R Libraries

Minimum set of libraries

require(car)
## Loading required package: car
## Warning: package 'car' was built under R version 4.3.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.2
require(CauseAndCorrelation)
## Loading required package: CauseAndCorrelation
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'CauseAndCorrelation'
require(dplyr)
## Loading required package: dplyr
## Warning: package 'dplyr' was built under R version 4.3.2
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
require(factoextra)
## Loading required package: factoextra
## Warning: package 'factoextra' was built under R version 4.3.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
require(ggcorrplot)
## Loading required package: ggcorrplot
## Warning: package 'ggcorrplot' was built under R version 4.3.2
require(kableExtra)
## Loading required package: kableExtra
## Warning: package 'kableExtra' was built under R version 4.3.2
## Error: package or namespace load failed for 'kableExtra':
##  .onLoad failed in loadNamespace() for 'kableExtra', details:
##   call: !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output %in% 
##   error: 'length = 3' in coercion to 'logical(1)'
require(knitr)
## Loading required package: knitr
## Warning: package 'knitr' was built under R version 4.3.2
require(lavaan)
## Loading required package: lavaan
## Warning: package 'lavaan' was built under R version 4.3.2
## This is lavaan 0.6-16
## lavaan is FREE software! Please report any bugs.
require(lavaanPlot)
## Loading required package: lavaanPlot
## Warning: package 'lavaanPlot' was built under R version 4.3.2
require(magrittr)
## Loading required package: magrittr
## Warning: package 'magrittr' was built under R version 4.3.2
require(psych)
## Loading required package: psych
## Warning: package 'psych' was built under R version 4.3.2
## 
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## The following object is masked from 'package:car':
## 
##     logit
require(ResourceSelection)
## Loading required package: ResourceSelection
## Warning: package 'ResourceSelection' was built under R version 4.3.2
## ResourceSelection 0.3-6   2023-06-27
require(semPlot)
## Loading required package: semPlot
## Warning: package 'semPlot' was built under R version 4.3.2
require(tidySEM)
## Loading required package: tidySEM
## Warning: package 'tidySEM' was built under R version 4.3.2
## Loading required package: OpenMx
## Warning: package 'OpenMx' was built under R version 4.3.2
## 
## Attaching package: 'OpenMx'
## The following object is masked from 'package:psych':
## 
##     tr
## Registered S3 method overwritten by 'tidySEM':
##   method          from  
##   predict.MxModel OpenMx
require(tidyverse)
## Loading required package: tidyverse
## Warning: package 'tidyverse' was built under R version 4.3.2
## Warning: package 'tibble' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.2
## Warning: package 'readr' was built under R version 4.3.2
## Warning: package 'purrr' was built under R version 4.3.2
## Warning: package 'stringr' was built under R version 4.3.2
## Warning: package 'forcats' was built under R version 4.3.2
## Warning: package 'lubridate' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
## ✔ readr     2.1.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ psych::%+%()       masks ggplot2::%+%()
## ✖ psych::alpha()     masks ggplot2::alpha()
## ✖ tidyr::extract()   masks magrittr::extract()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::recode()    masks car::recode()
## ✖ purrr::set_names() masks magrittr::set_names()
## ✖ purrr::some()      masks car::some()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
require(performance)
## Loading required package: performance
## Warning: package 'performance' was built under R version 4.3.2
mydata=read.csv('jasp4.csv')

R Functions

Correlation, printing, and citing

corfunction=function(d,m='pearson',sz=2){
  mycorr=cor(d[, 1:ncol(d)], method=m); p.mat=ggcorrplot::cor_pmat(d[,1:ncol(d)])
  myplot=ggcorrplot(mycorr, hc.order=T,type="lower",
                    colors=c("red", "white","green"),tl.cex = 8, 
                    tl.col = "black", lab=TRUE, lab_size=sz, p.mat=p.mat,sig.level=0.01,
                    insig="pch", pch=4)
  print(myplot)}

myprint=function(x){print(x)  }
mycite=function(x){citation(x)}

Descriptives

Descriptives prior to normalizing

myprint(describe(mydata))
##                               vars   n   mean     sd median trimmed    mad  min
## GeoName*                         1 382 191.50 110.42 191.50  191.50 141.59 1.00
## New_MEFI_Score                   2 382   6.77   0.75   6.79    6.79   0.76 4.00
## MEFI_Score                       3 382   6.74   0.87   6.76    6.77   0.91 3.82
## Govt_Consumption                 4 382   6.93   1.69   7.18    7.08   1.28 0.00
## Govt_Xfers_Subsidies             5 382   8.84   0.74   9.08    8.97   0.46 5.56
## Govt_Retirement                  6 382   4.24   2.02   4.53    4.33   2.12 0.00
## Income_Payroll_Tax               7 382   4.81   2.81   4.28    4.69   1.89 0.00
## Sales_Tax                        8 382   5.39   1.71   5.44    5.43   1.24 0.00
## Property_Tax                     9 382   8.27   1.13   8.40    8.36   0.83 0.00
## Minimum_Wage_Over_Income        10 382   7.45   1.23   7.59    7.53   1.10 2.98
## Percent_Govt_Employment         11 382   8.35   0.91   8.48    8.43   0.71 0.00
## Percent_Private_Union_Density   12 382   6.37   2.76   7.04    6.59   3.02 0.00
## Minimum_Wage_Over_10._Income    13 382   6.68   1.79   7.14    6.91   1.50 0.84
##                                  max  range  skew kurtosis   se
## GeoName*                      382.00 381.00  0.00    -1.21 5.65
## New_MEFI_Score                  8.62   4.62 -0.37     0.33 0.04
## MEFI_Score                      8.81   4.99 -0.29    -0.19 0.04
## Govt_Consumption               10.00  10.00 -1.47     4.21 0.09
## Govt_Xfers_Subsidies            9.74   4.17 -1.81     3.23 0.04
## Govt_Retirement                 8.12   8.12 -0.42    -0.56 0.10
## Income_Payroll_Tax             10.00  10.00  0.50    -0.53 0.14
## Sales_Tax                       9.81   9.81 -0.28     1.30 0.09
## Property_Tax                   10.00  10.00 -3.27    20.97 0.06
## Minimum_Wage_Over_Income       10.00   7.02 -0.58     0.31 0.06
## Percent_Govt_Employment        10.00  10.00 -2.52    18.23 0.05
## Percent_Private_Union_Density  10.00  10.00 -0.54    -0.81 0.14
## Minimum_Wage_Over_10._Income    9.28   8.44 -1.08     0.51 0.09

Correlations

#colnames(mydata)[4:13]=c('X1A','X1B','X1C','X2A','X2B','X2C','X3A', 'X3B','X3C', 'New3A')
corfunction(mydata[,-c(1:3)], ,3)

KDE Pairs

KDE Pairs of data

kdepairs(mydata[, 2:3])
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

kdepairs(mydata[,4:6])
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

kdepairs(mydata[,7:9])
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

kdepairs(mydata[,10:13])
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

Normalize

Z-scores to adjust for magnitudes

tempname=mydata$GeoName
mydata[,4:13]=as.data.frame(apply(mydata[, 4:13], 2, 'scale'))
mydata$GeoName=tempname
myprint(describe(mydata))
##                               vars   n   mean     sd median trimmed    mad
## GeoName*                         1 382 191.50 110.42 191.50  191.50 141.59
## New_MEFI_Score                   2 382   6.77   0.75   6.79    6.79   0.76
## MEFI_Score                       3 382   6.74   0.87   6.76    6.77   0.91
## Govt_Consumption                 4 382   0.00   1.00   0.15    0.09   0.76
## Govt_Xfers_Subsidies             5 382   0.00   1.00   0.32    0.18   0.62
## Govt_Retirement                  6 382   0.00   1.00   0.15    0.05   1.05
## Income_Payroll_Tax               7 382   0.00   1.00  -0.19   -0.04   0.67
## Sales_Tax                        8 382   0.00   1.00   0.03    0.02   0.72
## Property_Tax                     9 382   0.00   1.00   0.12    0.08   0.74
## Minimum_Wage_Over_Income        10 382   0.00   1.00   0.11    0.06   0.90
## Percent_Govt_Employment         11 382   0.00   1.00   0.15    0.09   0.78
## Percent_Private_Union_Density   12 382   0.00   1.00   0.24    0.08   1.09
## Minimum_Wage_Over_10._Income    13 382   0.00   1.00   0.25    0.13   0.84
##                                 min    max  range  skew kurtosis   se
## GeoName*                       1.00 382.00 381.00  0.00    -1.21 5.65
## New_MEFI_Score                 4.00   8.62   4.62 -0.37     0.33 0.04
## MEFI_Score                     3.82   8.81   4.99 -0.29    -0.19 0.04
## Govt_Consumption              -4.10   1.82   5.92 -1.47     4.21 0.05
## Govt_Xfers_Subsidies          -4.40   1.20   5.60 -1.81     3.23 0.05
## Govt_Retirement               -2.09   1.92   4.01 -0.42    -0.56 0.05
## Income_Payroll_Tax            -1.71   1.85   3.56  0.50    -0.53 0.05
## Sales_Tax                     -3.15   2.58   5.73 -0.28     1.30 0.05
## Property_Tax                  -7.33   1.53   8.87 -3.27    20.97 0.05
## Minimum_Wage_Over_Income      -3.64   2.07   5.72 -0.58     0.31 0.05
## Percent_Govt_Employment       -9.22   1.82  11.05 -2.52    18.23 0.05
## Percent_Private_Union_Density -2.31   1.32   3.63 -0.54    -0.81 0.05
## Minimum_Wage_Over_10._Income  -3.26   1.45   4.71 -1.08     0.51 0.05

Correlations

Not hierarchically clustered

corfunction(mydata[,4:13])

## Vanishing Tetrads

#print("Tetrad Testing, M1")
#vanishing.tetrads(mydata[, 4:12])

#print("Tetrad Testing, M2")
#vanishing.tetrads(mydata[,4:11,13])

M1 Base with Cov (Using Original Scores w/o Cov Structure)

Baseline model

Estimate of negative variance exists for the forced additive measure of Economic Freedom (P2 and P3).

colnames(mydata)[4:13]=c('X1A','X1B','X1C','X2A','X2B','X2C','X3A', 'X3B','X3C', 'New3A')

mod='

Economic_Freedom=~1/3*Government_Spending+1/3*Taxation+1/3*Labor_Market_Freedom
Government_Spending=~1/3*X1A+1/3*X1B+1/3*X1C
Taxation=~1/3*X2A+1/3*X2B+1/3*X2C
Labor_Market_Freedom=~1/3*X3A+1/3*X3B+1/3*X3C

