Pearson's product-moment correlation
data: linked$Posts and linked$Num_of_Followers
t = 2.1839, df = 9, p-value = 0.05681
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.01751808 0.87832337
sample estimates:
cor
0.5885417
Key Findings:
For followers, the total number decreased from 300 (Oct) to 287 (Nov).
There were 18 posts made for November compared to 3 from October.
There is a weak relationship between total followers and posts. Technically, 59% percent of the total followers can be accounted for by the number of posts made.
Actionable Insights:
Post routinely and reliably. For example, one post per week on the same day.
Focus on short-form posts with different messages rather than long-form posts.
Use 2-3 strategic and meaningful hashtags.
---
title: "November LinkedIn OB"
author: "by Alan Lam"
output:
flexdashboard::flex_dashboard:
orientation: rows
theme: cosmo
social: menu
story_board: FALSE
source_code: embed
---
```{r setup, include=FALSE}
library(flexdashboard)
library(plotly
)
theme_set(theme_bw())
linked=readxl::read_excel('LinkedInMonthlyOverview.xlsx',sheet = 'Copy of MonthlyOverview')
```
# #1
## Row
### Page Followers
```{r}
followers1=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(F_Percent_Chng=percent(Followers_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Num_of_Followers,fill=Num_of_Followers)) +
geom_col()+
labs(title='Number of Total Followers',y='Count',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(followers1)
```
### Page Followers by Percent Change
```{r}
followers2=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(F_Percent_Chng=percent(Followers_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Followers_Percentage_Change,fill=Followers_Percentage_Change)) +
geom_col()+
labs(title='Followers Percent Change',y='Percent',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(followers2)
```
### Page Views
```{r}
page1=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(F_Percent_Chng=percent(Followers_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Page_Views,fill=Page_Views)) +
geom_col()+
labs(title='Page VIews',y='Count',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(page1)
```
# \# 2
## Row
### Page Views Percent Change
```{r}
page2=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Views_Percentage_Change,fill=Views_Percentage_Change)) +
geom_col()+
labs(title='Page Views Percent Change',y='Percent',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(page2)
```
### Engagement Rate
```{r}
engage1=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = `Engagement Rate`,fill=`Engagement Rate`)) +
geom_col()+
labs(title='Engagement Rate',y='Percent',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(engage1)
```
### Engagement Rate Percent Change
```{r}
engage2=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Engagement_Percent_Chng=percent(Engagement_Percent_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Engagement_Percent_Change,fill=Engagement_Percent_Change)) +
geom_col()+
labs(title='Engagement Rate Percent Change',y='Percent',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(engage2)
```
# #3
## Row
### Click Through Rate
```{r}
click1=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Click_Thru_Rate,fill=Click_Thru_Rate)) +
geom_col()+
labs(title='Click Through Rate',y='Percent',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(click1)
```
### Clicks for Page and Posts
```{r}
click2=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Clicks,fill=Clicks)) +
geom_col()+
labs(title='Clicks for Page and Posts',y='Count',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(click2)
```
### Clicks Percent Change
```{r}
click3=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Clicks_Percentage_Change,fill=Clicks_Percentage_Change)) +
geom_col()+
labs(title='Clicks Percent Change',y='Percent',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(click3)
```
# #4
## Row
### Number of Posts
```{r}
post1=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Visitor_Percent_Chng=percent(Visitors_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Posts,fill=Posts)) +
geom_col()+
labs(title='Posts',y='Count',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_continuous(high='darkgreen',low='lightgreen')
ggplotly(post1)
```
### Posts by Percent Change
```{r}
post2=linked %>%
filter(Month %in% c('September','October','November')) %>%
mutate(Post_Percent_Chng=percent(Posts_Percentage_Change),Month = factor(Month, levels = c('September', 'October', 'November'))) %>%
ggplot(aes(x = Month, y = Post_Percent_Chng,fill=Posts_Percentage_Change)) +
geom_col()+
labs(title='Posts Percent Change',y='Percent',x=' ')+
theme(plot.title = element_text(hjust=.5))+
guides(fill=F)+
scale_fill_gradient(high='darkgreen',low='lightgreen')
ggplotly(post2)
```
# #5
## Row
### Correlation between Posts and Total Followers
```{r}
cor.test(linked$Posts,linked$Num_of_Followers)
```
### Scatter Plot
```{r}
plot1=linked %>%
ggplot(aes(x=Posts,y=Num_of_Followers))+
geom_point()+
labs(title='Followers by Posts',y='Total Followers',x='Posts')+
theme(plot.title = element_text(hjust = .5))
plotly::ggplotly(plot1)
```
## Column
### Recommendations
**Key Findings:**
1. For followers, the total number decreased from 300 (Oct) to 287 (Nov).
2. There were 18 posts made for November compared to 3 from October.
3. There is a weak relationship between total followers and posts. Technically, 59% percent of the total followers can be accounted for by the number of posts made.
**Actionable Insights:**
1. Post routinely and reliably. For example, one post per week on the same day.
2. Focus on short-form posts with different messages rather than long-form posts.
3. Use 2-3 strategic and meaningful hashtags.