#Loading Necessary Libraries
library(data.table)
library(ggplot2)
library(sf)
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(stringr)
library(ggpubr)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(tseries)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(Metrics)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(forecast)
##
## Attaching package: 'forecast'
## The following object is masked from 'package:Metrics':
##
## accuracy
## The following object is masked from 'package:ggpubr':
##
## gghistogram
library(padr)
#Data Preprocessing
Import data
Dataset <- fread(file = "/Users/divyakampalli/Desktop/DPA/finalproject/crimeanalysis.csv", header = T, sep = ",", na.strings = "")
Top 5 rows of the Dataset
head(Dataset)
Structure of the Dataset
str(Dataset)
## Classes 'data.table' and 'data.frame': 7946816 obs. of 22 variables:
## $ ID : int 5741943 25953 26038 13279676 13274752 1930689 13203321 13210088 13210004 13210062 ...
## $ Case Number : chr "HN549294" "JE240540" "JE279849" "JG507211" ...
## $ Date : chr "08/25/2007 09:22:18 AM" "05/24/2021 03:06:00 PM" "06/26/2021 09:24:00 AM" "11/09/2023 07:30:00 AM" ...
## $ Block : chr "074XX N ROGERS AVE" "020XX N LARAMIE AVE" "062XX N MC CORMICK RD" "019XX W BYRON ST" ...
## $ IUCR : chr "0560" "0110" "0110" "0620" ...
## $ Primary Type : chr "ASSAULT" "HOMICIDE" "HOMICIDE" "BURGLARY" ...
## $ Description : chr "SIMPLE" "FIRST DEGREE MURDER" "FIRST DEGREE MURDER" "UNLAWFUL ENTRY" ...
## $ Location Description: chr "OTHER" "STREET" "PARKING LOT" "APARTMENT" ...
## $ Arrest : logi FALSE TRUE TRUE FALSE FALSE TRUE ...
## $ Domestic : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ Beat : int 2422 2515 1711 1922 632 512 122 1225 333 1732 ...
## $ District : int 24 25 17 19 6 5 1 12 3 17 ...
## $ Ward : int 49 36 50 47 6 NA 42 27 7 30 ...
## $ Community Area : int 1 19 13 5 44 NA 32 28 43 21 ...
## $ FBI Code : chr "08A" "01A" "01A" "05" ...
## $ X Coordinate : int NA 1141387 1152781 1162518 1183071 NA 1174694 1160870 1190812 1151117 ...
## $ Y Coordinate : int NA 1913179 1941458 1925906 1847869 NA 1901831 1898642 1856743 1922554 ...
## $ Year : int 2007 2021 2021 2023 2023 2002 2023 2023 2023 2023 ...
## $ Updated On : chr "08/17/2015 03:03:40 PM" "11/18/2023 03:39:49 PM" "11/18/2023 03:39:49 PM" "11/18/2023 03:39:49 PM" ...
## $ Latitude : num NA 41.9 42 42 41.7 ...
## $ Longitude : num NA -87.8 -87.7 -87.7 -87.6 ...
## $ Location : chr NA "(41.917838056, -87.755968972)" "(41.995219444, -87.713354912)" "(41.952345086, -87.677975059)" ...
## - attr(*, ".internal.selfref")=<externalptr>
Summary of Dataset
summary(Dataset)
## ID Case Number Date Block
## Min. : 634 Length:7946816 Length:7946816 Length:7946816
## 1st Qu.: 3852320 Class :character Class :character Class :character
## Median : 7149126 Mode :character Mode :character Mode :character
## Mean : 7150988
## 3rd Qu.:10335352
## Max. :13292996
##
## IUCR Primary Type Description Location Description
## Length:7946816 Length:7946816 Length:7946816 Length:7946816
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Arrest Domestic Beat District Ward
## Mode :logical Mode :logical Min. : 111 Min. : 1.0 Min. : 1.0
## FALSE:5892780 FALSE:6581484 1st Qu.: 621 1st Qu.: 6.0 1st Qu.:10.0
## TRUE :2054036 TRUE :1365332 Median :1034 Median :10.0 Median :23.0
## Mean :1185 Mean :11.3 Mean :22.8
## 3rd Qu.:1731 3rd Qu.:17.0 3rd Qu.:34.0
## Max. :2535 Max. :31.0 Max. :50.0
## NA's :47 NA's :614854
## Community Area FBI Code X Coordinate Y Coordinate
## Min. : 0.0 Length:7946816 Min. : 0 Min. : 0
## 1st Qu.:23.0 Class :character 1st Qu.:1152998 1st Qu.:1859105
## Median :32.0 Mode :character Median :1166138 Median :1890771
## Mean :37.5 Mean :1164616 Mean :1885821
## 3rd Qu.:57.0 3rd Qu.:1176389 3rd Qu.:1909321
## Max. :77.0 Max. :1205119 Max. :1951622
## NA's :613478 NA's :87614 NA's :87614
## Year Updated On Latitude Longitude
## Min. :2001 Length:7946816 Min. :36.62 Min. :-91.69
## 1st Qu.:2005 Class :character 1st Qu.:41.77 1st Qu.:-87.71
## Median :2009 Mode :character Median :41.86 Median :-87.67
## Mean :2010 Mean :41.84 Mean :-87.67
## 3rd Qu.:2015 3rd Qu.:41.91 3rd Qu.:-87.63
## Max. :2023 Max. :42.02 Max. :-87.52
## NA's :87614 NA's :87614
## Location
## Length:7946816
## Class :character
## Mode :character
##
##
##
##
#Data Cleaning and Preprocessing
Extracting 5 past years’ data
TestDT <- Dataset[Year > 2018]
Renaming some of the variables
setnames(TestDT, c("Case Number", "Primary Type", "Location Description", "Community Area"), c("Case", "Type", "Locdescrip", "Community"))
Checking if there are any Duplicates
any(duplicated(TestDT[["Case"]]))
## [1] TRUE
Removing any duplicates in Case Number and testing again to check if there are any duplicates.