'


fit=cfa(mod, data=mydata, do.fit=T, estimator='DWLS')
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
(mys1=summary(fit, standardized=T,fit.measures = TRUE))
## lavaan 0.6.16 ended normally after 50 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                               463.355
##   Degrees of freedom                                32
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               819.555
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.449
##   Tucker-Lewis Index (TLI)                       0.381
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.188
##   90 Percent confidence interval - lower         0.173
##   90 Percent confidence interval - upper         0.203
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.172
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                          
##     Gvrnmnt_Spndng           0.333                               0.830    0.830
##     Taxation                 0.333                                  NA       NA
##     Labr_Mrkt_Frdm           0.333                               0.839    0.839
##   Government_Spending =~                                                       
##     X1A                      0.333                               0.480    0.480
##     X1B                      0.333                               0.480    0.480
##     X1C                      0.333                               0.480    0.480
##   Taxation =~                                                                  
##     X2A                      0.333                                  NA       NA
##     X2B                      0.333                                  NA       NA
##     X2C                      0.333                                  NA       NA
##   Labor_Market_Freedom =~                                                      
##     X3A                      0.333                               0.474    0.474
##     X3B                      0.333                               0.474    0.474
##     X3C                      0.333                               0.474    0.474
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X1A               0.770    0.132    5.846    0.000    0.770    0.770
##    .X1B               0.770    0.122    6.334    0.000    0.770    0.770
##    .X1C               0.770    0.070   11.075    0.000    0.770    0.770
##    .X2A               1.176    0.071   16.598    0.000    1.176    1.176
##    .X2B               1.176    0.099   11.869    0.000    1.176    1.176
##    .X2C               1.176    0.248    4.744    0.000    1.176    1.176
##    .X3A               0.775    0.084    9.232    0.000    0.775    0.775
##    .X3B               0.775    0.233    3.334    0.001    0.775    0.775
##    .X3C               0.775    0.064   12.080    0.000    0.775    0.775
##     Economic_Fredm   12.820    0.851   15.057    0.000    1.000    1.000
##    .Gvrnmnt_Spndng    0.646    0.304    2.122    0.034    0.312    0.312
##    .Taxation         -3.006    0.319   -9.437    0.000       NA       NA
##    .Labr_Mrkt_Frdm    0.597    0.298    2.003    0.045    0.295    0.295
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE, covs=F)
temp2=lavPredict(fit)[,1]
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
#mydata$ScoreM1=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

M2 Sub with Cov (using Original Scores w/o Cov Structure)

Estimate of negative variance exists for the forced additive measure of Economic Freedom (P2 and P3).

mod='
Economic_Freedom=~1/3*Government_Spending+1/3*Taxation+1/3*Labor_Market_Freedom
Government_Spending=~1/3*X1A+1/3*X1B+1/3*X1C
Taxation=~1/3*X2A+1/3*X2B+1/3*X2C
Labor_Market_Freedom=~1/3*New3A+1/3*X3B+1/3*X3C

'

fit=cfa(mod, data=mydata, do.fit=T, estimator='DWLS')
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
(mys2=summary(fit, standardized=T,fit.measures = TRUE))
## lavaan 0.6.16 ended normally after 50 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                               591.511
##   Degrees of freedom                                32
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               983.750
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.410
##   Tucker-Lewis Index (TLI)                       0.336
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.214
##   90 Percent confidence interval - lower         0.199
##   90 Percent confidence interval - upper         0.230
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.194
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                          
##     Gvrnmnt_Spndng           0.333                               0.856    0.856
##     Taxation                 0.333                                  NA       NA
##     Labr_Mrkt_Frdm           0.333                               0.951    0.951
##   Government_Spending =~                                                       
##     X1A                      0.333                               0.480    0.480
##     X1B                      0.333                               0.480    0.480
##     X1C                      0.333                               0.480    0.480
##   Taxation =~                                                                  
##     X2A                      0.333                                  NA       NA
##     X2B                      0.333                                  NA       NA
##     X2C                      0.333                                  NA       NA
##   Labor_Market_Freedom =~                                                      
##     New3A                    0.333                               0.432    0.432
##     X3B                      0.333                               0.432    0.432
##     X3C                      0.333                               0.432    0.432
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X1A               0.770    0.132    5.846    0.000    0.770    0.770
##    .X1B               0.770    0.122    6.334    0.000    0.770    0.770
##    .X1C               0.770    0.070   11.075    0.000    0.770    0.770
##    .X2A               1.176    0.071   16.598    0.000    1.176    1.176
##    .X2B               1.176    0.099   11.869    0.000    1.176    1.176
##    .X2C               1.176    0.248    4.744    0.000    1.176    1.176
##    .New3A             0.814    0.086    9.447    0.000    0.814    0.814
##    .X3B               0.814    0.232    3.503    0.000    0.814    0.814
##    .X3C               0.814    0.063   12.938    0.000    0.814    0.814
##     Economic_Fredm   13.666    0.829   16.480    0.000    1.000    1.000
##    .Gvrnmnt_Spndng    0.551    0.303    1.818    0.069    0.266    0.266
##    .Taxation         -3.100    0.318   -9.755    0.000       NA       NA
##    .Labr_Mrkt_Frdm    0.159    0.274    0.580    0.562    0.095    0.095
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE,covs=T)
temp2=lavPredict(fit)[,1]
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
#mydata$ScoreM2=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

M3 Non-Fixed Weights

Statistically significant estimate of negative variance exists for the forced additive measure of Economic Freedom (P1).

lavOptions("verbose")
## $verbose
## [1] FALSE
mod='
Economic_Freedom=~Government_Spending+Taxation+Labor_Market_Freedom
Government_Spending=~X1A+X1B+X1C
Taxation=~X2A+X2B+X2C
Labor_Market_Freedom=~X3A+X3B+X3C


'

fit=cfa(mod, data=mydata, do.fit=T, estimator='DWLS')
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
(mys3=summary(fit, standardized=T, fit.measures = TRUE))
## lavaan 0.6.16 ended normally after 77 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                               217.474
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               819.555
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.753
##   Tucker-Lewis Index (TLI)                       0.630
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.145
##   90 Percent confidence interval - lower         0.128
##   90 Percent confidence interval - upper         0.163
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.147
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                          
##     Gvrnmnt_Spndng           1.000                               1.172    1.172
##     Taxation                 1.501    0.302    4.979    0.000    0.357    0.357
##     Labr_Mrkt_Frdm           0.765    0.185    4.139    0.000    0.845    0.845
##   Government_Spending =~                                                       
##     X1A                      1.000                               0.336    0.336
##     X1B                      0.951    0.164    5.813    0.000    0.319    0.319
##     X1C                      2.090    0.308    6.795    0.000    0.702    0.702
##   Taxation =~                                                                  
##     X2A                      1.000                               1.657    1.657
##     X2B                     -0.192    0.074   -2.603    0.009   -0.318   -0.318
##     X2C                      0.045    0.024    1.867    0.062    0.075    0.075
##   Labor_Market_Freedom =~                                                      
##     X3A                      1.000                               0.356    0.356
##     X3B                      0.789    0.170    4.640    0.000    0.281    0.281
##     X3C                      1.892    0.303    6.237    0.000    0.674    0.674
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X1A               0.887    0.131    6.761    0.000    0.887    0.887
##    .X1B               0.898    0.120    7.491    0.000    0.898    0.898
##    .X1C               0.507    0.115    4.413    0.000    0.507    0.507
##    .X2A              -1.745    1.092   -1.597    0.110   -1.745   -1.745
##    .X2B               0.899    0.102    8.852    0.000    0.899    0.899
##    .X2C               0.994    0.246    4.049    0.000    0.994    0.994
##    .X3A               0.873    0.085   10.251    0.000    0.873    0.873
##    .X3B               0.921    0.232    3.969    0.000    0.921    0.921
##    .X3C               0.545    0.117    4.652    0.000    0.545    0.545
##     Economic_Fredm    0.155    0.047    3.271    0.001    1.000    1.000
##    .Gvrnmnt_Spndng   -0.042    0.036   -1.171    0.242   -0.374   -0.374
##    .Taxation          2.395    1.083    2.212    0.027    0.873    0.873
##    .Labr_Mrkt_Frdm    0.036    0.028    1.301    0.193    0.286    0.286
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE, covs=F)
temp2=lavPredict(fit)[,1]
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative

## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
mydata$ScoreM3=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

M4 Sub Weights Free

Statistically significant estimate of negative variance exists for the forced additive measure of Economic Freedom (P2).

mod='
Economic_Freedom=~Government_Spending+Taxation+Labor_Market_Freedom
Government_Spending=~X1A+X1B+X1C
Taxation=~X2A+X2B+X2C
Labor_Market_Freedom=~New3A+X3B+X3C

'

fit=cfa(mod, data=mydata, do.fit=T, estimator='DWLS')
(mys4=summary(fit, standardized=T, fit.measures=TRUE))
## lavaan 0.6.16 ended normally after 82 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                               198.480
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               983.750
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.816
##   Tucker-Lewis Index (TLI)                       0.724
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.138
##   90 Percent confidence interval - lower         0.121
##   90 Percent confidence interval - upper         0.156
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.145
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                          
##     Gvrnmnt_Spndng           1.000                               0.728    0.728
##     Taxation                 3.418    0.769    4.446    0.000    0.732    0.732
##     Labr_Mrkt_Frdm           2.690    0.663    4.057    0.000    0.743    0.743
##   Government_Spending =~                                                       
##     X1A                      1.000                               0.259    0.259
##     X1B                      0.820    0.194    4.215    0.000    0.212    0.212
##     X1C                      3.661    0.759    4.825    0.000    0.949    0.949
##   Taxation =~                                                                  
##     X2A                      1.000                               0.881    0.881
##     X2B                     -0.497    0.077   -6.469    0.000   -0.438   -0.438
##     X2C                      0.331    0.056    5.897    0.000    0.292    0.292
##   Labor_Market_Freedom =~                                                      
##     New3A                    1.000                               0.683    0.683
##     X3B                      0.076    0.053    1.432    0.152    0.052    0.052
##     X3C                      1.463    0.172    8.488    0.000    1.000    1.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X1A               0.933    0.130    7.197    0.000    0.933    0.933
##    .X1B               0.955    0.118    8.073    0.000    0.955    0.955
##    .X1C               0.100    0.228    0.437    0.662    0.100    0.100
##    .X2A               0.224    0.155    1.447    0.148    0.224    0.224
##    .X2B               0.808    0.102    7.895    0.000    0.808    0.808
##    .X2C               0.915    0.247    3.709    0.000    0.915    0.915
##    .New3A             0.533    0.105    5.090    0.000    0.533    0.533
##    .X3B               0.997    0.230    4.327    0.000    0.997    0.997
##    .X3C               0.000    0.152    0.003    0.997    0.000    0.000
##     Economic_Fredm    0.036    0.015    2.433    0.015    1.000    1.000
##    .Gvrnmnt_Spndng    0.032    0.014    2.227    0.026    0.470    0.470
##    .Taxation          0.360    0.133    2.714    0.007    0.464    0.464
##    .Labr_Mrkt_Frdm    0.209    0.052    3.990    0.000    0.449    0.449
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE,covs=F)
temp2=lavPredict(fit)[,1]
mydata$ScoreM4=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

EFA 1

fit=efa(data=mydata[,c(4:6,10:12)], do.fit=T, estimator='DWLS', rotation='varimax', nfactors=2, sample.cov=cor(mydata[,c(4:6,10:12)]), rotation.args = list(geomin.epsilon = 0.05, rstarts = 1, orthogonal=T))
summary(fit, standardized=T, fit.measures = TRUE, cutoff=0.4)
## This is lavaan 0.6.16 -- running exploratory factor analysis
## 
##   Estimator                                       DWLS
##   Rotation method                   VARIMAX ORTHOGONAL
##   Rotation algorithm (rstarts)                 GPA (1)
##   Standardized metric                             TRUE
##   Row weights                                   Kaiser
## 
##   Number of observations                           382
## 
## Fit measures:
##                chisq df pvalue   cfi rmsea
##   nfactors = 2 5.581  4  0.233 0.996 0.032
## 
## Eigenvalues correlation matrix:
## 
##     ev1     ev2     ev3     ev4     ev5     ev6 
##   2.370   1.356   0.847   0.690   0.400   0.338 
## 
## Standardized loadings: (* = significant at 1% level)
## 
##         f1      f2       unique.var   communalities
## X1A  0.774*      .*           0.390           0.610
## X1B      .*      .*           0.832           0.168
## X1C      .*  0.528*           0.687           0.313
## X3A  0.455*      .*           0.753           0.247
## X3B  0.851*                   0.276           0.724
## X3C          0.999*           0.000           1.000
## 
##                               f1    f2 total
## Sum of sq (ortho) loadings 1.723 1.338 3.061
## Proportion of total        0.563 0.437 1.000
## Proportion var             0.287 0.223 0.510
## Cumulative var             0.287 0.510 0.510

