  3.469884e-03
## 2016-07-29  0.0054295214  0.0524419934  0.0390000887  0.049348220  3.582208e-02
## 2016-08-31 -0.0021561516  0.0087988278  0.0053269936  0.011261352  1.196712e-03
## 2016-09-30  0.0005159681  0.0248725671  0.0132790411  0.008614743  5.775862e-05
## 2016-10-31 -0.0082049209 -0.0083121413 -0.0224038310 -0.038134961 -1.748885e-02
## 2016-11-30 -0.0259897503 -0.0451616758 -0.0179744583  0.125246227  3.617617e-02
## 2016-12-30  0.0025379605 -0.0025301957  0.0267030702  0.031491946  2.006892e-02
## 2017-01-31  0.0021261007  0.0644315990  0.0323818273 -0.012143851  1.773651e-02
## 2017-02-28  0.0064378170  0.0172578478  0.0118363775  0.013428683  3.853934e-02
## 2017-03-31 -0.0005529662  0.0361891761  0.0318057544 -0.006533174  1.249290e-03
## 2017-04-28  0.0090293354  0.0168662190  0.0239522527  0.005108086  9.876988e-03
## 2017-05-31  0.0068473361  0.0280599501  0.0348101874 -0.022862846  1.401435e-02
## 2017-06-30 -0.0001826585  0.0092236192  0.0029560598  0.029151886  6.354619e-03
## 2017-07-31  0.0033344765  0.0565947263  0.0261877950  0.007481575  2.034560e-02
## 2017-08-31  0.0093696180  0.0232437087 -0.0004485126 -0.027564747  2.913726e-03
## 2017-09-29 -0.0057330210 -0.0004462721  0.0233429060  0.082321564  1.994902e-02
## 2017-10-31  0.0009781557  0.0322786091  0.0166537666  0.005916133  2.329078e-02
## 2017-11-30 -0.0014836524 -0.0038970433  0.0068700619  0.036913170  3.010825e-02
## 2017-12-29  0.0047401380  0.0369252818  0.0133983571 -0.003731152  1.205462e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
   
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1 ))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1 )) %>%
    
    # Transform to long from
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") 

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1 )) %>%
    
    # Transform to long from
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    # Add Weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight",
         y = "percent",
         x = NULL)

6 Rolling Component Contribution