TestDT <- TestDT[!duplicated(TestDT[["Case"]])]
any(duplicated(TestDT[["Case"]]))
## [1] FALSE
Testing for missing values
any(is.na(TestDT))
## [1] TRUE
# Finding the missing values in each coloumn.
colSums(is.na(TestDT))
## ID Case Date Block IUCR Type
## 0 0 0 0 0 0
## Description Locdescrip Arrest Domestic Beat District
## 0 6051 0 0 0 0
## Ward Community FBI Code X Coordinate Y Coordinate Year
## 48 2 0 16907 16907 0
## Updated On Latitude Longitude Location
## 0 16907 16907 16907
#Replacing NAs with similar values
TestDT$`Latitude` <- na.omit(TestDT$`Latitude`)[match(TestDT$`X Coordinate`, na.omit(TestDT$`X Coordinate`))]
colSums(is.na(TestDT))
## ID Case Date Block IUCR Type
## 0 0 0 0 0 0
## Description Locdescrip Arrest Domestic Beat District
## 0 6051 0 0 0 0
## Ward Community FBI Code X Coordinate Y Coordinate Year
## 48 2 0 16907 16907 0
## Updated On Latitude Longitude Location
## 0 16907 16907 16907
# Removing NA in latitude, longitude, location
TestDT <- TestDT[!is.na(TestDT[["Latitude"]])]
colSums(is.na(TestDT))
## ID Case Date Block IUCR Type
## 0 0 0 0 0 0
## Description Locdescrip Arrest Domestic Beat District
## 0 4513 0 0 0 0
## Ward Community FBI Code X Coordinate Y Coordinate Year
## 47 1 0 0 0 0
## Updated On Latitude Longitude Location
## 0 0 0 0
# Removing NA in Case Number
TestDT <- TestDT[!is.na(TestDT[["Case"]])]
colSums(is.na(TestDT))
## ID Case Date Block IUCR Type
## 0 0 0 0 0 0
## Description Locdescrip Arrest Domestic Beat District
## 0 4513 0 0 0 0
## Ward Community FBI Code X Coordinate Y Coordinate Year
## 47 1 0 0 0 0
## Updated On Latitude Longitude Location
## 0 0 0 0
# Replacing NAs for Location Description using Location records
TestDT$`Locdescrip` <- na.omit(TestDT$`Locdescrip`)[match(TestDT$`Location`, na.omit(TestDT$`Location`))]
# Replacing NAs for District using records in Beat
TestDT$`District` <- na.omit(TestDT$`District`)[match(TestDT$`Beat`, na.omit(TestDT$`Beat`))]
# Replacing NAs for Ward using Location records
TestDT$`Ward` <- na.omit(TestDT$`Ward`)[match(TestDT$`Location`, na.omit(TestDT$`Location`))]
# Replacing NAs for Community Area using Location records
TestDT$`Community` <- na.omit(TestDT$`Community`)[match(TestDT$`Location`, na.omit(TestDT$`Location`))]
colSums(is.na(TestDT))
## ID Case Date Block IUCR Type
## 0 0 0 0 0 0
## Description Locdescrip Arrest Domestic Beat District
## 0 637 0 0 0 0
## Ward Community FBI Code X Coordinate Y Coordinate Year
## 5 1 0 0 0 0
## Updated On Latitude Longitude Location
## 0 0 0 0
# Removing the observations containing NAs that cannot be replaced in the column Locdescrip
TestDT <- TestDT[!is.na(TestDT[["Locdescrip"]])]
# Testing again to make sure that there is no more missing values
any(is.na(TestDT))
## [1] FALSE
# Using boxplot.stats for numeric column Year
boxplot.stats(TestDT$Year)$out
## integer(0)
# Number of districts in our dataset
length(unique(TestDT[["District"]]))
## [1] 22
# What are the codes of districts?
table(TestDT[["District"]])
##
## 1 2 3 4 5 6 7 8 9 10 11 12 14
## 57356 53489 57288 65487 49891 72754 55644 70805 49563 51028 72007 61636 38451
## 15 16 17 18 19 20 22 24 25
## 42143 40576 31902 57244 54053 22159 37021 37759 58782
Highest number of crimes are in District 8
# How many community areas in our dataset?
length(unique(TestDT[["Community"]]))
## [1] 77
# What are the codes of community areas?
table(TestDT[["Community"]])
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13
## 18660 15983 17694 8474 5275 26294 16758 51818 1087 4851 4176 1973 3757
## 14 15 16 17 18 19 20 21 22 23 24 25 26
## 9835 12616 10923 6222 2532 19001 6076 8830 19511 33106 30946 63537 23829
## 27 28 29 30 31 32 33 34 35 36 37 38 39
## 19967 42053 36892 18467 11267 39542 10533 4779 13412 3577 3474 16155 7765
## 40 41 42 43 44 45 46 47 48 49 50 51 52
## 11257 9210 16225 41896 29853 5634 19785 1709 6342 28362 4851 8303 4852
## 53 54 55 56 57 58 59 60 61 62 63 64 65
## 17427 5943 2673 8032 3815 9291 3697 6162 18743 3734 9065 4130 6834
## 66 67 68 69 70 71 72 73 74 75 76 77
## 24192 26677 25579 30992 9085 32409 3776 13465 2106 8279 8036 12970
Highest number of crimes are in 25th community
# Removing data having 0 as community code
TestDT <- TestDT[which(Community != 0),]
df <- data.frame(Dataset)
crimes <- df %>%
select(c(Date, Primary.Type)) %>%
mutate(Primary.Type = as.factor(Primary.Type),
Date = mdy_hms(Date),
Date = floor_date(Date, unit = "hours")) %>% #takes a date-time object and rounds it down to hours unit
arrange(Date)
crimes %>%
count(Primary.Type, sort = T) %>%
head(5) %>%
ggplot(aes(x = n, y = reorder(Primary.Type, n))) +
geom_col()+
labs(title = 'Top 5 Crimes in Chicago',
x = 'Number of Crimes',
y = 'Crimes')
From the chart above, theft_crime has the highest number of crimes among
others. Therefore, in this analysis we will try to do a time series
prediction analysis for the theft_crime case.
range(crimes$Date)
## [1] "2001-01-01 UTC" "2023-11-23 UTC"
For this analysis, we will limit the data analysis to only the number of theft_crime crimes from the beginning of 2018 to the end of 2022.
theft_crime <- crimes %>%
filter(Primary.Type == 'THEFT') %>%
group_by(Date) %>%
summarise(Theft = n()) %>%
filter(Date > '2018-01-01' & Date < '2022-12-31')
head(theft_crime, 5)
tail(theft_crime, 5)
length(theft_crime$Date)
## [1] 42152
theft_crime <- theft_crime %>%
slice(-c(33625:33641))
range(theft_crime$Date)
## [1] "2018-01-01 07:00:00 UTC" "2022-12-31 05:00:00 UTC"
Pre-processing of Data Among the data requirements that the Time Series must handle are the following:
colSums(is.na(theft_crime))
## Date Theft
## 0 0
theft_crime <- theft_crime %>%
pad(start_val = ymd_hms("2018-01-01 00:00:00"), end_val = ymd_hms("2021-12-31 23:00:00")) %>%
replace(., is.na(.), 0)
## pad applied on the interval: hour
range(theft_crime$Date)
## [1] "2018-01-01 00:00:00 UTC" "2021-12-31 23:00:00 UTC"
theft_crime_ts <- ts(data = theft_crime$Theft,
start = min(theft_crime$Date),
frequency = 24) # daily seasonality
We have attempted to investigate whether our timeseries object has trend and seasonal characteristics in this section (one-seasonal/multiseasonal).