M5 Base, EFA-Based with Covariance Structure

Model fits. (Estimate of negative variance statistically insignificant)

mod='
#Score~EF
Economic_Freedom=~F1+F2+F3
F1=~X1A+X3A+X3B
F2=~X2A+X2B+X2C
F3=~X1C+X3C


'
#optimal covariance structure

fit=sem(mod, data=mydata, do.fit=T, estimator='DWLS')
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
(mys5=summary(fit, standardized=T, fit.measures=T))
## lavaan 0.6.16 ended normally after 86 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        19
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                                71.100
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               688.904
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.918
##   Tucker-Lewis Index (TLI)                       0.865
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.070
##   90 Percent confidence interval - upper         0.114
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.819
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.088
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                      
##     F1                   1.000                               0.216    0.216
##     F2                   2.821    0.551    5.119    0.000    0.425    0.425
##     F3                   6.575    3.325    1.978    0.048    1.347    1.347
##   F1 =~                                                                    
##     X1A                  1.000                               0.734    0.734
##     X3A                  0.766    0.166    4.612    0.000    0.562    0.562
##     X3B                  0.982    0.173    5.672    0.000    0.721    0.721
##   F2 =~                                                                    
##     X2A                  1.000                               1.054    1.054
##     X2B                 -0.436    0.088   -4.973    0.000   -0.459   -0.459
##     X2C                  0.173    0.048    3.607    0.000    0.183    0.183
##   F3 =~                                                                    
##     X1C                  1.000                               0.774    0.774
##     X3C                  0.896    0.125    7.195    0.000    0.694    0.694
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X1A               0.462    0.189    2.443    0.015    0.462    0.462
##    .X3A               0.684    0.112    6.113    0.000    0.684    0.684
##    .X3B               0.481    0.267    1.802    0.072    0.481    0.481
##    .X2A              -0.110    0.257   -0.429    0.668   -0.110   -0.110
##    .X2B               0.789    0.106    7.457    0.000    0.789    0.789
##    .X2C               0.967    0.246    3.929    0.000    0.967    0.967
##    .X1C               0.401    0.112    3.577    0.000    0.401    0.401
##    .X3C               0.519    0.094    5.542    0.000    0.519    0.519
##     Economic_Fredm    0.025    0.014    1.824    0.068    1.000    1.000
##    .F1                0.513    0.136    3.780    0.000    0.953    0.953
##    .F2                0.910    0.260    3.502    0.000    0.820    0.820
##    .F3               -0.489    0.566   -0.863    0.388   -0.815   -0.815
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE, covs=F)
temp2=lavPredict(fit)[,1]
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative

## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
mydata$ScoreM5=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

EFA 2

fit=efa(data=mydata[, c(4:6, 11,12,13)], do.fit=T, estimator='DWLS', rotation='varimax', nfactors=2, sample.cov=cor(mydata[, c(4:6, 11,12,13)]), rotation.args = list(geomin.epsilon = 0.05, rstarts = 1, orthogonal=T))
summary(fit, standardized=T, fit.measures = TRUE, cutoff=.4)
## This is lavaan 0.6.16 -- running exploratory factor analysis
## 
##   Estimator                                       DWLS
##   Rotation method                   VARIMAX ORTHOGONAL
##   Rotation algorithm (rstarts)                 GPA (1)
##   Standardized metric                             TRUE
##   Row weights                                   Kaiser
## 
##   Number of observations                           382
## 
## Fit measures:
##                chisq df pvalue cfi rmsea
##   nfactors = 2 2.651  4  0.618   1     0
## 
## Eigenvalues correlation matrix:
## 
##     ev1     ev2     ev3     ev4     ev5     ev6 
##   2.238   1.756   0.769   0.621   0.361   0.254 
## 
## Standardized loadings: (* = significant at 1% level)
## 
##           f1      f2       unique.var   communalities
## X1A    0.824*       *           0.312           0.688
## X1B    0.440*                   0.803           0.197
## X1C        .*  0.523*           0.671           0.329
## X3B    0.710*                   0.496           0.504
## X3C            0.999*           0.000           1.000
## New3A          0.690*           0.520           0.480
## 
##                               f2    f1 total
## Sum of sq (ortho) loadings 1.759 1.441 3.199
## Proportion of total        0.550 0.450 1.000
## Proportion var             0.293 0.240 0.533
## Cumulative var             0.293 0.533 0.533

M6 Sub, EFA-Based, with Covariance Structure

Model fits. (Estimate of negative variance statistically insignificant)

mod='
Economic_Freedom=~F1+F2+F3
F1=~X1A+X1B+X3B
F2=~X2A+X2B+X2C
F3=~X1C+New3A+X3C


'
#optimal covariance structure for fit

fit=sem(mod, data=mydata, do.fit=T, estimator='DWLS')
(mys6=summary(fit, standardized=T, fit.measures=T))
## lavaan 0.6.16 ended normally after 76 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                               159.957
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               983.750
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.857
##   Tucker-Lewis Index (TLI)                       0.785
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.122
##   90 Percent confidence interval - lower         0.104
##   90 Percent confidence interval - upper         0.140
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.103
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                      
##     F1                   1.000                               0.232    0.232
##     F2                   4.170    1.005    4.148    0.000    0.945    0.945
##     F3                   2.332    0.625    3.731    0.000    0.712    0.712
##   F1 =~                                                                    
##     X1A                  1.000                               0.827    0.827
##     X1B                  0.611    0.152    4.007    0.000    0.505    0.505
##     X3B                  0.705    0.161    4.368    0.000    0.583    0.583
##   F2 =~                                                                    
##     X2A                  1.000                               0.845    0.845
##     X2B                 -0.507    0.079   -6.444    0.000   -0.428   -0.428
##     X2C                  0.371    0.059    6.270    0.000    0.314    0.314
##   F3 =~                                                                    
##     X1C                  1.000                               0.627    0.627
##     New3A                1.064    0.101   10.552    0.000    0.667    0.667
##     X3C                  1.408    0.146    9.651    0.000    0.883    0.883
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X1A               0.316    0.236    1.340    0.180    0.316    0.316
##    .X1B               0.745    0.140    5.321    0.000    0.745    0.745
##    .X3B               0.660    0.256    2.580    0.010    0.660    0.660
##    .X2A               0.286    0.144    1.978    0.048    0.286    0.286
##    .X2B               0.816    0.102    7.993    0.000    0.816    0.816
##    .X2C               0.902    0.247    3.653    0.000    0.902    0.902
##    .X1C               0.607    0.079    7.708    0.000    0.607    0.607
##    .New3A             0.555    0.101    5.483    0.000    0.555    0.555
##    .X3C               0.221    0.108    2.046    0.041    0.221    0.221
##     Economic_Fredm    0.037    0.014    2.679    0.007    1.000    1.000
##    .F1                0.647    0.192    3.366    0.001    0.946    0.946
##    .F2                0.076    0.225    0.339    0.735    0.107    0.107
##    .F3                0.194    0.069    2.813    0.005    0.492    0.492
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE, covs=F)
temp2=lavPredict(fit)[,1]
mydata$ScoreM6=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

EFA 3

fit=efa(data=mydata[,c(4:12)], do.fit=T, estimator='DWLS', rotation='varimax', nfactors=3, sample.cov=cor(mydata[,4:12]), rotation.args = list(geomin.epsilon = 0.05, rstarts = 1, orthogonal=T))
summary(fit, standardized=T, fit.measures = TRUE, cutoff=0.4)
## This is lavaan 0.6.16 -- running exploratory factor analysis
## 
##   Estimator                                       DWLS
##   Rotation method                   VARIMAX ORTHOGONAL
##   Rotation algorithm (rstarts)                 GPA (1)
##   Standardized metric                             TRUE
##   Row weights                                   Kaiser
## 
##   Number of observations                           382
## 
## Fit measures:
##                 chisq df pvalue   cfi rmsea
##   nfactors = 3 20.664 12  0.056 0.989 0.044
## 
## Eigenvalues correlation matrix:
## 
##     ev1     ev2     ev3     ev4     ev5     ev6     ev7     ev8     ev9 
##   2.644   1.877   1.249   0.945   0.763   0.599   0.364   0.312   0.247 
## 
## Standardized loadings: (* = significant at 1% level)
## 
##         f1      f2      f3       unique.var   communalities
## X1A          0.695*                   0.516           0.484
## X1B      .*  0.497*                   0.710           0.290
## X1C      .*      .*  0.433*           0.631           0.369
## X2A  0.955*      .*      .*           0.000           1.000
## X2B -0.556*      .*                   0.650           0.350
## X2C              .       .*           0.826           0.174
## X3A      .   0.514*      .*           0.700           0.300
## X3B          0.762*                   0.408           0.592
## X3C      .*      .*  0.966*           0.000           1.000
## 
##                               f2    f1    f3 total
## Sum of sq (ortho) loadings 1.787 1.424 1.349 4.560
## Proportion of total        0.392 0.312 0.296 1.000
## Proportion var             0.199 0.158 0.150 0.507
## Cumulative var             0.199 0.357 0.507 0.507

M7 Sub, EFA-Based, with Covariance Structure

Model fits. (Estimate of negative variance statistically insignificant)

mod='
Economic_Freedom=~F1+F2+F3
F1=~X2A+X2B
F2=~X1A+X1B+X3A+X3B
F3=~X1C+X3C


'
#optimal covariance structure for fit

fit=sem(mod, data=mydata, do.fit=T, estimator='DWLS')
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
(mys7=summary(fit, standardized=T, fit.measures=T))
## lavaan 0.6.16 ended normally after 61 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        19
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                                57.094
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               748.582
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.944
##   Tucker-Lewis Index (TLI)                       0.908
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.057
##   90 Percent confidence interval - upper         0.102
##   P-value H_0: RMSEA <= 0.050                    0.017
##   P-value H_0: RMSEA >= 0.080                    0.488
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.076
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                      
##     F1                   1.000                               0.403    0.403
##     F2                   0.381    0.066    5.751    0.000    0.378    0.378
##     F3                   0.972    0.214    4.532    0.000    0.846    0.846
##   F1 =~                                                                    
##     X2A                  1.000                               1.761    1.761
##     X2B                 -0.173    0.079   -2.204    0.028   -0.305   -0.305
##   F2 =~                                                                    
##     X1A                  1.000                               0.715    0.715
##     X1B                  0.737    0.122    6.066    0.000    0.527    0.527
##     X3A                  0.732    0.125    5.868    0.000    0.523    0.523
##     X3B                  0.914    0.137    6.686    0.000    0.654    0.654
##   F3 =~                                                                    
##     X1C                  1.000                               0.815    0.815
##     X3C                  0.808    0.116    6.981    0.000    0.659    0.659
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X2A              -2.101    1.446   -1.453    0.146   -2.101   -2.101
##    .X2B               0.907    0.103    8.828    0.000    0.907    0.907
##    .X1A               0.488    0.167    2.917    0.004    0.488    0.488
##    .X1B               0.722    0.132    5.465    0.000    0.722    0.722
##    .X3A               0.726    0.098    7.416    0.000    0.726    0.726
##    .X3B               0.572    0.249    2.295    0.022    0.572    0.572
##    .X1C               0.335    0.123    2.732    0.006    0.335    0.335
##    .X3C               0.566    0.089    6.352    0.000    0.566    0.566
##     Economic_Fredm    0.504    0.115    4.370    0.000    1.000    1.000
##    .F1                2.597    1.437    1.808    0.071    0.838    0.838
##    .F2                0.439    0.098    4.470    0.000    0.857    0.857
##    .F3                0.189    0.125    1.514    0.130    0.285    0.285
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE, covs=F)
temp2=lavPredict(fit)[,1]
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
mydata$ScoreM7=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

