Create table one

From Ewen Harrison - Sarah Elliot - The University of Edinburgh

[https://media.ed.ac.uk/media/HealthyR+demoA+Create+table+one/1_ivx5th4k]

Day 09 of HealthyR demo

Create table one

#Task 1 Have a quick look at your data

## Rows: 207
## Columns: 7
## $ time      <dbl> 10, 30, 35, 99, 185, 204, 210, 232, 232, 279, 295, 355, 386,…
## $ status    <dbl> 3, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, …
## $ sex       <dbl> 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, …
## $ age       <dbl> 76, 56, 41, 71, 52, 28, 77, 60, 49, 68, 53, 64, 68, 63, 14, …
## $ year      <dbl> 1972, 1968, 1977, 1968, 1965, 1971, 1972, 1974, 1968, 1971, …
## $ thickness <dbl> 6.76, 0.65, 1.34, 2.90, 12.08, 4.84, 5.16, 3.22, 12.88, 7.41…
## $ ulcer     <dbl> 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $Continuous
##               label var_type   n missing_n missing_percent   mean     sd    min
## time           time    <dbl> 205         2             1.0 2152.8 1122.1   10.0
## status       status    <dbl> 207         0             0.0    1.8    0.6    1.0
## sex             sex    <dbl> 205         2             1.0    0.4    0.5    0.0
## age             age    <dbl> 207         0             0.0   52.5   16.6    4.0
## year           year    <dbl> 205         2             1.0 1969.9    2.6 1962.0
## thickness thickness    <dbl> 206         1             0.5    2.9    3.0    0.1
## ulcer         ulcer    <dbl> 206         1             0.5    0.4    0.5    0.0
##           quartile_25 median quartile_75    max
## time           1525.0 2005.0      3042.0 5565.0
## status            1.0    2.0         2.0    3.0
## sex               0.0    0.0         1.0    1.0
## age              42.0   54.0        65.0   95.0
## year           1968.0 1970.0      1972.0 1977.0
## thickness         1.0    1.9         3.6   17.4
## ulcer             0.0    0.0         1.0    1.0
## 
## $Categorical
## data frame with 0 columns and 207 rows

Recode

## Rows: 207
## Columns: 7
## $ time      <dbl> 10, 30, 35, 99, 185, 204, 210, 232, 232, 279, 295, 355, 386,…
## $ status    <dbl> 3, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, …
## $ sex       <fct> Male, Male, Male, Female, Male, Male, Male, Female, Male, Fe…
## $ age       <dbl> 76, 56, 41, 71, 52, 28, 77, 60, 49, 68, 53, 64, 68, 63, 14, …
## $ year      <dbl> 1972, 1968, 1977, 1968, 1965, 1971, 1972, 1974, 1968, 1971, …
## $ thickness <dbl> 6.76, 0.65, 1.34, 2.90, 12.08, 4.84, 5.16, 3.22, 12.88, 7.41…
## $ ulcer     <fct> Present, Absent, Absent, Absent, Present, Present, Present, …
## $Continuous
##               label var_type   n missing_n missing_percent   mean     sd    min
## time           time    <dbl> 205         2             1.0 2152.8 1122.1   10.0
## status       status    <dbl> 207         0             0.0    1.8    0.6    1.0
## age             age    <dbl> 207         0             0.0   52.5   16.6    4.0
## year           year    <dbl> 205         2             1.0 1969.9    2.6 1962.0
## thickness thickness    <dbl> 206         1             0.5    2.9    3.0    0.1
##           quartile_25 median quartile_75    max
## time           1525.0 2005.0      3042.0 5565.0
## status            1.0    2.0         2.0    3.0
## age              42.0   54.0        65.0   95.0
## year           1968.0 1970.0      1972.0 1977.0
## thickness         1.0    1.9         3.6   17.4
## 
## $Categorical
##       label var_type   n missing_n missing_percent levels_n
## sex     sex    <fct> 205         2             1.0        2
## ulcer ulcer    <fct> 206         1             0.5        2
##                                 levels levels_count      levels_percent
## sex      "Female", "Male", "(Missing)"   126, 79, 2 60.87, 38.16,  0.97
## ulcer "Absent", "Present", "(Missing)"   115, 91, 1 55.56, 43.96,  0.48

Label variables

Task 2

Research Question: Is there an association between presence of ulceration and death from melanoma

Create an example of table 1

##           label    levels      Absent     Present
##     Age (years) Mean (SD) 50.6 (15.9) 54.8 (17.3)
##  Sex (at birth)    Female   79 (68.7)   47 (52.2)
##                      Male   36 (31.3)   43 (47.8)

Task 3

Use the missing data dataset - how can you change your table to show/hide missingness

##           label     Total N    levels      Absent     Present
##     Total N (%)                        115 (55.8)   91 (44.2)
##     Age (years) 206 (100.0) Mean (SD) 50.6 (15.9) 54.8 (17.3)
##  Sex (at birth)  205 (99.5)    Female   79 (68.7)   47 (51.6)
##                                  Male   36 (31.3)   43 (47.3)
##                             (Missing)     0 (0.0)     1 (1.1)

Task 4

Can you change the labels? Can you add a label for the dependent variable?

##  Dependent: ulcer     Total N Missing N                Absent     Present
##       Total N (%)                                  115 (55.8)   91 (44.2)
##       Age (years) 206 (100.0)         0 Mean (SD) 50.6 (15.9) 54.8 (17.3)
##    Sex (at birth)  205 (99.5)         1    Female   79 (68.7)   47 (51.6)
##                                              Male   36 (31.3)   43 (47.3)
##                                         (Missing)     0 (0.0)     1 (1.1)

Task 5

Do you include p-values?

##  Dependent: ulcer     Total N Missing N                Absent     Present     p
##       Total N (%)                                  115 (55.8)   91 (44.2)      
##       Age (years) 206 (100.0)         0 Mean (SD) 50.6 (15.9) 54.8 (17.3) 0.070
##    Sex (at birth)  205 (99.5)         1    Female   79 (68.7)   47 (51.6) 0.024
##                                              Male   36 (31.3)   43 (47.3)      
##                                         (Missing)     0 (0.0)     1 (1.1)

Task 6

Export

Dependent: ulcer Total N Missing N Absent Present p
Total N (%) 115 (55.8) 91 (44.2)
Age (years) 206 (100.0) 0 Mean (SD) 50.6 (15.9) 54.8 (17.3) 0.070
Sex (at birth) 205 (99.5) 1 Female 79 (68.7) 47 (51.6) 0.024
Male 36 (31.3) 43 (47.3)
(Missing) 0 (0.0) 1 (1.1)