library(aod)
library(ggplot2)

Examples

Example 1. Suppose that we are interested in the factors that influence whether a political candidate wins an election. The outcome (response) variable is binary (0/1); win or lose. The predictor variables of interest are the amount of money spent on the campaign, the amount of time spent campaigning negatively and whether or not the candidate is an incumbent.

Example 2. A researcher is interested in how variables, such as GRE (Graduate Record Exam scores), GPA (grade point average) and prestige of the undergraduate institution, effect admission into graduate school. The response variable, admit/don’t admit, is a binary variable.

Description of the data

For our data analysis below, we are going to expand on Example 2 about getting into graduate school. We have generated hypothetical data, which can be obtained from our website from within R. Note that R requires forward slashes (/) not back slashes () when specifying a file location even if the file is on your hard drive.

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
## view the first few rows of the data
head(mydata)
  admit gre  gpa rank
1     0 380 3.61    3
2     1 660 3.67    3
3     1 800 4.00    1
4     1 640 3.19    4
5     0 520 2.93    4
6     1 760 3.00    2

This dataset has a binary response (outcome, dependent) variable called admit. There are three predictor variables: gre, gpa and rank. We will treat the variables gre and gpa as continuous. The variable rank takes on the values 1 through 4. Institutions with a rank of 1 have the highest prestige, while those with a rank of 4 have the lowest. We can get basic descriptives for the entire data set by using summary. To get the standard deviations, we use sapply to apply the sd function to each variable in the dataset.

summary(mydata)
     admit             gre             gpa             rank      
 Min.   :0.0000   Min.   :220.0   Min.   :2.260   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.:520.0   1st Qu.:3.130   1st Qu.:2.000  
 Median :0.0000   Median :580.0   Median :3.395   Median :2.000  
 Mean   :0.3175   Mean   :587.7   Mean   :3.390   Mean   :2.485  
 3rd Qu.:1.0000   3rd Qu.:660.0   3rd Qu.:3.670   3rd Qu.:3.000  
 Max.   :1.0000   Max.   :800.0   Max.   :4.000   Max.   :4.000  
sapply(mydata, sd)
      admit         gre         gpa        rank 
  0.4660867 115.5165364   0.3805668   0.9444602 
xtabs(~admit + rank, data = mydata)
     rank
admit  1  2  3  4
    0 28 97 93 55
    1 33 54 28 12

Analysis methods you might consider

Below is a list of some analysis methods you may have encountered. Some of the methods listed are quite reasonable while others have either fallen out of favor or have limitations.

Using the logit model

The code below estimates a logistic regression model using the glm (generalized linear model) function. First, we convert rank to a factor to indicate that rank should be treated as a categorical variable.

mydata$rank <- factor(mydata$rank)
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

Since we gave our model a name (mylogit), R will not produce any output from our regression. In order to get the results we use the summary command:

summary(mylogit)

Call:
glm(formula = admit ~ gre + gpa + rank, family = "binomial", 
    data = mydata)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.6268  -0.8662  -0.6388   1.1490   2.0790  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -3.989979   1.139951  -3.500 0.000465 ***
gre          0.002264   0.001094   2.070 0.038465 *  
gpa          0.804038   0.331819   2.423 0.015388 *  
rank2       -0.675443   0.316490  -2.134 0.032829 *  
rank3       -1.340204   0.345306  -3.881 0.000104 ***
rank4       -1.551464   0.417832  -3.713 0.000205 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 458.52  on 394  degrees of freedom
AIC: 470.52

Number of Fisher Scoring iterations: 4

We can use the confint function to obtain confidence intervals for the coefficient estimates. Note that for logistic models, confidence intervals are based on the profiled log-likelihood function. We can also get CIs based on just the standard errors by using the default method.

confint(mylogit)
                    2.5 %       97.5 %
(Intercept) -6.2716202334 -1.792547080
gre          0.0001375921  0.004435874
gpa          0.1602959439  1.464142727
rank2       -1.3008888002 -0.056745722
rank3       -2.0276713127 -0.670372346
rank4       -2.4000265384 -0.753542605
confint.default(mylogit)
                    2.5 %       97.5 %
(Intercept) -6.2242418514 -1.755716295
gre          0.0001202298  0.004408622
gpa          0.1536836760  1.454391423
rank2       -1.2957512650 -0.055134591
rank3       -2.0169920597 -0.663415773
rank4       -2.3703986294 -0.732528724