EFA 4

mod='
Economic_Freedom=~.
'

fit=efa(data=mydata[,c(4:9,11:13)], do.fit=T, estimator='DWLS', rotation='varimax', nfactors=3, sample.cov=cor(mydata[,c(4:9,11:13)]), rotation.args = list(geomin.epsilon = 0.05, rstarts = 1, orthogonal=T))
summary(fit, standardized=T, fit.measures = TRUE, cutoff=0.4)
## This is lavaan 0.6.16 -- running exploratory factor analysis
## 
##   Estimator                                       DWLS
##   Rotation method                   VARIMAX ORTHOGONAL
##   Rotation algorithm (rstarts)                 GPA (1)
##   Standardized metric                             TRUE
##   Row weights                                   Kaiser
## 
##   Number of observations                           382
## 
## Fit measures:
##                 chisq df pvalue   cfi rmsea
##   nfactors = 3 16.988 12   0.15 0.995 0.033
## 
## Eigenvalues correlation matrix:
## 
##     ev1     ev2     ev3     ev4     ev5     ev6     ev7     ev8     ev9 
##   2.759   1.869   1.333   1.001   0.631   0.522   0.334   0.317   0.233 
## 
## Standardized loadings: (* = significant at 1% level)
## 
##           f1      f2      f3       unique.var   communalities
## X1A    0.687*                           0.523           0.477
## X1B    0.557*      .*                   0.664           0.336
## X1C        .*      .*  0.460*           0.623           0.377
## X2A        .*  0.926*      .*           0.000           1.000
## X2B        .* -0.599*                   0.606           0.394
## X2C        .               .*           0.832           0.168
## X3B    0.650*      .                    0.565           0.435
## X3C        .*      .   0.978*           0.003           0.997
## New3A              .   0.690*           0.511           0.489
## 
##                               f3    f1    f2 total
## Sum of sq (ortho) loadings 1.858 1.451 1.364 4.672
## Proportion of total        0.398 0.311 0.292 1.000
## Proportion var             0.206 0.161 0.152 0.519
## Cumulative var             0.206 0.368 0.519 0.519

M8 Sub, EFA-Based, with Covariance Structure

Model fits. (Estimate of negative variance statistically insignificant)

mod='
Economic_Freedom=~F1+F2+F3
F1=~X2A+X2B
F2=~X1A+X1B+X3B
F3=~X1C+X3C+New3A


'
#optimal covariance structure for fit

fit=sem(mod, data=mydata, do.fit=T, estimator='DWLS')
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
(mys8=summary(fit, standardized=T, fit.measures=T))
## lavaan 0.6.16 ended normally after 88 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        19
## 
##   Number of observations                           382
## 
## Model Test User Model:
##                                                       
##   Test statistic                                74.800
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               857.848
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.930
##   Tucker-Lewis Index (TLI)                       0.885
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.094
##   90 Percent confidence interval - lower         0.073
##   90 Percent confidence interval - upper         0.117
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.873
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.093
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Economic_Freedom =~                                                      
##     F1                   1.000                               0.603    0.603
##     F2                   0.224    0.055    4.110    0.000    0.337    0.337
##     F3                   0.360    0.094    3.839    0.000    0.553    0.553
##   F1 =~                                                                    
##     X2A                  1.000                               1.647    1.647
##     X2B                 -0.198    0.076   -2.615    0.009   -0.326   -0.326
##   F2 =~                                                                    
##     X1A                  1.000                               0.661    0.661
##     X1B                  0.975    0.216    4.516    0.000    0.645    0.645
##     X3B                  0.730    0.158    4.628    0.000    0.482    0.482
##   F3 =~                                                                    
##     X1C                  1.000                               0.646    0.646
##     X3C                  1.370    0.155    8.818    0.000    0.885    0.885
##     New3A                0.976    0.099    9.824    0.000    0.630    0.630
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .X2A              -1.713    1.078   -1.589    0.112   -1.713   -1.713
##    .X2B               0.894    0.102    8.740    0.000    0.894    0.894
##    .X1A               0.563    0.176    3.196    0.001    0.563    0.563
##    .X1B               0.585    0.159    3.665    0.000    0.585    0.585
##    .X3B               0.767    0.244    3.144    0.002    0.767    0.767
##    .X1C               0.583    0.083    7.051    0.000    0.583    0.583
##    .X3C               0.218    0.114    1.901    0.057    0.218    0.218
##    .New3A             0.603    0.100    6.010    0.000    0.603    0.603
##     Economic_Fredm    0.986    0.260    3.798    0.000    1.000    1.000
##    .F1                1.727    1.081    1.597    0.110    0.636    0.636
##    .F2                0.388    0.112    3.474    0.001    0.887    0.887
##    .F3                0.289    0.051    5.643    0.000    0.694    0.694
lavaanPlot(model = fit, edge_options = list(color = "grey"),coefs = TRUE, covs=F)
temp2=lavPredict(fit)[,1]
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
mydata$ScoreM8=10*(temp2-min(temp2))/(max(temp2)-min(temp2)) #scale between 0 and 10

Top 10

newdata=subset(mydata, select=c('GeoName','MEFI_Score', 'New_MEFI_Score', 'ScoreM3','ScoreM4','ScoreM5','ScoreM6', 'ScoreM7','ScoreM8'))

MEFI=newdata[order(-newdata$MEFI_Score),]
MEFI$RankOriginal=seq(1:nrow(MEFI))

MEFI=MEFI[order(-MEFI$New_MEFI_Score),]
MEFI$RankNewScore=seq(1:nrow(MEFI))

MEFI=MEFI[order(-MEFI$ScoreM3),]
MEFI$RankM3=seq(1:nrow(MEFI))

MEFI=MEFI[order(-MEFI$ScoreM4),]
MEFI$RankM4=seq(1:nrow(MEFI))

MEFI=MEFI[order(-MEFI$ScoreM5),]
MEFI$RankM5=seq(1:nrow(MEFI))

MEFI=MEFI[order(-MEFI$ScoreM6),]
MEFI$RankM6=seq(1:nrow(MEFI))

MEFI=MEFI[order(-MEFI$ScoreM7),]
MEFI$RankM7=seq(1:nrow(MEFI))

MEFI=MEFI[order(-MEFI$ScoreM8),]
MEFI$RankM8=seq(1:nrow(MEFI))

write.csv(MEFI,'MEFI.csv', row.names=F)

Rank Correlation

cor(MEFI[, c(10:17)], method='spearman')
##              RankOriginal RankNewScore    RankM3    RankM4    RankM5    RankM6
## RankOriginal    1.0000000    0.9691024 0.9317558 0.8712406 0.7772446 0.7342913
## RankNewScore    0.9691024    1.0000000 0.8979671 0.8000575 0.6998202 0.6906990
## RankM3          0.9317558    0.8979671 1.0000000 0.9027356 0.8459990 0.7387254
## RankM4          0.8712406    0.8000575 0.9027356 1.0000000 0.8936045 0.8814783
## RankM5          0.7772446    0.6998202 0.8459990 0.8936045 1.0000000 0.6101163
## RankM6          0.7342913    0.6906990 0.7387254 0.8814783 0.6101163 1.0000000
## RankM7          0.9001536    0.8686890 0.9342997 0.9033216 0.7542611 0.8370515
## RankM8          0.6004661    0.6321198 0.6123308 0.6052751 0.3042064 0.7437503
##                 RankM7    RankM8
## RankOriginal 0.9001536 0.6004661
## RankNewScore 0.8686890 0.6321198
## RankM3       0.9342997 0.6123308
## RankM4       0.9033216 0.6052751
## RankM5       0.7542611 0.3042064
## RankM6       0.8370515 0.7437503
## RankM7       1.0000000 0.8028731
## RankM8       0.8028731 1.0000000
corfunction(MEFI[,c(10:17)], 'spearman', 3)

Model Performance

require(tidyverse)
mydf=as.data.frame(round(rbind(mys1$fit, mys2$fit, mys3$fit,mys4$fit,mys5$fit,mys6$fit, mys7$fit,mys8$fit),5))
rownames(mydf)=c('M1 w/Cov','M2 w/Cov', 'M3','M4','M5','M6', 'M7', 'M8')
mydf$Model=rownames(mydf)
print(mydf[,6:8])
##          baseline.chisq baseline.df baseline.pvalue
## M1 w/Cov       819.5549          36               0
## M2 w/Cov       983.7500          36               0
## M3             819.5549          36               0
## M4             983.7500          36               0
## M5             688.9045          28               0
## M6             983.7500          36               0
## M7             748.5824          28               0
## M8             857.8481          28               0
mydf[,c(11:13)]
##            rmsea rmsea.ci.lower rmsea.ci.upper
## M1 w/Cov 0.18810        0.17313        0.20346
## M2 w/Cov 0.21422        0.19930        0.22951
## M3       0.14546        0.12808        0.16349
## M4       0.13814        0.12071        0.15624
## M5       0.09139        0.07002        0.11388
## M6       0.12194        0.10438        0.14022
## M7       0.07868        0.05674        0.10166
## M8       0.09447        0.07319        0.11686
mysub=mydf[,c(9,10)]%>%pivot_longer(everything(), names_to='metric', values_to='value')
mysub$Model=c(rep('M1',2),rep('M2',2),rep('M3',2),rep('M4',2),rep('M5',2),rep('M6',2), rep('M7',2), rep('M8',2))


myplot=ggplot(mysub, aes(x=metric, y=value, fill=Model))+geom_bar(stat='identity', alpha=.5, position='dodge')+
  geom_text(aes(label = round(value, 3)), 
            position = position_dodge(.9),
            color="black",vjust = .5,hjust =1, angle = 90)+xlab("")+ylab("Metric Value")
myplot

path1 <- data.frame(x=c(.5,1.5),y=c(.95,.95), Model=c('Benchmark'))
path2 <- data.frame(x=c(1.5,2.5),y=c(.9,.9), Model=c('Benchmark'))
q <- myplot + geom_path(data=path1,aes(x=x, y=y, col=Model))
q <- q + geom_path(data=path2,aes(x=x, y=y, col=Model))+ylim(0, 1.2)
q

Top k

k=5

BaseTop=MEFI[MEFI$RankOriginal<=k,]
BaseTop=select(BaseTop, c('GeoName','RankOriginal'))
BaseTop=BaseTop[order(BaseTop$RankOriginal),"GeoName"]

SubTop=MEFI[MEFI$RankNewScore<=k,]
SubTop=select(SubTop, c('GeoName','RankNewScore'))
SubTop=SubTop[order(SubTop$RankNewScore),"GeoName"]


M3Top=MEFI[MEFI$RankM3<=k,]
M3Top=select(M3Top, c('GeoName','RankM3'))
M3Top=M3Top[order(M3Top$RankM3),"GeoName"]

