# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("MSFT", "NVDA", "JPM")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "JPM" "MSFT" "NVDA"
# weights
weights <- c(0.4, 0.3, 0.3)
weights
## [1] 0.4 0.3 0.3
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 JPM 0.4
## 2 MSFT 0.3
## 3 NVDA 0.3
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0380
## 2 2013-02-28 0.0333
## 3 2013-03-28 0.000498
## 4 2013-04-30 0.0803
## 5 2013-05-31 0.0775
## 6 2013-06-28 -0.0256
## 7 2013-07-31 0.00859
## 8 2013-08-30 -0.0148
## 9 2013-09-30 0.0240
## 10 2013-10-31 0.0132
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.069
# calculate sd of portfolio returns
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
# Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio,
"ext_neg",
"not_ext_neg")) %>%
ggplot(aes(x= returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003) +
scale_x_continuous(breaks = seq(-.06,.06,.02))
labs(x = "monthly returns")
## $x
## [1] "monthly returns"
##
## attr(,"class")
## [1] "labels"
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 4 × 2
## asset skew
## <chr> <dbl>
## 1 JPM -0.330
## 2 MSFT 0.0825
## 3 NVDA 0.899
## 4 portfolio 0.0690
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "portfolio")) +
labs(y = "skewness")
# Transform data: calculate rolling skewness
rolling_skew_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = 24,
FUN = skewness,
col_rename = "Skew") %>%
select(-returns) %>%
na.omit()
# Plot
rolling_skew_tbl %>%
ggplot(aes(x = date, y = Skew))+
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
# Formatting
scale_y_continuous(limits = c(-1,1), breaks = seq(-1,1,0.2)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(y = "Skewness",
x = NULL,
title = "Rolling 24-Month Skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
The only asset that would produce extreme positive returns in comparison to my portfolio would be NVDA because of its high skewness.