library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
## (status 2 uses the sf package in place of rgdal)
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
Differentiation adalah Proses membangun turunan suatu fungsi. Fungsi yang diberikan sering kali menggambarkan hubungan antara dua besaran atau variabel yang saling terkait. Turunan memungkinkan kita untuk mengukur tingkat perubahan fungsi tersebut terhadap satu variabel terhadap yang lainnya.
Secara formal, jika kita memiliki fungsif(x), turunan dari fungsi ini, sering disimbolkan sebagai f’(x) atau df/dx, menghasilkan fungsi baru yang menunjukkan laju perubahan nilai f(x) terhadap x.
# Memuat library yang diperlukan
library(ggplot2)
# Fungsi yang ingin kita hitung turunannya
f <- function(x) {
return(x^2 - 8)
}
# Menghitung turunan dari fungsi tersebut
df <- D(expression(x^2 - 8), "x")
# Membuat rentang nilai x
x_vals <- seq(-5, 5, by = 0.1)
# Menghitung nilai y dari fungsi dan turunannya
y_vals <- sapply(x_vals, f)
dy_vals <- sapply(x_vals, function(x) eval(df))
# Membuat dataframe dari vektor
df <- data.frame(x = x_vals, y = y_vals, dy = dy_vals)
# Membuat plot fungsi dan turunannya
ggplot(df, aes(x = x)) +
geom_line(aes(y = y), color = "blue") +
geom_line(aes(y = dy), color = "red") +
ggtitle("Function and Its Derivative") +
xlab("x") +
ylab("y") +
scale_color_manual(values = c("blue", "red"), labels = c("Function", "Derivative")) +
theme(legend.position = c(0.8, 0.9))