M4Top=MEFI[MEFI$RankM4<=k,]
M4Top=select(M4Top, c('GeoName','RankM4'))
M4Top=M4Top[order(M4Top$RankM4),"GeoName"]

M5Top=MEFI[MEFI$RankM5<=k,]
M5Top=select(M5Top, c('GeoName','RankM5'))
M5Top=M5Top[order(M5Top$RankM5),"GeoName"]

M6Top=MEFI[MEFI$RankM6<=k,]
M6Top=select(M6Top, c('GeoName','RankM6'))
M6Top=M6Top[order(M6Top$RankM6),"GeoName"]


M7Top=MEFI[MEFI$RankM7<=k,]
M7Top=select(M7Top, c('GeoName','RankM7'))
M7Top=M7Top[order(M7Top$RankM7),"GeoName"]


M8Top=MEFI[MEFI$RankM8<=k,]
M8Top=select(M8Top, c('GeoName','RankM8'))
M8Top=M8Top[order(M8Top$RankM8),"GeoName"]


newdf=as.data.frame(cbind(BaseTop, SubTop, M3Top, M4Top, M5Top,M6Top, M7Top, M8Top))
myprint(newdf)
##                                 BaseTop                                SubTop
## 1 Naples-Immokalee-Marco Island, FL MSA Naples-Immokalee-Marco Island, FL MSA
## 2          Sebastian-Vero Beach, FL MSA          Sebastian-Vero Beach, FL MSA
## 3                       Midland, TX MSA                  The Villages, FL MSA
## 4                  The Villages, FL MSA                       Midland, TX MSA
## 5                Port St. Lucie, FL MSA                         Tyler, TX MSA
##                                        M3Top
## 1      Naples-Immokalee-Marco Island, FL MSA
## 2                       The Villages, FL MSA
## 3               Sebastian-Vero Beach, FL MSA
## 4                  Homosassa Springs, FL MSA
## 5 Crestview-Fort Walton Beach-Destin, FL MSA
##                                        M4Top
## 1                       The Villages, FL MSA
## 2                  Homosassa Springs, FL MSA
## 3      Naples-Immokalee-Marco Island, FL MSA
## 4                        Punta Gorda, FL MSA
## 5 Crestview-Fort Walton Beach-Destin, FL MSA
##                                       M5Top                  M6Top
## 1                      Grand Island, NE MSA          Tyler, TX MSA
## 2 Blacksburg-Christiansburg-Radford, VA MSA        Abilene, TX MSA
## 3                         Lynchburg, VA MSA     San Angelo, TX MSA
## 4                      Harrisonburg, VA MSA        Midland, TX MSA
## 5               Staunton-Waynesboro, VA MSA Killeen-Temple, TX MSA
##                                   M7Top                     M8Top
## 1 Naples-Immokalee-Marco Island, FL MSA         Fairbanks, AK MSA
## 2             Manchester-Nashua, NH MSA         Anchorage, AK MSA
## 3                  The Villages, FL MSA Manchester-Nashua, NH MSA
## 4          Sebastian-Vero Beach, FL MSA    Killeen-Temple, TX MSA
## 5             Homosassa Springs, FL MSA   Sherman-Denison, TX MSA
myt=table(as.matrix(newdf))
myprint(myt[order(myt, decreasing=T)])
## 
##      Naples-Immokalee-Marco Island, FL MSA 
##                                          5 
##                       The Villages, FL MSA 
##                                          5 
##               Sebastian-Vero Beach, FL MSA 
##                                          4 
##                  Homosassa Springs, FL MSA 
##                                          3 
##                            Midland, TX MSA 
##                                          3 
## Crestview-Fort Walton Beach-Destin, FL MSA 
##                                          2 
##                     Killeen-Temple, TX MSA 
##                                          2 
##                  Manchester-Nashua, NH MSA 
##                                          2 
##                              Tyler, TX MSA 
##                                          2 
##                            Abilene, TX MSA 
##                                          1 
##                          Anchorage, AK MSA 
##                                          1 
##  Blacksburg-Christiansburg-Radford, VA MSA 
##                                          1 
##                          Fairbanks, AK MSA 
##                                          1 
##                       Grand Island, NE MSA 
##                                          1 
##                       Harrisonburg, VA MSA 
##                                          1 
##                          Lynchburg, VA MSA 
##                                          1 
##                     Port St. Lucie, FL MSA 
##                                          1 
##                        Punta Gorda, FL MSA 
##                                          1 
##                         San Angelo, TX MSA 
##                                          1 
##                    Sherman-Denison, TX MSA 
##                                          1 
##                Staunton-Waynesboro, VA MSA 
##                                          1

Bottom k

k=nrow(MEFI)-5

BaseBottom=MEFI[MEFI$RankOriginal>k,]
BaseBottom=select(BaseBottom, c('GeoName','RankOriginal'))
BaseBottom=BaseBottom[order(BaseBottom$RankOriginal),"GeoName"]

SubBottom=MEFI[MEFI$RankNewScore>k,]
SubBottom=select(SubBottom, c('GeoName','RankNewScore'))
SubBottom=SubBottom[order(SubBottom$RankNewScore),"GeoName"]


M3Bottom=MEFI[MEFI$RankM3>k,]
M3Bottom=select(M3Bottom, c('GeoName','RankM3'))
M3Bottom=M3Bottom[order(M3Bottom$RankM3),"GeoName"]

M4Bottom=MEFI[MEFI$RankM4>k,]
M4Bottom=select(M4Bottom, c('GeoName','RankM4'))
M4Bottom=M4Bottom[order(M4Bottom$RankM4),"GeoName"]

M5Bottom=MEFI[MEFI$RankM5>k,]
M5Bottom=select(M5Bottom, c('GeoName','RankM5'))
M5Bottom=M5Bottom[order(M5Bottom$RankM5),"GeoName"]

M6Bottom=MEFI[MEFI$RankM6>k,]
M6Bottom=select(M6Bottom, c('GeoName','RankM6'))
M6Bottom=M6Bottom[order(M6Bottom$RankM6),"GeoName"]

M7Bottom=MEFI[MEFI$RankM7>k,]
M7Bottom=select(M7Bottom, c('GeoName','RankM7'))
M7Bottom=M7Bottom[order(M7Bottom$RankM7),"GeoName"]

M8Bottom=MEFI[MEFI$RankM8>k,]
M8Bottom=select(M8Bottom, c('GeoName','RankM8'))
M8Bottom=M8Bottom[order(M8Bottom$RankM8),"GeoName"]

newdf=as.data.frame(cbind(BaseBottom, SubBottom, M3Bottom, M4Bottom, M5Bottom,M6Bottom, M7Bottom, M8Bottom))
myprint(newdf)
##                    BaseBottom                   SubBottom
## 1              Merced, CA MSA              Merced, CA MSA
## 2 Visalia-Porterville, CA MSA Visalia-Porterville, CA MSA
## 3          Rapid City, SD MSA         Bakersfield, CA MSA
## 4         Bakersfield, CA MSA          Rapid City, SD MSA
## 5           El Centro, CA MSA           El Centro, CA MSA
##                      M3Bottom                                  M4Bottom
## 1       Stockton-Lodi, CA MSA                            Eugene, OR MSA
## 2 Visalia-Porterville, CA MSA    Los Angeles-Long Beach-Anaheim, CA MSA
## 3              Merced, CA MSA                            Fresno, CA MSA
## 4         Bakersfield, CA MSA                       Bakersfield, CA MSA
## 5           El Centro, CA MSA New York-Newark-Jersey City, NY-NJ-PA MSA
##                                    M5Bottom
## 1      Providence-Warwick-Pawtucket, RI MSA
## 2    Chicago-Naperville-Elgin, IL-IN-WI MSA
## 3 New York-Newark-Jersey City, NY-NJ-PA MSA
## 4                         Anchorage, AK MSA
## 5                         Fairbanks, AK MSA
##                                    M6Bottom
## 1                      Bend-Redmond, OR MSA
## 2                             Salem, OR MSA
## 3                            Eugene, OR MSA
## 4                            Albany, OR MSA
## 5 New York-Newark-Jersey City, NY-NJ-PA MSA
##                                    M7Bottom                        M8Bottom
## 1                            Merced, CA MSA   Mankato-North Mankato, MN MSA
## 2               Visalia-Porterville, CA MSA               Rochester, MN MSA
## 3 New York-Newark-Jersey City, NY-NJ-PA MSA Kahului-Wailuku-Lahaina, HI MSA
## 4                       Bakersfield, CA MSA       Lexington-Fayette, KY MSA
## 5                         El Centro, CA MSA          Urban Honolulu, HI MSA
myt=table(as.matrix(newdf))
myprint(myt[order(myt, decreasing=T)])
## 
##                       Bakersfield, CA MSA 
##                                         5 
##                         El Centro, CA MSA 
##                                         4 
##                            Merced, CA MSA 
##                                         4 
## New York-Newark-Jersey City, NY-NJ-PA MSA 
##                                         4 
##               Visalia-Porterville, CA MSA 
##                                         4 
##                            Eugene, OR MSA 
##                                         2 
##                        Rapid City, SD MSA 
##                                         2 
##                            Albany, OR MSA 
##                                         1 
##                         Anchorage, AK MSA 
##                                         1 
##                      Bend-Redmond, OR MSA 
##                                         1 
##    Chicago-Naperville-Elgin, IL-IN-WI MSA 
##                                         1 
##                         Fairbanks, AK MSA 
##                                         1 
##                            Fresno, CA MSA 
##                                         1 
##           Kahului-Wailuku-Lahaina, HI MSA 
##                                         1 
##                 Lexington-Fayette, KY MSA 
##                                         1 
##    Los Angeles-Long Beach-Anaheim, CA MSA 
##                                         1 
##             Mankato-North Mankato, MN MSA 
##                                         1 
##      Providence-Warwick-Pawtucket, RI MSA 
##                                         1 
##                         Rochester, MN MSA 
##                                         1 
##                             Salem, OR MSA 
##                                         1 
##                     Stockton-Lodi, CA MSA 
##                                         1 
##                    Urban Honolulu, HI MSA 
##                                         1

