# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0299050864  0.0033678905  0.0077432073  0.0210513591 -0.0216629953
##   [6]  0.0342756411 -0.0079320879 -0.0362718196 -0.0127199366 -0.0102989012
##  [11]  0.0119825986 -0.0477613602  0.0026051301  0.0566278782 -0.0158857757
##  [16] -0.0181127460 -0.0259978233  0.0028979290  0.0521963785 -0.0056929972
##  [21]  0.0086131448 -0.0037963236  0.0236597509 -0.0070240364  0.0047557775
##  [26] -0.0165782915  0.0203927561  0.0057960283  0.0141696113  0.0164926249
##  [31] -0.0589275062  0.0162491203  0.0418639836  0.0415027084  0.0124057726
##  [36]  0.0115431816 -0.0320917090  0.0294515819  0.0188455709 -0.0023082963
##  [41]  0.0336337471 -0.0430079470  0.0333632911 -0.0283726637 -0.0194320190
##  [46] -0.0484805339  0.0129109363 -0.0445013114  0.0058648983  0.0131080393
##  [51]  0.0296351325  0.0193771884 -0.0133506114  0.0073743306  0.0431830587
##  [56]  0.0547957571 -0.0158879153  0.0102444642 -0.0076281661  0.0136255476
##  [61]  0.0039750933  0.0226563117 -0.0096959242 -0.0022118471  0.0265731564
##  [66]  0.0441542169  0.0260207480  0.0259838583 -0.0100751741 -0.0160938176
##  [71] -0.0287249590 -0.0010443350  0.0344108090  0.0015272373  0.0201939045
##  [76]  0.0210099516 -0.0471934920 -0.0117104227  0.0368107877 -0.0342510915
##  [81]  0.0180272438 -0.0451360714  0.0302160764 -0.0103749623  0.0242504993
##  [86] -0.0021991642 -0.0362615196  0.0358805702  0.0392561734 -0.0064209449
##  [91]  0.0135473756  0.0155282632 -0.0038283083 -0.0357856662 -0.0182638275
##  [96]  0.0072643386  0.0174044803  0.0402712773  0.0127269581  0.0316010554
## [101]  0.0328107610  0.0407107102 -0.0113971240  0.0497307128  0.0167752256
## [106]  0.0132019441  0.0349157939  0.0259235957  0.0415199843 -0.0058236765
## [111]  0.0056030080  0.0210411086 -0.0111166061  0.0127747640  0.0185302183
## [116]  0.0190383679  0.0012390111 -0.0084461945  0.0138674212  0.0004296047
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.970
##  3   1.00 
##  4   1.01 
##  5   1.02 
##  6   0.978
##  7   1.03 
##  8   0.992
##  9   0.964
## 10   0.987
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.970
##  3  0.973
##  4  0.981
##  5  1.00 
##  6  0.980
##  7  1.01 
##  8  1.01 
##  9  0.969
## 10  0.957
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 6.859076

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
  
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
  
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01)
## # A tibble: 241 × 1
##    growth
##     <dbl>
##  1   100 
##  2   101.
##  3   102.
##  4   102.
##  5   102.
##  6   105.
##  7   106.
##  8   105.
##  9   106.
## 10   106.
## # ℹ 231 more rows

7 Running multiple simulations

# cretae a vector of 1s as a starting point
sims <- 51
starts<- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# simulate
monte_carlo_sim_51 <-starts %>%
  
    # simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N             = 120, 
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>%

    # add column Month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
  
    # rearrange column names
    set_names(c("month", names(starts))) %>%
  
    # transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# find quantiles
monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
      
    quantile(probs = c(0, 0.25, 0.50, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.18 1.77 1.98 2.33 2.82

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
  
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
  
  
    labs(title = "simulating growth of $1 over 120 months")

line plot with max, median, and min

# step 1 summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
  
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
  
    summarise(max = max(growth),
           median = median(growth),
           min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  2.82   1.98  1.18
# step 2 plot
monte_carlo_sim_51 %>%
  
    # filter for max, min, median sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
             last(growth) == sim_summary$median |
             last(growth) == sim_summary$min) %>%
    ungroup() %>%
  
    # plot
     ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
  
  
    labs(title = "simulating growth of $1 over 120 months",
         subtitle = "max, med, and min sim")