# decompose ts object
theft_deco <- decompose(theft_crime_ts)
autoplot(theft_deco)
Plotting the trend reveals that there is still an up-and-down pattern, indicating that the time series object is multiseasonal. Consequently, we ought to attempt reanalyzing this data using multiseasonal time series with a different seasonal frequency.
Trial - 1
theft_crime$Theft %>%
msts(seasonal.periods = c(24,24*7)) %>% # multiseasonal ts (daily, weekly)
mstl() %>% # multiseasonal ts decomposition
autoplot()
Trail - 2
theft_crime$Theft %>%
msts(seasonal.periods = c(24, 24*7, 24*7*4)) %>% # multiseasonal ts (daily, weekly, monthly)
mstl() %>% # multiseasonal ts decomposition
autoplot()
Trial - 3
theft_crime$Theft %>%
msts(seasonal.periods = c(24, 24*7, 24*7*4, 24*7*4*12)) %>% # multiseasonal ts (daily, weekly, monthly, annualy)
mstl() %>% # multiseasonal ts decomposition
autoplot()
The time series model building will employ the final ts object since it demonstrated the best decomposition out of the three trials. Furthermore take note of the fact that the data is an additive time series; this is important information for developing the model at a later stage.
# assign final ts object
theft_msts <- theft_crime$Theft %>%
msts(seasonal.periods = c(24, 24*7, 24*7*4, 24*7*4*12))
# check for stationary
adf.test(theft_msts)
## Warning in adf.test(theft_msts): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: theft_msts
## Dickey-Fuller = -15.14, Lag order = 32, p-value = 0.01
## alternative hypothesis: stationary
The data is already stationary because the p-value is less than alpha, according to the results of the Augmented Dickey-Fuller Testing (adf.test). Therefore, we do not need to perform data differencing before building a model using SARIMA.
Verification by cross-checking We will carry out the cross-validation tasks once our allotted time has elapsed. We are going to divide our data into two categories. Test data is data that offers an objective assessment of a model fit on the training data set, whereas train data is data that will be fed into our model.
We are going to divide our train data into two distinct types of data sets: train and test. The last 365 days’ worth of reported crimes from our data frame will make up our test data set.
length(theft_crime$Date)
## [1] 35064
Sequential splitting rather than random sampling is the recommended approach for the cross-validation of time series.
theft_train <- theft_msts %>% head(length(theft_msts) - 24*7*4*12)
theft_test <- theft_msts %>% tail(24*7*4*12)
head(theft_msts)
## Multi-Seasonal Time Series:
## Start: 1 1
## Seasonal Periods: 24 168 672 8064
## Data:
## [1] 0 0 0 0 0 0
Seasonality Analysis
# Decompose MSTS Object
theft_multi_dec <- theft_msts %>%
mstl()
theft_multi_dec %>%
tail(24*7*4*12) %>%
autoplot()
# Create a data frame based on MSTS Object
df_theft_multi <- as.data.frame(theft_multi_dec)
glimpse(df_theft_multi)
## Rows: 35,064
## Columns: 7
## $ Data <dbl> 0, 0, 0, 0, 0, 0, 0, 4, 3, 10, 2, 9, 14, 2, 3, 7, 9, 7, 2…
## $ Trend <dbl> 7.022148, 7.022269, 7.022390, 7.022511, 7.022632, 7.02275…
## $ Seasonal24 <dbl> -0.6647175, -2.8706026, -4.1476981, -4.0685433, -4.314429…
## $ Seasonal168 <dbl> -1.23743281, -0.13659220, -0.12242789, -1.25920591, 0.237…
## $ Seasonal672 <dbl> -1.18058087, -0.55985752, -0.24198083, 0.48740682, 0.2836…
## $ Seasonal8064 <dbl> -1.38916336, -0.42363040, -0.08377644, -0.18719778, 0.424…
## $ Remainder <dbl> -2.5502531, -3.0315859, -2.4265063, -1.9949704, -3.654255…
Seasonality by Hour The Hourly Seasonality of Battery Crime in Chicago follows this plot.
df_theft_multi %>%
mutate(day = theft_crime$Date) %>%
group_by(day) %>%
summarise(seasonal = sum(Seasonal24 + Seasonal168 + Seasonal672 + Seasonal8064)) %>%
head(24*7) %>%
ggplot(aes(x = day, y = seasonal)) +
geom_point(col = "maroon") +
geom_line(col = "blue") +
theme_minimal()
Daily Seasonality
df_theft_multi %>%
mutate(day = wday(theft_crime$Date, label = T)) %>%
group_by(day) %>%
summarise(seasonal = sum(Seasonal24 + Seasonal168 + Seasonal672 + Seasonal8064)) %>%
ggplot(aes(x = day, y = seasonal)) +
geom_col() +
theme_minimal()
The plot above shows that theft crimes tend to rise on Wednesdays, Thursdays, Fridays, and Saturdays.
Monthly Seasonality
df_theft_multi %>%
mutate(month = month(theft_crime$Date, label = T)) %>%
group_by(month) %>%
summarise(seasonal = sum(Seasonal24 + Seasonal168 + Seasonal672 + Seasonal8064)) %>%
ggplot(aes(x = month, y = seasonal)) +
geom_col() +
theme_minimal()
The monthly plot indicates that theft_crime tends to rise from June through October.
Model Building ETS Holt-Winters and Seasonal Arima are two popular time series modeling techniques in business and industry that I will compare when building my model. Since my data includes both seasonal and trend information, I utilize ETS Holt-Winters. In order to determine whether seasonal ARIMA can provide better forecasting performance, I also want to compare it to seasonal Arima.
# ets Holt-Winters
theft_crime_ets <- stlm(theft_train, method = "ets") # no log transformation for additive data
# ARIMA
theft_crime_arima <- stlm(theft_train, method = "arima")
Forecast & Evaluation
# forecast
theft_ets_f <- forecast(theft_crime_ets, h = 24*7*4*12)
theft_arima_f <- forecast(theft_crime_arima, h = 24*7*4*12)
# visualization
a <- autoplot(theft_ets_f, series = "ETS", fcol = "red") +
autolayer(theft_msts, series = "Actual", color = "black") +
labs(subtitle = "Number of Theft Case at Chicago, from Jan 2018 - Dec 2021",
y = "Theft Frequency") +
theme_minimal()
b <- autoplot(theft_arima_f, series = "ARIMA", fcol = "blue") +
autolayer(theft_msts, series = "Actual", color = "black") +
labs(subtitle = "Number of Theft Case at Chicago, from Jan 2018 - Dec 2021",
y = "Theft Frequency") +
theme_minimal()
grid.arrange(a,b)
# Calculate MAE using the mae function
mae_ets <- mae(theft_ets_f$mean, theft_test)
# Create a data frame with MAE values for ETS and ARIMA models
mae_comparison <- data.frame(ETS = mae_ets, ARIMA = mae(theft_arima_f$mean, theft_test))
# Print the MAE values
print(mae_comparison)
## ETS ARIMA
## 1 2.333739 2.419786
Based on the above analysis, we can say that we have successfully predicted the frequency of theft crimes and that ETS is the best model with the lowest error (MAE 2.33%, which is not too different from the ETS model).