Best Fit Model

tmp=data.frame(MEFI[order(MEFI$RankM6, decreasing=F),])
tmp
##                                                                                          GeoName
## 352                                                                                Tyler, TX MSA
## 1                                                                                Abilene, TX MSA
## 308                                                                           San Angelo, TX MSA
## 229                                                                              Midland, TX MSA
## 183                                                                       Killeen-Temple, TX MSA
## 372                                                                        Wichita Falls, TX MSA
## 10                                                                              Amarillo, TX MSA
## 209                                                                             Longview, TX MSA
## 361                                                                                 Waco, TX MSA
## 345                                                                         The Villages, FL MSA
## 30                                                                  Beaumont-Port Arthur, TX MSA
## 324                                                                      Sherman-Denison, TX MSA
## 268                                                           Pensacola-Ferry Pass-Brent, FL MSA
## 87                                                           Dallas-Fort Worth-Arlington, TX MSA
## 76                                                                 College Station-Bryan, TX MSA
## 83                                                                        Corpus Christi, TX MSA
## 213                                                                              Lubbock, TX MSA
## 328                                                                          Sioux Falls, SD MSA
## 48                                                                 Brownsville-Harlingen, TX MSA
## 309                                                            San Antonio-New Braunfels, TX MSA
## 357                                                                             Victoria, TX MSA
## 321                                                                 Sebastian-Vero Beach, FL MSA
## 160                                                     Houston-The Woodlands-Sugar Land, TX MSA
## 110                                                                              El Paso, TX MSA
## 256                                                                               Odessa, TX MSA
## 222                                                             McAllen-Edinburg-Mission, TX MSA
## 322                                                                              Sebring, FL MSA
## 85                                                    Crestview-Fort Walton Beach-Destin, FL MSA
## 245                                                        Naples-Immokalee-Marco Island, FL MSA
## 254                                                                                Ocala, FL MSA
## 193                                                                Lakeland-Winter Haven, FL MSA
## 342                                                      Tampa-St. Petersburg-Clearwater, FL MSA
## 157                                                                    Homosassa Springs, FL MSA
## 261                                                            Orlando-Kissimmee-Sanford, FL MSA
## 265                                                        Palm Bay-Melbourne-Titusville, FL MSA
## 22                                                                     Austin-Round Rock, TX MSA
## 196                                                                               Laredo, TX MSA
## 283                                                                          Punta Gorda, FL MSA
## 170                                                                         Jacksonville, FL MSA
## 266                                                                          Panama City, FL MSA
## 95                                                    Deltona-Daytona Beach-Ormond Beach, FL MSA
## 198                                                         Las Vegas-Henderson-Paradise, NV MSA
## 252                                                        North Port-Sarasota-Bradenton, FL MSA
## 278                                                                       Port St. Lucie, FL MSA
## 289                                                                                 Reno, NV MSA
## 130                                                                          Gainesville, FL MSA
## 341                                                                          Tallahassee, FL MSA
## 226                                                Miami-Fort Lauderdale-West Palm Beach, FL MSA
## 58                                                                           Carson City, NV MSA
## 55                                                                 Cape Coral-Fort Myers, FL MSA
## 73                                                                             Cleveland, TN MSA
## 174                                                                         Johnson City, TN MSA
## 246 Nashville-Davidson?\x9b\x83?\xaa\x83?\x9dMurfreesboro?\x9b\x83?\xaa\x83?\x9dFranklin, TN MSA
## 186                                                                            Knoxville, TN MSA
## 239                                                                           Morristown, TN MSA
## 344                                                                         Texarkana, TX-AR MSA
## 169                                                                              Jackson, TN MSA
## 148                                                                              Hammond, LA MSA
## 235                                                                               Monroe, LA MSA
## 191                                                                         Lake Charles, LA MSA
## 224                                                                        Memphis, TN-MS-AR MSA
## 27                                                                           Baton Rouge, LA MSA
## 189                                                                            Lafayette, LA MSA
## 7                                                                             Alexandria, LA MSA
## 67                                                                        Chattanooga, TN-GA MSA
## 184                                                         Kingsport-Bristol-Bristol, TN-VA MSA
## 249                                                                 New Orleans-Metairie, LA MSA
## 325                                                              Shreveport-Bossier City, LA MSA
## 120                                                                            Flagstaff, AZ MSA
## 286                                                                           Rapid City, SD MSA
## 72                                                                        Clarksville, TN-KY MSA
## 378                                                                               Yakima, WA MSA
## 37                                                                              Bismarck, ND MSA
## 279                                                                             Prescott, AZ MSA
## 32                                                                            Bellingham, WA MSA
## 331                                                               Spokane-Spokane Valley, WA MSA
## 320                                                              Seattle-Tacoma-Bellevue, WA MSA
## 46                                                                  Bremerton-Silverdale, WA MSA
## 159                                                                      Houma-Thibodaux, LA MSA
## 259                                                                     Olympia-Tumwater, WA MSA
## 271                                                              Phoenix-Mesa-Scottsdale, AZ MSA
## 362                                                                          Walla Walla, WA MSA
## 182                                                             Kennewick-Richland-Pasco, WA MSA
## 369                                                                            Wenatchee, WA MSA
## 192                                                             Lake Havasu City-Kingman, AZ MSA
## 349                                                                               Tucson, AZ MSA
## 326                                                                 Sierra Vista-Douglas, AZ MSA
## 382                                                                                 Yuma, AZ MSA
## 210                                                                             Longview, WA MSA
## 240                                                               Mount Vernon-Anacortes, WA MSA
## 111                                                                                 Enid, OK MSA
## 197                                                                           Las Cruces, NM MSA
## 350                                                                                Tulsa, OK MSA
## 258                                                                        Oklahoma City, OK MSA
## 200                                                                               Lawton, OK MSA
## 219                                                                            Manhattan, KS MSA
## 6                                                                            Albuquerque, NM MSA
## 168                                                                              Jackson, MS MSA
## 315                                                                             Santa Fe, NM MSA
## 339                                                                               Sumter, SC MSA
## 126                                                                        Fort Smith, AR-OK MSA
## 122                                                                             Florence, SC MSA
## 158                                                                          Hot Springs, AR MSA
## 199                                                                             Lawrence, KS MSA
## 371                                                                              Wichita, KS MSA
## 233                                                                               Mobile, AL MSA
## 116                                                                             Fargo, ND-MN MSA
## 64                                                           Charleston-North Charleston, SC MSA
## 202                                                                          Lewiston, ID-WA MSA
## 347                                                                               Topeka, KS MSA
## 90                                                                 Daphne-Fairhope-Foley, AL MSA
## 218                                                                    Manchester-Nashua, NH MSA
## 119                                                    Fayetteville-Springdale-Rogers, AR-MO MSA
## 14                                                          Anniston-Oxford-Jacksonville, AL MSA
## 237                                                                           Montgomery, AL MSA
## 93                                                                               Decatur, AL MSA
## 153                                                                          Hattiesburg, MS MSA
## 207                                                 Little Rock-North Little Rock-Conway, AR MSA
## 21                                                            Augusta-Richmond County, GA-SC MSA
## 99                                                                                Dothan, AL MSA
## 272                                                                           Pine Bluff, AR MSA
## 123                                                               Florence-Muscle Shoals, AL MSA
## 190                                                             Lafayette-West Lafayette, IN MSA
## 363                                                                        Warner Robins, GA MSA
## 155                                                 Hilton Head Island-Bluffton-Beaufort, SC MSA
## 40                                                                           Bloomington, IN MSA
## 146                                                           Gulfport-Biloxi-Pascagoula, MS MSA
## 176                                                                            Jonesboro, AR MSA
## 187                                                                               Kokomo, IN MSA
## 243                                            Myrtle Beach-Conway-North Myrtle Beach, SC-NC MSA
## 117                                                                           Farmington, NM MSA
## 145                                                          Greenville-Anderson-Mauldin, SC MSA
## 131                                                                          Gainesville, GA MSA
## 162                                                                           Huntsville, AL MSA
## 227                                                               Michigan City-La Porte, IN MSA
## 241                                                                               Muncie, IN MSA
## 171                                                                         Jacksonville, NC MSA
## 79                                                                              Columbia, SC MSA
## 36                                                                     Birmingham-Hoover, AL MSA
## 80                                                                           Columbus, GA-AL MSA
## 351                                                                           Tuscaloosa, AL MSA
## 297                                                                                 Rome, GA MSA
## 135                                                                       Grand Forks, ND-MN MSA
## 88                                                                                Dalton, GA MSA
## 163                                                                          Idaho Falls, ID MSA
## 215                                                                                Macon, GA MSA
## 156                                                                           Hinesville, GA MSA
## 114                                                                        Evansville, IN-KY MSA
## 318                                                                             Savannah, GA MSA
## 18                                                         Atlanta-Sandy Springs-Roswell, GA MSA
## 355                                                                             Valdosta, GA MSA
## 108                                                                       Elkhart-Goshen, IN MSA
## 20                                                                        Auburn-Opelika, AL MSA
## 330                                                                          Spartanburg, SC MSA
## 81                                                                              Columbus, IN MSA
## 49                                                                             Brunswick, GA MSA
## 42                                                                      Boise City-Nampa, ID MSA
## 17                                                                  Athens-Clarke County, GA MSA
## 3                                                                                 Albany, GA MSA
## 134                                                                            Goldsboro, NC MSA
## 164                                                         Indianapolis-Carmel-Anderson, IN MSA
## 275                                                                            Pocatello, ID MSA
## 177                                                                               Joplin, MO MSA
## 129                                                                              Gadsden, AL MSA
## 51                                                                            Burlington, NC MSA
## 