We can test for an overall effect of rank using the wald.test function of the aod library. The order in which the coefficients are given in the table of coefficients is the same as the order of the terms in the model. This is important because the wald.test function refers to the coefficients by their order in the model. We use the wald.test function. b supplies the coefficients, while Sigma supplies the variance covariance matrix of the error terms, finally Terms tells R which terms in the model are to be tested, in this case, terms 4, 5, and 6, are the three terms for the levels of rank.

wald.test(b = coef(mylogit), Sigma = vcov(mylogit), Terms = 4:6)
Wald test:
----------

Chi-squared test:
X2 = 20.9, df = 3, P(> X2) = 0.00011

The chi-squared test statistic of 20.9, with three degrees of freedom is associated with a p-value of 0.00011 indicating that the overall effect of rank is statistically significant.

We can also test additional hypotheses about the differences in the coefficients for the different levels of rank. Below we test that the coefficient for rank=2 is equal to the coefficient for rank=3. The first line of code below creates a vector l that defines the test we want to perform. In this case, we want to test the difference (subtraction) of the terms for rank=2 and rank=3 (i.e., the 4th and 5th terms in the model). To contrast these two terms, we multiply one of them by 1, and the other by -1. The other terms in the model are not involved in the test, so they are multiplied by 0. The second line of code below uses L=l to tell R that we wish to base the test on the vector l (rather than using the Terms option as we did above).

l <- cbind(0, 0, 0, 1, -1, 0)
wald.test(b = coef(mylogit), Sigma = vcov(mylogit), L = l)
Wald test:
----------

Chi-squared test:
X2 = 5.5, df = 1, P(> X2) = 0.019

The chi-squared test statistic of 5.5 with 1 degree of freedom is associated with a p-value of 0.019, indicating that the difference between the coefficient for rank=2 and the coefficient for rank=3 is statistically significant.

You can also exponentiate the coefficients and interpret them as odds-ratios. R will do this computation for you. To get the exponentiated coefficients, you tell R that you want to exponentiate (exp), and that the object you want to exponentiate is called coefficients and it is part of mylogit (coef(mylogit)). We can use the same logic to get odds ratios and their confidence intervals, by exponentiating the confidence intervals from before. To put it all in one table, we use cbind to bind the coefficients and confidence intervals column-wise.

exp(coef(mylogit))
(Intercept)         gre         gpa       rank2       rank3       rank4 
  0.0185001   1.0022670   2.2345448   0.5089310   0.2617923   0.2119375 
exp(cbind(OR = coef(mylogit), confint(mylogit)))
                   OR       2.5 %    97.5 %
(Intercept) 0.0185001 0.001889165 0.1665354
gre         1.0022670 1.000137602 1.0044457
gpa         2.2345448 1.173858216 4.3238349
rank2       0.5089310 0.272289674 0.9448343
rank3       0.2617923 0.131641717 0.5115181
rank4       0.2119375 0.090715546 0.4706961

Now we can say that for a one unit increase in gpa, the odds of being admitted to graduate school (versus not being admitted) increase by a factor of 2.23.

You can also use predicted probabilities to help you understand the model. Predicted probabilities can be computed for both categorical and continuous predictor variables. In order to create predicted probabilities we first need to create a new data frame with the values we want the independent variables to take on to create our predictions.

We will start by calculating the predicted probability of admission at each value of rank, holding gre and gpa at their means. First we create and view the data frame.

newdata1 <- with(mydata, data.frame(gre = mean(gre), gpa = mean(gpa), rank = factor(1:4)))

newdata1
    gre    gpa rank
1 587.7 3.3899    1
2 587.7 3.3899    2
3 587.7 3.3899    3
4 587.7 3.3899    4
newdata1$rankP <- predict(mylogit, newdata = newdata1, type = "response")
newdata1
    gre    gpa rank     rankP
1 587.7 3.3899    1 0.5166016
2 587.7 3.3899    2 0.3522846
3 587.7 3.3899    3 0.2186120
4 587.7 3.3899    4 0.1846684

