var2022 <- load_variables(2022,"acs1/subject")
Age Population Brackets in California
age22 <- c(age85plus="S0101_C01_019", age80_84="S0101_C01_018",age75_79="S0101_C01_017",age70_74="S0101_C01_016",
age65_69="S0101_C01_015",age60_64="S0101_C01_014",age55_59="S0101_C01_013",age50_54="S0101_C01_012",
age45_49="S0101_C01_011",age40_44="S0101_C01_010",age35_39="S0101_C01_009",age30_34="S0101_C01_008",
age25_29="S0101_C01_007",age20_24="S0101_C01_006",age15_19="S0101_C01_005",age10_14="S0101_C01_004",
age5_9="S0101_C01_003",newborn_4="S0101_C01_002")
county2022 <- get_acs(geography = "county", variables = age22, summary_var = "S0101_C01_001",
year = 2022, state = "CA") %>%
mutate(percent=round(100*(estimate/summary_est), digits=0)) %>%
arrange(as.numeric(GEOID))
## Getting data from the 2018-2022 5-year ACS
## Using the ACS Subject Tables
oc2022 <- county2022 %>% filter(GEOID=="06059")
oc2022 %>% select(variable,estimate,percent) %>%
gt() %>% gt_color_rows(percent) %>% gt_theme_nytimes() %>%
tab_header(
title = md("Age Population Brackets in Orange County, CA "),
subtitle = md("by 2022 ACS Census "))
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
variable |
estimate |
percent |
newborn_4 |
174484 |
5 |
age5_9 |
178182 |
6 |
age10_14 |
203883 |
6 |
age15_19 |
210803 |
7 |
age20_24 |
210198 |
7 |
age25_29 |
229756 |
7 |
age30_34 |
221487 |
7 |
age35_39 |
210163 |
7 |
age40_44 |
203571 |
6 |
age45_49 |
212412 |
7 |
age50_54 |
221690 |
7 |
age55_59 |
216048 |
7 |
age60_64 |
194191 |
6 |
age65_69 |
152776 |
5 |
age70_74 |
125722 |
4 |
age75_79 |
84613 |
3 |
age80_84 |
57336 |
2 |
age85plus |
67912 |
2 |
Male_Age Population Brackets in California
age22male <- c(age85plus="S0101_C03_019", age80_84="S0101_C03_018",age75_79="S0101_C03_017",age70_74="S0101_C03_016",
age65_69="S0101_C03_015",age60_64="S0101_C03_014",age55_59="S0101_C03_013",age50_54="S0101_C03_012",
age45_49="S0101_C03_011",age40_44="S0101_C03_010",age35_39="S0101_C03_009",age30_34="S0101_C03_008",
age25_29="S0101_C03_007",age20_24="S0101_C03_006",age15_19="S0101_C03_005",age10_14="S0101_C03_004",
age5_9="S0101_C03_003",newborn_4="S0101_C03_002")
county2022 <- get_acs(geography = "county", variables = age22male, summary_var = "S0101_C03_001",
year = 2022, state = "CA") %>%
mutate(percent=round(100*(estimate/summary_est), digits=0)) %>%
arrange(as.numeric(GEOID))
## Getting data from the 2018-2022 5-year ACS
## Using the ACS Subject Tables
oc2022male <- county2022 %>% filter(GEOID=="06059")
oc2022male %>% select(variable,estimate,percent) %>%
gt() %>% gt_color_rows(percent) %>% gt_theme_nytimes() %>%
tab_header(
title = md("Male Populations by Age Brackets in Orange County, CA "),
subtitle = md("by 2022 ACS Census "))
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
variable |
estimate |
percent |
newborn_4 |
89532 |
6 |
age5_9 |
91030 |
6 |
age10_14 |
104772 |
7 |
age15_19 |
107020 |
7 |
age20_24 |
106390 |
7 |
age25_29 |
118146 |
7 |
age30_34 |
113974 |
7 |
age35_39 |
108158 |
7 |
age40_44 |
100609 |
6 |
age45_49 |
105149 |
7 |
age50_54 |
110897 |
7 |
age55_59 |
108261 |
7 |
age60_64 |
96016 |
6 |
age65_69 |
72351 |
5 |
age70_74 |
58103 |
4 |
age75_79 |
37722 |
2 |
age80_84 |
24415 |
2 |
age85plus |
25468 |
2 |
Female_Age Population Brackets in California
age22female <- c(age85plus="S0101_C05_019",age80_84="S0101_C05_018",age75_79="S0101_C05_017",age70_74="S0101_C05_016",
age65_69="S0101_C05_015",age60_64="S0101_C05_014",age55_59="S0101_C05_013",age50_54="S0101_C05_012",
age45_49="S0101_C05_011",age40_44="S0101_C05_010",age35_39="S0101_C05_009",age30_34="S0101_C05_008",
age25_29="S0101_C05_007",age20_24="S0101_C05_006",age15_19="S0101_C05_005",age10_14="S0101_C05_004",
age5_9="S0101_C05_003",newborn_4="S0101_C05_002")
county2022 <- get_acs(geography = "county", variables = age22female, summary_var = "S0101_C03_001",
year = 2022, state = "CA") %>%
mutate(percent=round(100*(estimate/summary_est), digits=0)) %>%
arrange(as.numeric(GEOID))
## Getting data from the 2018-2022 5-year ACS
## Using the ACS Subject Tables
oc2022female <- county2022 %>% filter(GEOID=="06059")
oc2022gender <- select(oc2022male,c(variable, estimate))
oc2022gender$female <- oc2022female$estimate
oc2022gender$male <- oc2022gender$estimate
oc2022gender$difference <- oc2022gender$male - oc2022gender$female
#---------
oc2022gender %>% select(variable,male,female,difference) %>%
gt() %>% gt_color_rows(difference) %>% gt_theme_nytimes() %>%
tab_header(
title = md("Age Population by Gender in Orange County, CA "),
subtitle = md("by 2022 ACS Census "))
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
variable |
male |
female |
difference |
newborn_4 |
89532 |
84952 |
4580 |
age5_9 |
91030 |
87152 |
3878 |
age10_14 |
104772 |
99111 |
5661 |
age15_19 |
107020 |
103783 |
3237 |
age20_24 |
106390 |
103808 |
2582 |
age25_29 |
118146 |
111610 |
6536 |
age30_34 |
113974 |
107513 |
6461 |
age35_39 |
108158 |
102005 |
6153 |
age40_44 |
100609 |
102962 |
-2353 |
age45_49 |
105149 |
107263 |
-2114 |
age50_54 |
110897 |
110793 |
104 |
age55_59 |
108261 |
107787 |
474 |
age60_64 |
96016 |
98175 |
-2159 |
age65_69 |
72351 |
80425 |
-8074 |
age70_74 |
58103 |
67619 |
-9516 |
age75_79 |
37722 |
46891 |
-9169 |
age80_84 |
24415 |
32921 |
-8506 |
age85plus |
25468 |
42444 |
-16976 |