376                                                                        Winston-Salem, NC MSA
## 118                                                                         Fayetteville, NC MSA
## 56                                                                     Cape Girardeau, MO-IL MSA
## 143                                                                Greensboro-High Point, NC MSA
## 343                                                                          Terre Haute, IN MSA
## 285                                                                              Raleigh, NC MSA
## 173                                                                       Jefferson City, MO MSA
## 16                                                                             Asheville, NC MSA
## 65                                                         Charlotte-Concord-Gastonia, NC-SC MSA
## 154                                                             Hickory-Lenoir-Morganton, NC MSA
## 127                                                                           Fort Wayne, IN MSA
## 334                                                                          Springfield, MO MSA
## 208                                                                             Logan, UT-ID MSA
## 302                                                                        St. Joseph, MO-KS MSA
## 103                                                                   Durham-Chapel Hill, NC MSA
## 247                                                                             New Bern, NC MSA
## 281                                                                           Provo-Orem, UT MSA
## 296                                                                          Rocky Mount, NC MSA
## 301                                                                           St. George, UT MSA
## 257                                                                     Ogden-Clearfield, UT MSA
## 181                                                                       Kansas City, MO-KS MSA
## 78                                                                              Columbia, MO MSA
## 75                                                                         Coeur d'Alene, ID MSA
## 307                                                                       Salt Lake City, UT MSA
## 374                                                                           Wilmington, NC MSA
## 115                                                                            Fairbanks, AK MSA
## 12                                                                             Anchorage, AK MSA
## 96                                                                Denver-Aurora-Lakewood, CO MSA
## 144                                                                           Greenville, NC MSA
## 337                                                                  Staunton-Waynesboro, VA MSA
## 214                                                                            Lynchburg, VA MSA
## 327                                                                     Sioux City, IA-NE-SD MSA
## 329                                                              South Bend-Mishawaka, IN-MI MSA
## 77                                                                      Colorado Springs, CO MSA
## 206                                                                              Lincoln, NE MSA
## 282                                                                               Pueblo, CO MSA
## 137                                                                       Grand Junction, CO MSA
## 303                                                                         St. Louis, MO-IL MSA
## 125                                                                Fort Collins-Loveland, CO MSA
## 141                                                                              Greeley, CO MSA
## 151                                                                         Harrisonburg, VA MSA
## 290                                                                             Richmond, VA MSA
## 38                                                     Blacksburg-Christiansburg-Radford, VA MSA
## 101                                                                              Dubuque, IA MSA
## 205                                                                                 Lima, OH MSA
## 359                                               Virginia Beach-Norfolk-Newport News, VA-NC MSA
## 375                                                                        Winchester, VA-WV MSA
## 66                                                                       Charlottesville, VA MSA
## 54                                                                      Canton-Massillon, OH MSA
## 370                                                                          Wheeling, WV-OH MSA
## 44                                                                               Boulder, CO MSA
## 292                                                                              Roanoke, VA MSA
## 260                                                              Omaha-Council Bluffs, NE-IA MSA
## 136                                                                         Grand Island, NE MSA
## 335                                                                          Springfield, OH MSA
## 365                                                                 Waterloo-Cedar Falls, IA MSA
## 380                                                        Youngstown-Warren-Boardman, OH-PA MSA
## 60                                                                          Cedar Rapids, IA MSA
## 165                                                                            Iowa City, IA MSA
## 11                                                                                  Ames, IA MSA
## 97                                                            Des Moines-West Des Moines, IA MSA
## 91                                                       Davenport-Moline-Rock Island, IA-IL MSA
## 9                                                                                Altoona, PA MSA
## 161                                                             Huntington-Ashland, WV-KY-OH MSA
## 238                                                                           Morgantown, WV MSA
## 175                                                                            Johnstown, PA MSA
## 57                                                                     Carbondale-Marion, IL MSA
## 267                                                                   Parkersburg-Vienna, WV MSA
## 368                                                              Weirton-Steubenville, WV-OH MSA
## 31                                                                               Beckley, WV MSA
## 194                                                                            Lancaster, PA MSA
## 61                                                               Chambersburg-Waynesboro, PA MSA
## 228                                                                              Midland, MI MSA
## 71                                                            Cincinnati-Middleton, OH-KY-IN MSA
## 63                                                                            Charleston, WV MSA
## 112                                                                                 Erie, PA MSA
## 105                                                                           Eau Claire, WI MSA
## 94                                                                               Decatur, IL MSA
## 39                                                                           Bloomington, IL MSA
## 25                                                                                Bangor, ME MSA
## 269                                                                               Peoria, IL MSA
## 221                                                                            Mansfield, OH MSA
## 284                                                                               Racine, WI MSA
## 62                                                                     Champaign--Urbana, IL MSA
## 201                                                                              Lebanon, PA MSA
## 379                                                                         York-Hanover, PA MSA
## 92                                                                                Dayton, OH MSA
## 236                                                                               Monroe, MI MSA
## 142                                                                            Green Bay, WI MSA
## 179                                                                    Kalamazoo-Portage, MI MSA
## 295                                                                             Rockford, IL MSA
## 89                                                                              Danville, IL MSA
## 15                                                                              Appleton, WI MSA
## 13                                                                             Ann Arbor, MI MSA
## 336                                                                        State College, PA MSA
## 273                                                                           Pittsburgh, PA MSA
## 124                                                                          Fond du Lac, WI MSA
## 107                                                              Elizabethtown-Fort Knox, KY MSA
## 172                                                                    Janesville-Beloit, WI MSA
## 69                                                        Chicago-Naperville-Elgin, IL-IN-WI MSA
## 276                                                              Portland-South Portland, ME MSA
## 251                                                                  Niles-Benton Harbor, MI MSA
## 332                                                                          Springfield, IL MSA
## 203                                                                      Lewiston-Auburn, ME MSA
## 180                                                                             Kankakee, IL MSA
## 299                                                                              Saginaw, MI MSA
## 59                                                                                Casper, WY MSA
## 138                                                                 Grand Rapids-Wyoming, MI MSA
## 2                                                                                  Akron, OH MSA
## 367                                                                               Wausau, WI MSA
## 242                                                                             Muskegon, MI MSA
## 319                                                     Scranton--Wilkes-Barre--Hazleton, PA MSA
## 98                                                               Detroit-Warren-Dearborn, MI MSA
## 132                                                                           Gettysburg, PA MSA
## 121                                                                                Flint, MI MSA
## 41                                                                    Bloomsburg-Berwick, PA MSA
## 217                                                                              Madison, WI MSA
## 346                                                                               Toledo, OH MSA
## 167                                                                              Jackson, MI MSA
## 230                                                        Milwaukee-Waukesha-West Allis, WI MSA
## 74                                                                      Cleveland-Elyria, OH MSA
## 323                                                                            Sheboygan, WI MSA
## 373                                                                         Williamsport, PA MSA
## 104                                                                     East Stroudsburg, PA MSA
## 52                                                           Burlington-South Burlington, VT MSA
## 287                                                                              Reading, PA MSA
## 263                                                                            Owensboro, KY MSA
## 188                                                                La Crosse-Onalaska, WI-MN MSA
## 29                                                                              Bay City, MI MSA
## 195                                                                 Lansing-East Lansing, MI MSA
## 8                                                          Allentown-Bethlehem-Easton, PA-NJ MSA
## 68                                                                              Cheyenne, WY MSA
## 82                                                                              Columbus, OH MSA
## 150                                                                  Harrisburg-Carlisle, PA MSA
## 212                                                       Louisville-Jefferson County, KY-IN MSA
## 140                                                                          Great Falls, MT MSA
## 232                                                                             Missoula, MT MSA
## 34                                                                              Billings, MT MSA
## 262                                                                       Oshkosh-Neenah, WI MSA
## 353                                                                       Urban Honolulu, HI MSA
## 28                                                                          Battle Creek, MI MSA
## 147                                                            Hagerstown-Martinsburg, MD-WV MSA
## 86                                                                         Cumberland, MD-WV MSA
## 280                                                         Providence-Warwick-Pawtucket, RI MSA
## 45                                                                         Bowling Green, KY MSA
## 270                                              Philadelphia-Camden-Wilmington, PA-NJ-DE-MD MSA
## 100                                                                                Dover, DE MSA
## 364                                             Washington-Arlington-Alexandria, DC-VA-MD-WV MSA
## 306                                                                         Salisbury, MD-DE MSA
## 178                                                              Kahului-Wailuku-Lahaina, HI MSA
## 348                                                                              Trenton, NJ MSA
## 358                                                                   Vineland-Bridgeton, NJ MSA
## 204                                                                    Lexington-Fayette, KY MSA
## 53                                                             California-Lexington Park, MD MSA
## 43                                                            Boston-Cambridge-Quincy, MA-NH MSA
## 24                                                             Baltimore-Columbia-Towson, MD MSA
## 102                                                                            Duluth, MN-WI MSA
## 47                                                           Bridgeport-Stamford-Norwalk, CT MSA
## 220                                                                Mankato-North Mankato, MN MSA
## 231                                                  Minneapolis-St. Paul-Bloomington, MN-WI MSA
## 377                                                                         Worcester, MA-CT MSA
## 293                                                                            Rochester, MN MSA
## 300                                                                            St. Cloud, MN MSA
## 253                                                                   Norwich-New London, CT MSA
## 333                                                                          Springfield, MA MSA
## 26                                                                       Barnstable Town, MA MSA
## 152                                                 Hartford-West Hartford-East