In the above output we see that the predicted probability of being accepted into a graduate program is 0.52 for students from the highest prestige undergraduate institutions (rank=1), and 0.18 for students from the lowest ranked institutions (rank=4), holding gre and gpa at their means. We can do something very similar to create a table of predicted probabilities varying the value of gre and rank. We are going to plot these, so we will create 100 values of gre between 200 and 800, at each value of rank (i.e., 1, 2, 3, and 4).

newdata2 <- with(mydata, data.frame(gre = rep(seq(from = 200, to = 800, length.out = 100),
    4), gpa = mean(gpa), rank = factor(rep(1:4, each = 100))))

The code to generate the predicted probabilities (the first line below) is the same as before, except we are also going to ask for standard errors so we can plot a confidence interval. We get the estimates on the link scale and back transform both the predicted values and confidence limits into probabilities.

newdata3 <- cbind(newdata2, predict(mylogit, newdata = newdata2, type = "link",
    se = TRUE))
newdata3 <- within(newdata3, {
    PredictedProb <- plogis(fit)
    LL <- plogis(fit - (1.96 * se.fit))
    UL <- plogis(fit + (1.96 * se.fit))
})

head(newdata3)
       gre    gpa rank        fit    se.fit residual.scale        UL        LL
1 200.0000 3.3899    1 -0.8114870 0.5147714              1 0.5492064 0.1393812
2 206.0606 3.3899    1 -0.7977632 0.5090986              1 0.5498513 0.1423880
3 212.1212 3.3899    1 -0.7840394 0.5034491              1 0.5505074 0.1454429
4 218.1818 3.3899    1 -0.7703156 0.4978239              1 0.5511750 0.1485460
5 224.2424 3.3899    1 -0.7565919 0.4922237              1 0.5518545 0.1516973
6 230.3030 3.3899    1 -0.7428681 0.4866494              1 0.5525464 0.1548966
  PredictedProb
1     0.3075737
2     0.3105042
3     0.3134499
4     0.3164108
5     0.3193867
6     0.3223773

It can also be helpful to use graphs of predicted probabilities to understand and/or present the model. We will use the ggplot2 package for graphing. Below we make a plot with the predicted probabilities, and 95% confidence intervals.

ggplot(newdata3, aes(x = gre, y = PredictedProb)) + geom_ribbon(aes(ymin = LL,
    ymax = UL, fill = rank), alpha = 0.2) + geom_line(aes(colour = rank),
    size = 1)

We may also wish to see measures of how well our model fits. This can be particularly useful when comparing competing models. The output produced by summary(mylogit) included indices of fit (shown below the coefficients), including the null and deviance residuals and the AIC. One measure of model fit is the significance of the overall model. This test asks whether the model with predictors fits significantly better than a model with just an intercept (i.e., a null model). The test statistic is the difference between the residual deviance for the model with predictors and the null model. The test statistic is distributed chi-squared with degrees of freedom equal to the differences in degrees of freedom between the current and the null model (i.e., the number of predictor variables in the model). To find the difference in deviance for the two models (i.e., the test statistic) we can use the command:

with(mylogit, null.deviance - deviance)
[1] 41.45903

The degrees of freedom for the difference between the two models is equal to the number of predictor variables in the mode, and can be obtained using:

with(mylogit, df.null - df.residual)
[1] 5

Finally, the p-value can be obtained using:

with(mylogit, pchisq(null.deviance - deviance, df.null - df.residual, lower.tail = FALSE))
[1] 7.578194e-08

The chi-square of 41.46 with 5 degrees of freedom and an associated p-value of less than 0.001 tells us that our model as a whole fits significantly better than an empty model. This is sometimes called a likelihood ratio test (the deviance residual is -2*log likelihood). To see the model’s log likelihood, we type:

logLik(mylogit)
'log Lik.' -229.2587 (df=6)

Things to consider

Summary

Logistic regression analyzes the relationship between a binary target variable (having two possible outcomes) and one or more independent factors. It uses various predictor variables (continuous or categorical) to classify data points into different categories based on the target variable. This method helps identify key factors (Xi) influencing the dependent variable (Y) and their interaction patterns.