# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("MSFT", "NVDA", "JPM")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "JPM" "MSFT" "NVDA"
# weights
weights <- c(0.4, 0.3, 0.3)
weights
## [1] 0.4 0.3 0.3
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 JPM 0.4
## 2 MSFT 0.3
## 3 NVDA 0.3
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0380
## 2 2013-02-28 0.0333
## 3 2013-03-28 0.000498
## 4 2013-04-30 0.0803
## 5 2013-05-31 0.0775
## 6 2013-06-28 -0.0256
## 7 2013-07-31 0.00859
## 8 2013-08-30 -0.0148
## 9 2013-09-30 0.0240
## 10 2013-10-31 0.0132
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.217
# Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "kurtosis",
title = paste0("Rolling ", window, "Month Kurtosis")) +
annotate(geom = "text", x = as.Date("2016-07-01"), y = 3,
size = 5, color = "red",
label = str_glue( " Downside risk has stayed low"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
For the most part my portfolio’s downside risk has decreased over time. Recently it showed some increase, but appears to be going down again.