#1

Row

Page Followers

Page Followers by Percent Change

Page Views

# 2

Row

Page Views Percent Change

Engagement Rate

Engagement Rate Percent Change

#3

Row

Click Through Rate

Clicks for Page and Posts

Clicks Percent Change

#4

Row

Number of Posts

Posts by Percent Change

#5

Row

Correlation between Posts and Total Followers


    Pearson's product-moment correlation

data:  linked$Posts and linked$Num_of_Followers
t = 2.1839, df = 9, p-value = 0.05681
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.01751808  0.87832337
sample estimates:
      cor 
0.5885417 

Scatter Plot

Column

Recommendations

Key Findings:

  1. For followers, the total number decreased from 300 (Oct) to 287 (Nov).

  2. There were 18 posts made for November compared to 3 from October.

  3. There is a weak relationship between total followers and posts. Technically, 59% percent of the total followers can be accounted for by the number of posts made.

Actionable Insights:

  1. Post routinely and reliably. For example, one post per week on the same day.

  2. Focus on short-form posts with different messages rather than long-form posts.

  3. Use 2-3 strategic and meaningful hashtags.

---
title: "November LinkedIn OB"
author: "by Alan Lam"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    theme: cosmo
    social: menu
    story_board: FALSE
    source_code: embed
---

```{r setup, include=FALSE}
library(flexdashboard)
library(plotly
        )
theme_set(theme_bw())

linked=readxl::read_excel('LinkedInMonthlyOverview.xlsx',sheet = 'Copy of MonthlyOverview')

```

# #1

## Row

### Page Followers

```{r}
followers1=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(F_Percent_Chng=percent(Followers_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Num_of_Followers,fill=Num_of_Followers)) +
  geom_col()+
  labs(title='Number of Total Followers',y='Count',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(followers1)
```

### Page Followers by Percent Change

```{r}
followers2=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(F_Percent_Chng=percent(Followers_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Followers_Percentage_Change,fill=Followers_Percentage_Change)) +
  geom_col()+
  labs(title='Followers Percent Change',y='Percent',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(followers2)
```

### Page Views

```{r}
page1=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(F_Percent_Chng=percent(Followers_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Page_Views,fill=Page_Views)) +
  geom_col()+
  labs(title='Page VIews',y='Count',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(page1)
```

# \# 2

## Row

### Page Views Percent Change

```{r}
page2=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Views_Percentage_Change,fill=Views_Percentage_Change)) +
  geom_col()+
  labs(title='Page Views Percent Change',y='Percent',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(page2)
```

### Engagement Rate

```{r}
engage1=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = `Engagement Rate`,fill=`Engagement Rate`)) +
  geom_col()+
  labs(title='Engagement Rate',y='Percent',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(engage1)
```

### Engagement Rate Percent Change

```{r}
engage2=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Engagement_Percent_Chng=percent(Engagement_Percent_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Engagement_Percent_Change,fill=Engagement_Percent_Change)) +
  geom_col()+
  labs(title='Engagement Rate Percent Change',y='Percent',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(engage2)
```

# #3

## Row

### Click Through Rate

```{r}
click1=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Click_Thru_Rate,fill=Click_Thru_Rate)) +
  geom_col()+
  labs(title='Click Through Rate',y='Percent',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(click1)
```

### Clicks for Page and Posts

```{r}
click2=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Clicks,fill=Clicks)) +
  geom_col()+
  labs(title='Clicks for Page and Posts',y='Count',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(click2)
```

### Clicks Percent Change

```{r}
click3=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Clicks_Percentage_Change,fill=Clicks_Percentage_Change)) +
  geom_col()+
  labs(title='Clicks Percent Change',y='Percent',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(click3)
```

# #4

## Row

### Number of Posts

```{r}
post1=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Posts,fill=Posts)) +
  geom_col()+
  labs(title='Posts',y='Count',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_continuous(high='darkgreen',low='lightgreen')

ggplotly(post1)
```

### Posts by Percent Change

```{r}
post2=linked %>%
  filter(Month %in% c('September','October','November')) %>%
  mutate(Post_Percent_Chng=percent(Posts_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
  ggplot(aes(x = Month, y = Post_Percent_Chng,fill=Posts_Percentage_Change)) +
  geom_col()+
  labs(title='Posts Percent Change',y='Percent',x=' ')+
  theme(plot.title = element_text(hjust=.5))+
  guides(fill=F)+
  scale_fill_gradient(high='darkgreen',low='lightgreen')

ggplotly(post2)
```

# #5

## Row

### Correlation between Posts and Total Followers

```{r}
cor.test(linked$Posts,linked$Num_of_Followers)
```

### Scatter Plot

```{r}
plot1=linked %>% 
  ggplot(aes(x=Posts,y=Num_of_Followers))+
  geom_point()+
  labs(title='Followers by Posts',y='Total Followers',x='Posts')+
  theme(plot.title = element_text(hjust = .5))

plotly::ggplotly(plot1)
```

## Column

### Recommendations

**Key Findings:**

1.  For followers, the total number decreased from 300 (Oct) to 287 (Nov).

2.  There were 18 posts made for November compared to 3 from October.

3.  There is a weak relationship between total followers and posts. Technically, 59% percent of the total followers can be accounted for by the number of posts made.

**Actionable Insights:**

1.  Post routinely and reliably. For example, one post per week on the same day.

2.  Focus on short-form posts with different messages rather than long-form posts.

3.  Use 2-3 strategic and meaningful hashtags.