bee_colony <- read_excel("../00_data/MyData3.xlsx")
Case of numeric variables
bee_colony %>% select(where(is.numeric)) %>% map_dbl(.x = ., .f = ~mean(x = .x, na.rm = TRUE))
## year colony_size colony_lost colony_lost_pct
## 2017.76923 123578.04255 16551.31915 11.38185
bee_colony %>% select(where(is.numeric)) %>% map_dbl(.f = ~mean(x = .x, na.rm = TRUE))
## year colony_size colony_lost colony_lost_pct
## 2017.76923 123578.04255 16551.31915 11.38185
bee_colony %>% select(where(is.numeric)) %>% map_dbl(.f = mean, na.rm = TRUE)
## year colony_size colony_lost colony_lost_pct
## 2017.76923 123578.04255 16551.31915 11.38185
# Adding an argument
bee_colony %>% select(where(is.numeric)) %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1, na.rm = TRUE))
## year colony_size colony_lost colony_lost_pct
## 2017.74029 32420.09564 4038.61849 10.56624
bee_colony %>% select(where(is.numeric)) %>% map_dbl(mean, trim = 0.1, na.rm = TRUE)
## year colony_size colony_lost colony_lost_pct
## 2017.74029 32420.09564 4038.61849 10.56624
bee_colony %>% select(.data = ., year)
## # A tibble: 1,222 × 1
## year
## <dbl>
## 1 2015
## 2 2015
## 3 2015
## 4 2015
## 5 2015
## 6 2015
## 7 2015
## 8 2015
## 9 2015
## 10 2015
## # ℹ 1,212 more rows
bee_colony %>% select(year)
## # A tibble: 1,222 × 1
## year
## <dbl>
## 1 2015
## 2 2015
## 3 2015
## 4 2015
## 5 2015
## 6 2015
## 7 2015
## 8 2015
## 9 2015
## 10 2015
## # ℹ 1,212 more rows
# Double values in columns
double_by_factor <- function(x, factor) {x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
bee_colony %>% select(where(is.numeric)) %>% map_dfr(.x = ., .f = ~double_by_factor(x = .x, factor = 10))
## # A tibble: 1,222 × 4
## year colony_size colony_lost colony_lost_pct
## <dbl> <dbl> <dbl> <dbl>
## 1 20150 70000 18000 260
## 2 20150 350000 46000 130
## 3 20150 130000 15000 110
## 4 20150 14400000 2550000 150
## 5 20150 35000 15000 120
## 6 20150 39000 8700 220
## 7 20150 3050000 420000 130
## 8 20150 1040000 145000 140
## 9 20150 105000 3800 40
## 10 20150 810000 37000 40
## # ℹ 1,212 more rows
bee_colony %>% select(where(is.numeric)) %>% map_dfr(double_by_factor, factor = 2)
## # A tibble: 1,222 × 4
## year colony_size colony_lost colony_lost_pct
## <dbl> <dbl> <dbl> <dbl>
## 1 4030 14000 3600 52
## 2 4030 70000 9200 26
## 3 4030 26000 3000 22
## 4 4030 2880000 510000 30
## 5 4030 7000 3000 24
## 6 4030 7800 1740 44
## 7 4030 610000 84000 26
## 8 4030 208000 29000 28
## 9 4030 21000 760 8
## 10 4030 162000 7400 8
## # ℹ 1,212 more rows