Assumption Verification Normality: Testing Anderson-Darling H0: The residual distribution is normal H1: The residual distribution is not normal
# Assuming theft_arima_f$residuals is your time series residuals
result <- adf.test(theft_arima_f$residuals)
## Warning in adf.test(theft_arima_f$residuals): p-value smaller than printed
## p-value
# Print the test results
print(result)
##
## Augmented Dickey-Fuller Test
##
## data: theft_arima_f$residuals
## Dickey-Fuller = -30.449, Lag order = 29, p-value = 0.01
## alternative hypothesis: stationary
hist(theft_arima_f$residuals, breaks = 20)
Autocorrelation: Box.test - Ljng-Box H0: The forecast errors show no autocorrelation. H1: The forecast errors exhibit autocorrelation
Box.test(theft_arima_f$residuals, type = "Ljung-Box") # there is not enough data to reject H0
##
## Box-Ljung test
##
## data: theft_arima_f$residuals
## X-squared = 0.0051992, df = 1, p-value = 0.9425
Our forecast residuals show no autocorrelation based on the assumption check (p-value > 0.05). However, as our forecast’s residuals are not normally distributed, they might not appear in the histogram’s vicinity of the mean.
These kinds of errors in a time series are actually quite inevitable and can arise from a variety of unforeseen events. Analyzing the kinds of unpredictable events that could happen and do so frequently is one way to get past it. The use of seasonality adjustment in time series analysis can accomplish this.
In summary We have successfully predicted the frequency of theft crimes based on our analysis and model performance, and the ARIMA model has proven to be the most accurate with the lowest error (MAE 2.419786%), albeit it is not significantly different from the ETS model. Our model was able to predict the Chicago theft crime rate with a Measure of Error (MAE) of approximately 2.419786%. Even so, there are a number of ways to thoroughly optimize it because our model does not meet the normalcy assumptions.
Based on the seasonal analysis, it is reasonable to conclude that theft crime will probably start to rise at 10 a.m., peak at 5 p.m. (after business hours), and then continue to rise until 12 a.m. The actual crime is more likely to occur between June and October.
Similarly, we can do Time series analysis for each crime.
TestDT <- TestDT[, !c("ID", "IUCR", "Description", "FBI Code", "Block", "Ward", "X Coordinate", "Y Coordinate", "Updated On")]
TestDT[["Date"]] <- parse_date_time(TestDT[["Date"]], orders = "mdY IMSp")
Create four time intervals and Extract hours
tint <- c("0", "5.9", "11.9", "17.9", "23.9")
hours <- hour(TestDT[["Date"]])
TestDT[["Tint"]] <- cut(hours, breaks = tint, labels = c("0-5H", "6-11H", "12-17H", "18-24H"), include.lowest = T)
# Create the column Day showing the weekday when the incident occurred
TestDT[["Day"]] <- wday(TestDT[["Date"]], label = T)
# Create the column Month showing the month when the incident occurred
TestDT[["Month"]] <- month(TestDT[["Date"]], label = T)
# Extract quarters
quarters <- quarter(TestDT$Date)
# Create four season intervals
sint <- c("0.9", "1.9", "2.9", "3.9", "4.9")
# Matching
TestDT[["Season"]] <- cut(quarters, breaks = sint, labels = c("SPRING", "SUMMER", "FALL", "WINTER"))
# Summary of all types
table(TestDT[["Type"]])
##
## ARSON ASSAULT
## 2355 100021
## BATTERY BURGLARY
## 211515 39060
## CONCEALED CARRY LICENSE VIOLATION CRIM SEXUAL ASSAULT
## 898 983
## CRIMINAL DAMAGE CRIMINAL SEXUAL ASSAULT
## 130012 6057
## CRIMINAL TRESPASS DECEPTIVE PRACTICE
## 22738 80358
## GAMBLING HOMICIDE
## 203 3264
## HUMAN TRAFFICKING INTERFERENCE WITH PUBLIC OFFICER
## 49 3426
## INTIMIDATION KIDNAPPING
## 834 620
## LIQUOR LAW VIOLATION MOTOR VEHICLE THEFT
## 922 77007
## NARCOTICS NON-CRIMINAL
## 34928 17
## OBSCENITY OFFENSE INVOLVING CHILDREN
## 230 9319
## OTHER NARCOTIC VIOLATION OTHER OFFENSE
## 23 70746
## PROSTITUTION PUBLIC INDECENCY
## 1537 33
## PUBLIC PEACE VIOLATION RITUALISM
## 4866 1
## ROBBERY SEX OFFENSE
## 42401 5556
## STALKING THEFT
## 1663 245131
## WEAPONS VIOLATION
## 40265
# Number of types
length(unique(TestDT[["Type"]]))
## [1] 33
# Regroup some "small" types
TestDT[["Type"]] <- ifelse(TestDT[["Type"]] %in% c("CRIMINAL DAMAGE"), "DAMAGE",
ifelse(TestDT[["Type"]] %in% c("DECEPTIVE PRACTICE"), "DECEIVE",
ifelse(TestDT[["Type"]] %in% c("KIDNAPPING", "OFFENSE INVOLVING CHILDREN", "HUMAN TRAFFICKING"), "HUMANCHILD",
ifelse(TestDT[["Type"]] %in% c("NARCOTICS", "OTHER NARCOTIC VIOLATION"), "NARCOTICS",
ifelse(TestDT[["Type"]] %in% c("MOTOR VEHICLE THEFT"), "MOTO",
ifelse(TestDT[["Type"]] %in% c("OTHER OFFENSE"), "OTHER",
ifelse(TestDT[["Type"]] %in% c("CRIM SEXUAL ASSAULT", "PROSTITUTION", "SEX OFFENSE"), "SEX",
ifelse(TestDT[["Type"]] %in% c("GAMBLING", "INTERFERENCE WITH PUBLIC OFFICER", "INTIMIDATION", "LIQUOR LAW VIOLATION", "OBSCENITY", "PUBLIC INDECENCY", "PUBLIC PEACE VIOLATION", "STALKING", "NON-CRIMINAL", "NON-CRIMINAL (SUBJECT SPECIFIED)", "NON - CRIMINAL"), "SOCIETY",
ifelse(TestDT[["Type"]] %in% c("CRIMINAL TRESPASS"), "TRESPASS",
ifelse(TestDT[["Type"]] %in% c("CONCEALED CARRY LICENSE VIOLATION", "WEAPONS VIOLATION"), "WEAPONS", TestDT[["Type"]]))))))))))
TestDT[["Locdescrip"]] <- ifelse(TestDT[["Locdescrip"]] %in% c("VEHICLE-COMMERCIAL", "VEHICLE - DELIVERY TRUCK", "VEHICLE - OTHER RIDE SERVICE", "VEHICLE - OTHER RIDE SHARE SERVICE (E.G., UBER, LYFT)", "VEHICLE NON-COMMERCIAL", "TRAILER", "TRUCK", "DELIVERY TRUCK", "TAXICAB", "OTHER COMMERCIAL TRANSPORTATION"), "VEHICLE",
ifelse(TestDT[["Locdescrip"]] %in% c("BAR OR TAVERN", "TAVERN", "TAVERN/LIQUOR STORE"), "TAVERN",
ifelse(TestDT[["Locdescrip"]] %in% c("SCHOOL YARD", "SCHOOL, PRIVATE, BUILDING", "SCHOOL, PRIVATE, GROUNDS", "SCHOOL, PUBLIC, BUILDING", "SCHOOL, PUBLIC, GROUNDS", "COLLEGE/UNIVERSITY GROUNDS", "COLLEGE/UNIVERSITY RESIDENCE HALL"), "SCHOOL",
ifelse(TestDT[["Locdescrip"]] %in% c("RESIDENCE", "RESIDENCE-GARAGE", "RESIDENCE PORCH/HALLWAY", "RESIDENTIAL YARD (FRONT/BACK)", "DRIVEWAY - RESIDENTIAL", "GARAGE", "HOUSE", "PORCH", "YARD"), "RESIDENCE",
ifelse(TestDT[["Locdescrip"]] %in% c("PARKING LOT", "PARKING LOT/GARAGE(NON.RESID.)", "POLICE FACILITY/VEH PARKING LOT"), "PARKING",
ifelse(TestDT[["Locdescrip"]] %in% c("OTHER", "OTHER RAILROAD PROP / TRAIN DEPOT", "ABANDONED BUILDING", "ANIMAL HOSPITAL", "ATHLETIC CLUB", "BASEMENT", "BOAT/WATERCRAFT", "CHURCH", "CHURCH/SYNAGOGUE/PLACE OF WORSHIP", "COIN OPERATED MACHINE", "CONSTRUCTION SITE", "SEWER", "STAIRWELL", "VACANT LOT", "VACANT LOT/LAND", "VESTIBULE", "WOODED AREA", "FARM", "FACTORY", "FACTORY/MANUFACTURING BUILDING", "FEDERAL BUILDING", "FIRE STATION", "FOREST PRESERVE", "GOVERNMENT BUILDING", "GOVERNMENT BUILDING/PROPERTY", "JAIL / LOCK-UP FACILITY", "LIBRARY", "MOVIE HOUSE/THEATER", "POOL ROOM", "SPORTS ARENA/STADIUM", "WAREHOUSE", "AUTO", "AUTO / BOAT / RV DEALERSHIP", "CEMETARY"), "OTHERS",
ifelse(TestDT[["Locdescrip"]] %in% c("COMMERCIAL / BUSINESS OFFICE"), "BIGBUSINESS",
ifelse(TestDT[["Locdescrip"]] %in% c("PARK PROPERTY"), "PARK",
ifelse(TestDT[["Locdescrip"]] %in% c("ATM (AUTOMATIC TELLER MACHINE)", "BANK", "CREDIT UNION", "CURRENCY EXCHANGE", "SAVINGS AND LOAN"), "BANK",
ifelse(TestDT[["Locdescrip"]] %in% c("HOTEL", "HOTEL/MOTEL"), "HOTEL",
ifelse(TestDT[["Locdescrip"]] %in% c("HOSPITAL", "HOSPITAL BUILDING/GROUNDS", "DAY CARE CENTER", "NURSING HOME", "NURSING HOME/RETIREMENT HOME", "MEDICAL/DENTAL OFFICE"), "HEALTH",
ifelse(TestDT[["Locdescrip"]] %in% c("ALLEY", "BOWLING ALLEY"), "ALLEY",
ifelse(TestDT[["Locdescrip"]] %in% c("CHA APARTMENT", "CHA HALLWAY/STAIRWELL/ELEVATOR", "CHA PARKING LOT", "CHA PARKING LOT/GROUNDS"), "CHA",
ifelse(TestDT[["Locdescrip"]] %in% c("CTA BUS", "CTA BUS STOP", "CTA GARAGE / OTHER PROPERTY", "CTA PLATFORM", "CTA STATION", "CTA TRACKS - RIGHT OF WAY", "CTA TRAIN", "CTA \"\"L\"\" TRAIN"), "CTA",
ifelse(TestDT[["Locdescrip"]] %in% c("AIRPORT BUILDING NON-TERMINAL - NON-SECURE AREA", "AIRPORT BUILDING NON-TERMINAL - SECURE AREA", "AIRPORT EXTERIOR - NON-SECURE AREA", "AIRPORT EXTERIOR - SECURE AREA", "AIRPORT PARKING LOT", "AIRPORT TERMINAL LOWER LEVEL - NON-SECURE AREA", "AIRPORT TERMINAL LOWER LEVEL - SECURE AREA", "AIRPORT TERMINAL MEZZANINE - NON-SECURE AREA", "AIRPORT TERMINAL UPPER LEVEL - NON-SECURE AREA", "AIRPORT TERMINAL UPPER LEVEL - SECURE AREA", "AIRPORT TRANSPORTATION SYSTEM (ATS)", "AIRPORT VENDING ESTABLISHMENT", "AIRPORT/AIRCRAFT", "AIRCRAFT"), "AIRPORT",
ifelse(TestDT[["Locdescrip"]] %in% c("APPLIANCE STORE", "BARBERSHOP", "CAR WASH", "CLEANING STORE", "CONVENIENCE STORE", "DEPARTMENT STORE", "DRUG STORE", "GARAGE/AUTO REPAIR", "GAS STATION", "GAS STATION DRIVE/PROP.", "GROCERY FOOD STORE", "NEWSSTAND", "OFFICE", "PAWN SHOP", "RETAIL STORE", "SMALL RETAIL STORE"), "STORE",
ifelse(TestDT[["Locdescrip"]] %in% c("BRIDGE", "DRIVEWAY", "GANGWAY", "HIGHWAY/EXPRESSWAY", "LAKEFRONT/WATERFRONT/RIVERBANK", "SIDEWALK", "STREET", "HALLWAY"), "STREET",
TestDT[["Locdescrip"]])))))))))))))))))
# Set TestDT as data.frame
TestDT <- as.data.frame(TestDT)
# Reorder columns
TestDT <- TestDT[c("Case", "Date", "Year", "Month", "Day", "Season", "Tint", "Type", "Arrest", "Domestic", "Locdescrip", "Beat", "District", "Community", "Latitude", "Longitude", "Location")]
# Normalize variables
TestDT[, c("Beat", "Type", "District", "Community", "Month", "Day", "Locdescrip")] <- lapply(TestDT[, c("Beat", "Type", "District", "Community", "Month", "Day", "Locdescrip")], as.factor)
glimpse(TestDT)
## Rows: 1,137,038
## Columns: 17
## $ Case <chr> "JE240540", "JE279849", "JG507211", "JG501049", "JG415333",…
## $ Date <dttm> 2021-05-24 15:06:00, 2021-06-26 09:24:00, 2023-11-09 07:30…
## $ Year <int> 2021, 2021, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023,…
## $ Month <ord> May, Jun, Nov, Nov, Sep, Aug, Jul, Aug, Sep, Aug, Jul, Sep,…
## $ Day <ord> Mon, Sat, Thu, Sun, Wed, Thu, Mon, Sun, Mon, Tue, Mon, Sun,…
## $ Season <fct> SUMMER, SUMMER, WINTER, WINTER, FALL, FALL, FALL, FALL, FAL…
## $ Tint <fct> 12-17H, 6-11H, 6-11H, 6-11H, 12-17H, 12-17H, 18-24H, 6-11H,…
## $ Type <fct> HOMICIDE, HOMICIDE, BURGLARY, BATTERY, DAMAGE, DECEIVE, CRI…
## $ Arrest <lgl> TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE…
## $ Domestic <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FAL…
## $ Locdescrip <fct> "STREET", "PARKING", "APARTMENT", "STORE", "PARKING LOT / G…
## $ Beat <fct> 2515, 1711, 1922, 632, 122, 1225, 333, 1732, 822, 835, 731,…
## $ District <fct> 25, 17, 19, 6, 1, 12, 3, 17, 8, 8, 7, 22, 7, 9, 11, 11, 25,…
## $ Community <fct> 19, 13, 5, 44, 32, 28, 43, 21, 63, 70, 69, 73, 67, 60, 27, …
## $ Latitude <dbl> 41.91784, 41.99522, 41.95235, 41.73775, 41.88602, 41.87757,…
## $ Longitude <dbl> -87.75597, -87.71335, -87.67798, -87.60486, -87.63394, -87.…
## $ Location <chr> "(41.917838056, -87.755968972)", "(41.995219444, -87.713354…
# Do not use scientific notation
options(scipen=200)
# Detach plyr if it's loaded and not required
if ("package:plyr" %in% search()) {
detach("package:plyr", unload=TRUE)
}
TestDT %>%
dplyr::group_by(Year) %>%
dplyr::summarise(Count = n()) %>%
ggplot(aes(x = Year, y = Count)) +
geom_line(colour = "red") +
geom_point(colour = "red") +
geom_bar(aes(x = Year, y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Year", y = "Number of Crimes", title = "Evolution of Number of Crimes") +
geom_text(aes(x = Year, y = Count, label = Count), size = 3, vjust = -1, position = position_dodge(0.9)) +
theme_minimal() +
theme(axis.title.x=element_blank(), axis.title.y=element_blank())
The number of cases decreased during lockdown but increased in 2022.
# By time intervals
p1 <- TestDT %>%
group_by(Tint) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Tint, y = Count)) +
geom_bar(aes(x = Tint, y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Time intervals", y = "Number of crimes", title = "Evolution by time intervals") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75,vjust = 1,hjust = 1)) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
print(p1)
# By weekdays
# Assuming Day is a character vector representing weekdays
p2 <- TestDT %>%
group_by(Day) %>%
summarise(Count = n()) %>%
ggplot(aes(x = factor(Day, level = c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")), y = Count)) +
geom_bar(stat = "identity", fill = "#6495ED", width = 0.3, position = position_dodge(0.4)) +
labs(x = "Weekdays", y = "Number of crimes", title = "Evolution by weekdays") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75, vjust = 1, hjust = 1)) +
theme(axis.title.x = element_blank()) +
theme(axis.title.y = element_blank())
print(p2)
# Assuming Month is a character vector representing months
p3 <- TestDT %>%
group_by(Month) %>%
summarise(Count = n()) %>%
ggplot(aes(x = factor(Month, level = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")), y = Count)) +
geom_bar(stat = "identity", fill = "#6495ED", width = 0.3, position = position_dodge(0.4)) +
labs(x = "Months", y = "Number of crimes", title = "Evolution by months") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75, vjust = 1, hjust = 1)) +
theme(axis.title.x = element_blank()) +
theme(axis.title.y = element_blank())
print(p3)
# By seasons
p4 <- TestDT %>%
group_by(Season) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Season, y = Count)) +
geom_bar(aes(x = factor(Season, level = c("SPRING", "SUMMER", "FALL", "WINTER")), y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Seasons", y = "Number of crimes", title = "Evolution by seasons") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75,vjust = 1,hjust = 1)) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# Combine plots into one plot
print(p4)
# Find top 5 most frequent places
top5 <- TestDT %>%
group_by(Locdescrip) %>%
summarise(Count = n()) %>%
arrange(desc(Count)) %>%
head(5) # Select the top 5 places
# Find bottom 5 most frequent places
bottom5 <- TestDT %>%
group_by(Locdescrip) %>%
summarise(Count = n()) %>%
arrange(Count) %>%
head(5) # Select the bottom 5 places
# Create a plot for the top 5 places
p_top5 <- top5 %>%
ggplot(aes(x = reorder(Locdescrip, Count), y = Count)) +
geom_bar(stat = "identity", fill = "#6495ED", width = 0.3, position = position_dodge(0.4)) +
labs(x = "Places", y = "Number of crimes", title = "Top 5 most frequent places") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75, vjust = 1, hjust = 1)) +
theme(axis.title.x = element_blank()) +
theme(axis.title.y = element_blank())
# Create a plot for the bottom 5 places
p_bottom5 <- bottom5 %>%
ggplot(aes(x = reorder(Locdescrip, Count), y = Count)) +
geom_bar(stat = "identity", fill = "#6495ED", width = 0.3, position = position_dodge(0.4)) +
labs(x = "Places", y = "Number of crimes", title = "Bottom 5 most frequent places") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75, vjust = 1, hjust = 1)) +
theme(axis.title.x = element_blank()) +
theme(axis.title.y = element_blank())
# Print top 5 places with counts
print(top5)
## # A tibble: 5 × 2
## Locdescrip Count
## <fct> <int>
## 1 STREET 367187
## 2 APARTMENT 192348
## 3 RESIDENCE 187694
## 4 STORE 94047
## 5 OTHERS 29915
# Print bottom 5 places with counts
print(bottom5)
## # A tibble: 5 × 2
## Locdescrip Count
## <fct> <int>
## 1 HORSE STABLE 1
## 2 PUBLIC GRAMMAR SCHOOL 1
## 3 RAILROAD PROPERTY 1
## 4 VEHICLE - COMMERCIAL: TROLLEY BUS 1
## 5 CLUB 2
# Print and view the top 5 plot
print(p_top5)
# Print and view the bottom 5 plot
print(p_bottom5)
# Load the shapefile (adjust the path as per your system)
# Replace the path with the actual path to your shapefile
shapefile_path <- "/Users/divyakampalli/Downloads/boundaries-communityareas/geo_export_e07c1c74-44b6-459c-98d9-e8c9587ea2b6.shp"
# Read the shapefile
mapcomu <- st_read(shapefile_path)
## Reading layer `geo_export_e07c1c74-44b6-459c-98d9-e8c9587ea2b6' from data source `/Users/divyakampalli/Downloads/boundaries-communityareas/geo_export_e07c1c74-44b6-459c-98d9-e8c9587ea2b6.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 77 features and 9 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -87.94011 ymin: 41.64454 xmax: -87.52414 ymax: 42.02304
## Geodetic CRS: WGS84(DD)
names(mapcomu)
## [1] "area" "area_num_1" "area_numbe" "comarea" "comarea_id"
## [6] "community" "perimeter" "shape_area" "shape_len" "geometry"
# Read the shapefile using sf
#mapcomu <- st_read("path_to_your_shapefile.shp")
# Extract number of crimes for each community
# Make sure 'Community' in TestDT corresponds to 'area_numbe' in mapcomu
temp <- TestDT %>%
group_by(Community) %>%
summarise(Count = n())
# Merge two data frames
# Replacing 'area_numbe' with the correct column name from mapcomu if different
temp2df <- left_join(st_as_sf(mapcomu), temp, by = c("area_numbe" = "Community"))
# Basic plot using sf object directly
locplot <- ggplot(data = temp2df) +
geom_sf(aes(fill = Count), color = "black", size = 0.25) +
scale_fill_gradient(low = "white", high = "red") +
labs(title = "Number of crimes per community") +
theme_void() +
theme(legend.position = "bottom")
# Rest of your code for plotting police stations and histogram...
# Import the police station
dfpolice <- fread(file = "/Users/divyakampalli/Downloads/Police_Stations_-_Map.csv", header = T, sep = ",", na.strings = "")
# Extract police stations' locations
dfpolice$LOCATION <- gsub("[(*)]", "", dfpolice$LOCATION)
policeloc <-str_split_fixed(dfpolice$LOCATION, ", ", 2)
policeloc <- as.data.frame(policeloc)
colnames(policeloc) <- c("lat", "long")
policeloc$lat <- as.numeric(as.character(policeloc$lat))
policeloc$long <- as.numeric(as.character(policeloc$long))
policeloc$id <- dfpolice$DISTRICT
# Plot police stations (by using black triangles) on the map
locplot <- locplot +
geom_point(data = policeloc, aes(x = long, y = lat), size = 1, shape = 24, fill = "black")
# Plot histogramme
tempplot <- TestDT %>%
group_by(Community) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Community, y = Count)) +
geom_bar(aes(x = reorder(Community, Count), y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Community number", y = "Number of crimes", title = "Evolution by community areas") +
theme_minimal() +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
locplot
tempplot
# Types and number of crimes
p1 <- TestDT %>%
group_by(Type) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Type, y = Count)) +
geom_bar(aes(x = reorder(Type, Count), y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
coord_flip() +
labs(x = "Number of crimes", y = "Type", title = "Evolution of number of crimes for different types") +
theme_minimal() +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# Evolution over years
p2 <- TestDT %>%
group_by(Year, Type) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Year, y = Count, fill = Type)) +
geom_area() +
labs(x = "Years", y = "Number of crimes", title = "Evolution of crime types over years")
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
# Get unique crime types
crime_types <- unique(TestDT$Type)
# Create a list to store individual plots
plots_list <- list()
# Loop through each crime type and create a plot
for (crime_type in crime_types) {
plot_data <- TestDT %>%
filter(Type == crime_type) %>%
group_by(Year) %>%
summarise(Count = n())
# Create a plot for the current crime type
current_plot <- ggplot(plot_data, aes(x = Year, y = Count)) +
geom_smooth(method = "lm") +
geom_point() +
labs(x = "Years", y = "Number of crimes", title = paste("Evolution of", crime_type, "over years"))
# Add the plot to the list
plots_list[[crime_type]] <- current_plot
}
# Print and view each plot
for (crime_type in crime_types) {
print(plots_list[[crime_type]])
}
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
# Transform the type
TestDT[, c("Month", "Day", "Season", "Tint")] <- lapply(TestDT[, c("Month", "Day", "Season", "Tint")], as.character)
# By time intervals
p1 <- TestDT %>%
group_by(Type, Tint) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Tint, y = reorder(Type, Count))) +
geom_tile(aes(fill = Count)) +
scale_x_discrete("Time intervals", expand = c(0, 0), position = "top") +
scale_y_discrete("Crime types", expand = c(0, -2)) +
scale_fill_gradient("Number of crimes", low = "white", high = "red") +
ggtitle("Evolution by time intervals") +
theme_bw() +
theme(panel.grid.major =element_line(colour = NA), panel.grid.minor = element_line(colour = NA))
## `summarise()` has grouped output by 'Type'. You can override using the
## `.groups` argument.
print(p1)
# By weekdays
p2 <- TestDT %>%
group_by(Type, Day) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Day, y = reorder(Type, Count))) +
geom_tile(aes(fill = Count)) +
scale_x_discrete("Weekdays", expand = c(0, 0), position = "top") +
scale_y_discrete("Crime types", expand = c(0, -2)) +
scale_fill_gradient("Number of crimes", low = "white", high = "red") +
ggtitle("Evolution by weekdays") +
theme_bw() +
theme(panel.grid.major =element_line(colour = NA), panel.grid.minor = element_line(colour = NA))
## `summarise()` has grouped output by 'Type'. You can override using the
## `.groups` argument.
print(p2)
# By months
p3 <- TestDT %>%
group_by(Type, Month) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Month, y = reorder(Type, Count))) +
geom_tile(aes(fill = Count)) +
scale_x_discrete("Months", expand = c(0, 0), position = "top") +
scale_y_discrete("Crime types", expand = c(0, -2)) +
scale_fill_gradient("Number of crimes", low = "white", high = "red") +
ggtitle("Evolution by months") +
theme_bw() +
theme(panel.grid.major =element_line(colour = NA), panel.grid.minor = element_line(colour = NA))
## `summarise()` has grouped output by 'Type'. You can override using the
## `.groups` argument.
print(p3)
# By seasons
p4 <- TestDT %>%
group_by(Type, Season) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Season, y = reorder(Type, Count))) +
geom_tile(aes(fill = Count)) +
scale_x_discrete("Seasons", expand = c(0, 0), position = "top") +
scale_y_discrete("Crime types", expand = c(0, -2)) +
scale_fill_gradient("Number of crimes", low = "white", high = "red") +
ggtitle("Evolution by seasons") +
theme_bw() +
theme(panel.grid.major =element_line(colour = NA), panel.grid.minor = element_line(colour = NA))
