open question: From your expert point of view, could you elaborate on the potential environmental impacts of soft robots, considering aspects like energy efficiency, and end-of-life disposal, particularly in comparison to rigid robots?
error: two times I surved “autonomous” (German: selbstständig, autonom)
######################################### get data set with all ratings########################################dat_ratings <-na.omit(dat[, c("ID", "Attribut", "English_translation", "ratingLivmats", "ratingValence")])dat_ratings$ratingLivmats <-as.numeric(dat_ratings$ratingLivmats)dat_ratings$ratingValence <-as.numeric(dat_ratings$ratingValence)if(nrow(dat_ratings) /32==nrow(questionnaire)){print("Everything worked fine")}
## savexlsx::write.xlsx2(x = summary_ratings, file ="outputs/summary_ratings.xlsx")######################################### get words of basal attributes => 6########################################summary_ratings$English_translation[summary_ratings$mean_ratingLivmats >=6]
# Calculate mean and standard deviationmu <-mean(dat_ratings$ratingLivmats, na.rm =TRUE)sigma <-sd(dat_ratings$ratingLivmats, na.rm =TRUE)# Create the histogram with normal distribution overlayggplot(dat_ratings, aes(x = ratingLivmats)) +geom_histogram(aes(y = ..density..), binwidth =1, fill ="dodgerblue3", color ="white") +stat_function(fun = dnorm, args =list(mean = mu, sd = sigma), color ="red") +labs(x ="Mean Relevancy Ratings", y ="Density") +theme_apa() +theme(plot.title =element_text(hjust =0.5)) +geom_vline(xintercept =mean(dat_ratings$ratingLivmats, na.rm =TRUE), col ="red")
Plot valence ratings:
# Calculate mean and standard deviationmu <-mean(dat_ratings$ratingValence, na.rm =TRUE)sigma <-sd(dat_ratings$ratingValence, na.rm =TRUE)# Create the histogram with normal distribution overlayggplot(dat_ratings, aes(x = ratingValence)) +geom_histogram(aes(y = ..density..), binwidth =1, fill ="dodgerblue3", color ="white") +stat_function(fun = dnorm, args =list(mean = mu, sd = sigma), color ="red") +labs(x ="Mean Valence Ratings", y ="Density") +theme_apa() +theme(plot.title =element_text(hjust =0.5)) +geom_vline(xintercept =mean(dat_ratings$ratingValence, na.rm =TRUE), col ="red")
for Research Area D (Societal challenges and Sustainability):
table(unlist(dat$toolsData))
accaptance in society adaptivty agency
5 1 1
change in society critical evaluation individual vs. society
1 1 4
local vs. worldwide politics sustainability
2 3 2
social benefits and risks of soft robots
open questions: