# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0305056514  0.0020841599 -0.0050212575  0.0151410566 -0.0011475373
##   [6] -0.0198173710  0.0289455824 -0.0252900806 -0.0280111639  0.0165116575
##  [11] -0.0340551993 -0.0093109714 -0.0047088325 -0.0101858098 -0.0287233788
##  [16]  0.0040765149 -0.0054314817  0.0271858201 -0.0062452677  0.0189030843
##  [21]  0.0196314895 -0.0236959503  0.0403675099  0.0105876569  0.0004419260
##  [26]  0.0330823665  0.0198623498  0.0266265674  0.0260906702  0.0110313403
##  [31]  0.0188993772 -0.0046343707  0.0296058250  0.0286271635 -0.0266243718
##  [36] -0.0048312965 -0.0073125622  0.0067490982  0.0141932907  0.0730718310
##  [41] -0.0292839508  0.0247904040  0.0083377258  0.0198747104  0.0348471820
##  [46] -0.0193024979 -0.0110898764  0.0356837656  0.0140785852  0.0257377796
##  [51] -0.0142439410  0.0256907366  0.0037589843  0.0505667199  0.0120780671
##  [56] -0.0396284543 -0.0158111472  0.0848784716  0.0061364940  0.0285833962
##  [61]  0.0086019940 -0.0387544273 -0.0010345007 -0.0089757897  0.0038289479
##  [66] -0.0218448995  0.0284432109  0.0368634374  0.0079245260  0.0158398925
##  [71] -0.0034228778  0.0293240462  0.0490845258  0.0037503230  0.0194526318
##  [76]  0.0364522009  0.0239434289 -0.0052169923 -0.0089376677  0.0018147909
##  [81]  0.0351727260 -0.0001730556  0.0156532498  0.0345308513 -0.0186251605
##  [86]  0.0209610202  0.0350271664  0.0126421372  0.0255660258  0.0002574457
##  [91]  0.0022992086  0.0157978982  0.0073265045  0.0260194645  0.0202242003
##  [96]  0.0469478193 -0.0451328971  0.0027989719 -0.0022611291 -0.0046464851
## [101]  0.0323418224  0.0096732835  0.0005373015 -0.0088805332 -0.0078518319
## [106]  0.0221637185  0.0008665170 -0.0029116920  0.0004292359  0.0059710091
## [111] -0.0049779536 -0.0128220075  0.0143181801  0.0033461425 -0.0294349541
## [116]  0.0541090262  0.0040788272  0.0202232082  0.0131054520 -0.0101602514
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.03 
##  3   1.00 
##  4   0.995
##  5   1.02 
##  6   0.999
##  7   0.980
##  8   1.03 
##  9   0.975
## 10   0.972
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.03 
##  3  1.03 
##  4  1.03 
##  5  1.04 
##  6  1.04 
##  7  1.02 
##  8  1.05 
##  9  1.02 
## 10  0.995
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 10.30274

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
  
  # Add a dollar
  simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return))) 
  
  # Calculate the cumulative growth of a dollar
  simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)
  
  return(simulated_growth)
  
}

simulate_accumulation(initial_value = 100, N = 120, mean_return = 0.005, sd_return = 0.01) %>%
  tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   165.
## 2   166.
## 3   169.
## 4   173.
## 5   174.
## 6   173.

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
  set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# for reproducible research
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
  
  # Simulate
  map_dfc(simulate_accumulation,
          N = 120,
          mean = mean_port_return,
          sd_return = stddev_port_return) %>%
  
  # Add the column, month
  mutate(month = seq(1:nrow(.))) %>%
  
  # Arrange column names
  select(month, everything()) %>%
  set_names(c("month", names(starts))) %>%
  
  pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Calculate the quantiles for simulated values

probs <- c(0, 0.25, 0.5, 0.75, 1)

monte_carlo_sim_51 %>%
  
  group_by(sim) %>%
  summarise(growth = last(growth)) %>%
  ungroup() %>%
  pull(growth) %>%
  
  # Find the quantiles
  quantile(probs = probs) %>%
  round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
  
  ggplot(aes(x = month, y = growth, col = sim)) +
  geom_line() +
  
  theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5)) +
  
  labs(title = "Simulating Growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
  
  group_by(sim) %>%
  summarise(growth = last(growth)) %>%
  ungroup() %>%
  
  summarise(max    = max(growth),
            median = median(growth),
            min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
monte_carlo_sim_51 %>%
  
  group_by(sim) %>%
  filter(last(growth) == sim_summary$max |
         last(growth) == sim_summary$median |
         last(growth) == sim_summary$min) %>%
  ungroup() %>%
  
  # Plot
  ggplot(aes(x = month, y = growth, col = sim)) +
  geom_line() +
  
  theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5)) +
  theme(plot.subtitle = element_text(hjust = 0.5)) +
  
  labs(title = "Simulating Growth of $1 over 120 months",
       subtitle = "Max, Median, and Minimum Simulation")