## `summarise()` has grouped output by 'Type'. You can override using the
## `.groups` argument.
print(p4)
# Find top10 most frequent places
top10P <- head(names(sort(table(TestDT$Locdescrip), decreasing = TRUE)), 10)
# Find top10 most frequent crime types
top10T <- head(names(sort(table(TestDT$Type), decreasing = TRUE)), 10)
# Plot
filter(TestDT, Locdescrip %in% top10P) %>%
filter(Type %in% top10T) %>%
group_by(Type, Locdescrip) %>%
summarise(Count = n()) %>%
ggplot(aes(x = reorder(Locdescrip, Count), y = reorder(Type, Count))) +
geom_tile(aes(fill = Count)) +
scale_x_discrete("Places", expand = c(0, 0), position = "top") +
scale_y_discrete("Crime types", expand = c(0, -2)) +
scale_fill_gradient("Number of crimes", low = "white", high = "red") +
ggtitle("Evolution by places") +
theme_bw() +
theme(
panel.grid.major = element_line(colour = NA),
panel.grid.minor = element_line(colour = NA),
axis.text.x = element_text(angle = 45, vjust = 0.1, hjust = 0.1) # Diagonal X-axis labels
)
## `summarise()` has grouped output by 'Type'. You can override using the
## `.groups` argument.
# Find top10 most dangerous community areas
top10C <- head(names((sort(table(TestDT$Community), decreasing = TRUE))), 10)
# Plot
filter(TestDT, Type %in% top10T) %>%
filter(Community %in% top10C) %>%
group_by(Type, Community) %>%
summarise(Count = n()) %>%
ggplot(aes(x = reorder(Community, Count), y = reorder(Type, Count))) +
geom_tile(aes(fill = Count)) +
scale_x_discrete("Community areas", expand = c(0, 0), position = "top") +
scale_y_discrete("Crime types", expand = c(0, -2)) +
scale_fill_gradient("Number of crimes", low = "white", high = "red") +
ggtitle("Evolution by areas") +
theme_bw() +
theme(panel.grid.major =element_line(colour = NA), panel.grid.minor = element_line(colour = NA))
## `summarise()` has grouped output by 'Type'. You can override using the
## `.groups` argument.
# Numbers
TestDT %>%
filter(Domestic == T) %>%
group_by(Year) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Year, y = Count)) +
geom_bar(aes(x = Year, y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Number of crimes", y = "Year", title = "Evolution of number of domestic crimes in different years") +
theme_minimal() +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# By time intervals
p1 <- TestDT %>%
filter(Domestic == T) %>%
group_by(Tint) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Tint, y = Count)) +
geom_bar(aes(x = Tint, y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Time intervals", y = "Number of domestic crimes", title = "Evolution by time intervals") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75,vjust = 1,hjust = 1)) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# By weekdays
p2 <- TestDT %>%
filter(Domestic == T) %>%
group_by(Day) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Day, y = Count)) +
geom_bar(aes(x = factor(Day, level = c("lun\\.", "mar\\.", "mer\\.", "jeu\\.", "ven\\.", "sam\\.", "dim\\.")), y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Weekdays", y = "Number of domestic crimes", title = "Evolution by weekdays") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75,vjust = 1,hjust = 1)) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# By months
p3 <- TestDT %>%
filter(Domestic == T) %>%
group_by(Month) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Month, y = Count)) +
geom_bar(aes(x = factor(Month, level = c("janv\\.", "févr\\.", "mars", "avr\\.", "mai", "juin", "juil\\.", "août", "sept\\.", "oct\\.", "nov\\.", "déc\\.")), y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Months", y = "Number of domestic crimes", title = "Evolution by months") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75,vjust = 1,hjust = 1)) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# By seasons
p4 <- TestDT %>%
filter(Domestic == T) %>%
group_by(Season) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Season, y = Count)) +
geom_bar(aes(x = factor(Season, level = c("SPRING", "SUMMER", "FALL", "WINTER")), y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Seasons", y = "Number of domestic crimes", title = "Evolution by seasons") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75,vjust = 1,hjust = 1)) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# Locations
TestDT %>%
filter(Domestic == T) %>%
group_by(Locdescrip) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Locdescrip, y = Count)) +
geom_bar(aes(x = reorder(Locdescrip, Count), y = Count), stat = "identity", fill = "#6495ED", width = 0.3, position=position_dodge(0.4)) +
labs(x = "Places", y = "Number of crimes", title = "Evolution by places") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 75,vjust = 1,hjust = 1)) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# Extract data
temp <- TestDT %>%
filter(Arrest == T) %>%
group_by(Year) %>%
summarise(Count = n())
# Compute the crime rates
temp$rate <- lapply(temp$Count, function(x) x / nrow(TestDT))
temp$rate <- as.numeric(temp$rate)
# Plot
ggplot(temp, aes(x = Year, y = rate)) +
geom_line() +
theme_minimal() +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank())
# Find top10 most dangerous community areas
top10C <- head(names((sort(table(TestDT$Community), decreasing = TRUE))), 10)
# Iterate through each community area
for (community_area in top10C) {
# Filter data for the current community area
community_data <- filter(TestDT, Community == community_area)
# Create a plot for the current community area
plot <- community_data %>%
group_by(Year) %>%
summarise(Count = n()) %>%
ggplot(aes(x = Year, y = Count)) +
geom_smooth(method = "lm") +
geom_point() +
labs(x = "Years", y = "Number of crimes", title = paste("Evolution of crimes in", community_area, "over years"))
# Display the plot
print(plot)
}
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
# Extract data
temp <- TestDT %>%
filter(Arrest == TRUE, Community %in% top10C) %>%
group_by(Year, Community) %>%
summarise(Count = n())
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
# Compute the crime rates
temp$rate <- temp$Count / nrow(TestDT)
# Iterate through each community area
for (community_area in unique(temp$Community)) {
# Filter data for the current community area
community_data <- filter(temp, Community == community_area)
# Create a plot for the current community area
plot <- ggplot(community_data, aes(x = Year, y = rate)) +
geom_line() +
labs(x = "Years", y = "Crime rates", title = paste("Evolution of arrested crime rates in Community - ", community_area, "over years"))
# Display the plot
print(plot)
}
# Extract data
temp <- filter(TestDT, Arrest == T) %>%
group_by(Year, Type) %>%
summarise(Count = n())
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
# Compute the crime rates
temp$rate <- lapply(temp$Count, function(x) x / nrow(TestDT))
temp$rate <- as.numeric(temp$rate)
# Plot
ggplot(temp, aes(x = Year, y = rate, colour = Type)) +
geom_line()
There is a steady decrease in the number of crimes even in the most dangerous communities. But there was also significant reduction in the arrest rate. This shows the police inefficiency. In conclusion, the arrest rate is very low for the amount of crimes and this shows that the Chicago police work on it along with keeping the community safe.