Hartford, CT MSA
## 19                                                               Atlantic City-Hammonton, NJ MSA
## 248                                                                    New Haven-Milford, CT MSA
## 274                                                                           Pittsfield, MA MSA
## 366                                                                  Watertown-Fort Drum, NY MSA
## 50                                                     Buffalo-Cheektowaga-Niagara Falls, NY MSA
## 255                                                                           Ocean City, NJ MSA
## 314                                                               Santa Cruz-Watsonville, CA MSA
## 109                                                                               Elmira, NY MSA
## 305                                                                              Salinas, CA MSA
## 356                                                                    Vallejo-Fairfield, CA MSA
## 354                                                                           Utica-Rome, NY MSA
## 216                                                                               Madera, CA MSA
## 70                                                                                 Chico, CA MSA
## 5                                                                Albany-Schenectady-Troy, NY MSA
## 294                                                                            Rochester, NY MSA
## 340                                                                             Syracuse, NY MSA
## 310                                                                   San Diego-Carlsbad, CA MSA
## 244                                                                                 Napa, CA MSA
## 312                                                       San Jose-Sunnyvale-Santa Clara, CA MSA
## 298                                                 Sacramento--Roseville--Arden-Arcadee, CA MSA
## 149                                                                     Hanford-Corcoran, CA MSA
## 211                                                       Los Angeles-Long Beach-Anaheim, CA MSA
## 288                                                                              Redding, CA MSA
## 313                                            San Luis Obispo-Paso Robles-Arroyo Grande, CA MSA
## 264                                                         Oxnard-Thousand Oaks-Ventura, CA MSA
## 277                                                      Portland-Vancouver-Hillsboro, OR-WA MSA
## 381                                                                            Yuba City, CA MSA
## 128                                                                               Fresno, CA MSA
## 317                                                                           Santa Rosa, CA MSA
## 338                                                                        Stockton-Lodi, CA MSA
## 291                                                     Riverside-San Bernardino-Ontario, CA MSA
## 234                                                                              Modesto, CA MSA
## 311                                                        San Francisco-Oakland-Fremont, CA MSA
## 35                                                                            Binghamton, NY MSA
## 360                                                                  Visalia-Porterville, CA MSA
## 316                                                            Santa Maria-Santa Barbara, CA MSA
## 133                                                                          Glens Falls, NY MSA
## 166                                                                               Ithaca, NY MSA
## 225                                                                               Merced, CA MSA
## 185                                                                             Kingston, NY MSA
## 106                                                                            El Centro, CA MSA
## 23                                                                           Bakersfield, CA MSA
## 139                                                                          Grants Pass, OR MSA
## 223                                                                      Medford-Ashland, OR MSA
## 84                                                                             Corvallis, OR MSA
## 33                                                                          Bend-Redmond, OR MSA
## 304                                                                                Salem, OR MSA
## 113                                                                               Eugene, OR MSA
## 4                                                                                 Albany, OR MSA
## 250                                                    New York-Newark-Jersey City, NY-NJ-PA MSA
##     MEFI_Score New_MEFI_Score    ScoreM3   ScoreM4    ScoreM5    ScoreM6
## 352   8.305701       8.249855  8.8169675  9.605915  8.0295216 10.0000000
## 1     7.966254       7.882337  8.4378697  9.529896  7.9729599  9.9106501
## 308   8.094744       8.001471  8.5919262  9.524295  7.9402623  9.8958049
## 229   8.593456       8.277960  9.0462172  9.637316  7.9633258  9.8597869
## 183   7.970140       7.872188  8.4803114  9.603775  8.2020497  9.8255029
## 372   7.992037       7.933851  8.4783624  9.517987  8.0418599  9.8011050
## 10    7.939000       7.801282  8.3660239  9.465303  7.8898248  9.7916322
## 209   7.811227       7.722632  8.3821291  9.532117  8.0703701  9.7831672
## 361   7.794591       7.670908  8.4345047  9.579712  8.2086325  9.6706482
## 345   8.562153       8.462706  9.8408763 10.000000  9.1539059  9.6620731
## 30    7.839124       7.727138  8.4430064  9.458057  7.9946525  9.6250584
## 324   7.879510       7.774540  8.5280410  9.541875  8.1779413  9.6193289
## 268   8.285605       8.153410  9.2775364  9.801192  8.8446957  9.6098726
## 87    8.092567       7.891692  8.4661499  9.293119  7.5731458  9.6081200
## 76    7.715802       7.643581  8.4128431  9.568855  8.2544570  9.6043629
## 83    7.725414       7.629802  8.3421223  9.471140  8.0617954  9.5957705
## 213   7.565643       7.491084  7.8433627  9.407342  8.0163168  9.5935859
## 328   8.053074       7.727225  8.2856424  9.179330  7.4300388  9.5683316
## 48    7.098762       7.122448  7.6641970  9.528908  8.4494991  9.5644675
## 309   7.801722       7.649969  8.1699916  9.321718  7.7651678  9.5488043
## 357   7.552875       7.445567  8.1832518  9.595903  8.3898413  9.5440952
## 321   8.742002       8.595771  9.7995043  9.806301  8.7902206  9.5299947
## 160   8.089738       7.891201  8.4803587  9.230276  7.5043745  9.5255691
## 110   7.244049       7.239665  7.1327054  8.801946  6.9966193  9.5237929
## 256   7.517312       7.204155  7.9093748  9.467928  8.0224183  9.5127544
## 222   6.980315       6.996983  7.6109631  9.517907  8.4855844  9.4961099
## 322   7.818680       7.709877  8.9531221  9.829109  9.0967824  9.4745711
## 85    8.301959       8.153389  9.4771277  9.859433  9.0062463  9.4658703
## 245   8.806686       8.618350 10.0000000  9.889110  8.9727438  9.4272348
## 254   8.074176       7.956015  9.1047807  9.752038  8.9336395  9.4174787
## 193   7.723405       7.572496  8.4422712  9.497465  8.4837310  9.4163595
## 342   8.192180       8.029575  9.1738228  9.689031  8.7252372  9.4137653
## 157   8.212575       8.099092  9.5786658  9.955464  9.2929209  9.4132799
## 261   7.938190       7.782602  8.8478082  9.607937  8.6096418  9.3966189
## 265   8.161420       7.996476  9.1451228  9.684214  8.7511754  9.3958518
## 22    8.016775       7.729349  8.3377149  9.139422  7.3735593  9.3624559
## 196   6.978413       6.983385  7.5954426  9.334419  8.1538284  9.3582145
## 283   8.078356       7.934464  9.4155082  9.879077  9.1508928  9.3528419
## 170   8.155603       7.964928  8.5178575  9.106970  7.6501914  9.3226264
## 266   7.779503       7.649647  8.6344418  9.446215  8.4215793  9.3017655
## 95    7.915611       7.799790  8.8499748  9.568722  8.6480039  9.2966998
## 198   6.932798       7.250402  6.5924561  7.004919  4.6762689  9.2614451
## 252   8.228521       8.058899  9.2260800  9.606275  8.6459639  9.2527789
## 278   8.324451       8.166524  9.4499947  9.695085  8.8237023  9.2388088
## 289   7.718917       8.003773  7.1804757  6.977018  4.5624374  9.2289906
## 130   7.867612       7.754130  8.3518076  9.190605  7.9883037  9.2160281
## 341   7.587567       7.443676  7.3714542  8.604388  6.9077336  9.1988332
## 226   8.086403       7.933155  8.8697989  9.354494  8.2408754  9.1489837
## 58    7.596674       7.743518  7.1011238  6.982716  4.5785168  9.1143784
## 55    7.943821       7.776538  8.9697120  9.654496  8.9398723  9.0568215
## 73    7.905506       7.891662  8.7630618  9.760474  9.5691502  9.0080856
## 174   7.849410       7.868315  8.7211893  9.738767  9.5901045  8.9515518
## 246   8.066807       7.933665  8.6009103  9.429750  8.8300831  8.9324620
## 186   7.802294       7.762720  8.3079041  9.396805  8.8888512  8.9309932
## 239   7.810368       7.789507  8.6269128  9.731205  9.6086430  8.8927608
## 344   7.233473       7.128243  7.3414382  8.686876  8.0051134  8.3883335
## 169   6.607818       6.596313  6.5852696  9.168001  9.1269097  8.3106927
## 148   6.202778       6.184857  4.6284888  7.412008  6.2408859  8.1905450
## 235   6.646153       6.602501  5.2302040  7.374610  6.0545651  8.1694663
## 191   6.592190       6.508772  5.2335216  7.381058  6.0416081  8.1294076
## 224   7.253817       7.173124  6.5624798  7.870140  6.7034864  8.0824890
## 27    6.892378       6.794925  5.1397498  6.970307  5.3015936  7.9825214
## 189   6.951486       6.877424  5.5112711  7.292596  5.9896571  7.9296025
## 7     6.872442       6.810076  5.1546791  7.050042  5.5864223  7.8971416
## 67    7.523486       7.439364  7.5742006  8.717233  8.5516156  7.8483367
## 184   7.682901       7.639456  8.4796069  9.247439  9.7075533  7.8415829
## 249   7.048577       6.967499  5.3355304  6.931469  5.3040540  7.8268096
## 325   6.712994       6.667003  5.0871084  6.923638  5.3949493  7.7892870
## 120   7.365965       6.905044  7.3939824  8.719880  8.4489461  7.7673040
## 286   4.436836       4.183502  5.9437270  9.133106  9.0388655  7.7279668
## 72    7.408867       7.481892  7.3163546  8.154799  8.0198634  7.6641551
## 378   6.175702       6.270471  6.0979250  5.766091  4.0005145  7.6182303
## 37    7.562230       6.973945  7.1797683  8.134681  7.0742852  7.6139010
## 279   7.170851       6.709930  7.2372366  8.630278  8.4309287  7.6075521
## 32    6.369341       6.433701  6.4427167  5.747701  3.8722507  7.5978760
## 331   6.190919       6.276331  5.9948373  5.559240  3.5910603  7.5716426
## 320   6.600002       6.535707  6.4112918  5.617284  3.5203671  7.5432922
## 46    6.553676       6.606339  6.5366785  5.743180  3.8812094  7.5362462
## 159   6.632943       6.526133  5.1705159  7.193895  6.0952777  7.5217971
## 259   6.370216       6.420541  6.4281487  5.737548  3.9024469  7.5128622
## 271   7.303761       6.842840  7.0219247  8.340880  7.9019731  7.5054591
## 362   6.136793       6.189456  6.1810355  5.734746  3.9617059  7.4928324
## 182   5.802344       5.880739  5.5852480  5.747863  4.1102416  7.4582339
## 369   5.854285       5.949054  5.7269918  5.724270  4.0886102  7.3964208
## 192   6.965140       6.504219  7.1436970  8.611692  8.5888978  7.3934781
## 349   7.277831       6.816910  7.1276013  8.319624  7.9426663  7.3902996
## 326   7.067884       6.606963  7.1879376  8.612949  8.6198351  7.3415221
## 382   6.732408       6.271487  7.0367785  8.594513  8.6534238  7.2576126
## 210   5.821972       5.905045  5.6507910  5.663217  4.0849636  7.2339022
## 240   5.688774       5.741437  5.5801086  5.685091  4.1721874  7.1657518
## 111   7.546786       7.506764  7.1815118  7.816980  7.7336026  7.1528174
## 197   5.776511       5.828062  3.2210508  5.509174  3.7690958  7.0068152
## 350   7.723071       7.636266  7.3057655  7.708789  7.5543779  6.9899409
## 258   7.670083       7.578599  7.3263666  7.776253  7.6960748  6.9761112
## 200   7.156816       7.144865  6.5608304  7.689242  7.8170144  6.8452681
## 219   7.308970       7.453041  7.7732238  7.684109  8.0180153  6.8320093
## 6     6.154302       6.100590  3.6268447  5.442972  3.6317847  6.7764822
## 168   6.729378       6.672535  4.9281665  6.235111  5.1171696  6.6663133
## 315   6.263269       6.087920  3.7564132  5.431582  3.5995715  6.6398555
## 339   7.367744       7.222715  6.5759201  7.857361  8.0076245  6.6343326
## 126   6.782059       6.653091  6.3229574  7.695918  8.1309449  6.6306239
## 122   7.405011       7.276356  6.5988930  7.845038  7.9967128  6.6169820
## 158   6.744399       6.612255  6.2560518  7.689805  8.2326505  6.5903450
## 199   6.978300       7.089622  7.3035178  7.634358  8.1260055  6.5756102
## 371   7.364078       7.374815  7.3416386  7.270526  7.3573619  6.5138769
## 233   6.447193       6.506158  4.9682004  6.814923  6.7735799  6.5058715
## 116   7.150823       6.901942  6.5703450  7.026671  6.6731752  6.4887157
## 64    7.505090       7.289885  6.8160063  7.820303  7.9143512  6.4743693
## 202   6.990795       7.041929  6.7922527  6.712772  6.4759589  6.4410444
## 347   7.081999       7.071684  7.4895940  7.630584  8.1245894  6.4391652
## 90    6.763181       6.880626  5.3177168  6.899996  6.9973993  6.4275398
## 218   8.087754       8.099079  9.2285924  7.551349  7.4900963  6.4197659
## 119   7.321780       7.135468  6.7585882  7.544553  7.9597287  6.3834523
## 14    6.149303       6.280783  4.5515319  6.837688  7.0453079  6.3806441
## 237   6.609036       6.707768  4.6628547  6.518859  6.3109570  6.3720678
## 93    6.507599       6.625044  5.0790707  6.883238  7.0470711  6.3619843
## 153   5.907741       5.932769  3.9514419  6.168383  5.4249319  6.3417187
## 207   6.853000       6.674072  6.2764146  7.508870  7.9910841  6.3325023
## 21    7.620578       7.485244  7.3357569  7.901038  8.4647382  6.3050560
## 99    6.245529       6.386366  4.6039622  6.890635  7.1989868  6.3037954
## 272   6.396622       6.231729  5.8086555  7.439469  7.9955480  6.2896591
## 123   6.422316       6.549117  4.6898706  6.648297  6.6775398  6.2887631
## 190   7.298110       7.420080  7.6836085  7.628549  8.5286839  6.2877655
## 363   7.589523       7.477140  7.6067833  8.047294  8.9154907  6.2760875
## 155   7.611129       7.438030  7.0165162  7.740170  7.8958852  6.2751267
## 40    7.311130       7.468188  7.8526434  7.848324  8.9822729  6.2746570
## 146   5.948761       5.919988  4.0957921  6.147233  5.3579653  6.2685553
## 176   6.558954       6.410435  6.0238806  7.552482  8.2157434  6.2554072
## 187   7.260012       7.421748  7.8715052  7.851516  9.0157854  6.2478443
## 243   7.187469       7.068171  6.7734289  7.865137  8.3804418  6.2373448
## 117   5.433575       5.450039  2.5864824  5.301303  3.9311783  6.2210427
## 145   7.326075       7.110870  6.3533979  7.741203  8.0225432  6.2140559
## 131   7.680129       7.516284  7.5690924  7.863066  8.5515523  6.1844354
## 162   6.540676       6.601981  4.8722839  6.856287  7.0801753  6.1837076
## 227   7.097847       7.250226  7.6668320  7.803213  9.0117980  6.1737328
## 241   6.837356       7.024823  7.1105278  7.802525  9.1227184  6.1390673
## 171   7.622307       7.529634  7.5743742  8.093371  9.1995898  6.1389076
## 79    7.253703       7.040838  6.4990917  7.725889  8.0261437  6.1231009
## 36    6.755798       6.784354  4.9119487  6.314314  6.0791974  6.1118523
## 80    7.378606       7.347126  6.8249803  7.399779  7.8773329  6.1024174
## 351   6.365196       6.459249  4.5494831  6.510758  6.5389764  6.0907900
## 297   7.299187       7.186804  7.3711785  7.992613  8.9698615  6.0736940
## 135   6.823402       6.689542  6.1491889  6.670340  6.5205213  6.0721817
## 88    7.218244       7.080130  6.9167878  7.776445  8.5828342  6.0556832
## 163   7.576593       7.512783  7.2919384  7.481487  8.1068057  6.0475114
## 215   7.623472       7.529802  6.9504608  7.296237  7.6367220  6.0322597
## 156   7.392166       7.291479  7.3811751  7.969358  8.9834295  6.0309752
## 114   7.269004       7.355961  7.1549767  7.170887  7.9020268  6.0101486
## 318   7.326483       7.211761  6.9404427  7.570526  8.1669031  5.9997753
## 18    7.790038       7.595783  7.3881075  7.520347  7.9715828  5.9802230
## 355   7.061460       6.998200  6.9753632  7.963204  9.0877388  5.9650420
## 108   7.489145       7.384214  7.9611881  7.788262  8.9501290  5.9567501
## 20    6.279730       6.425245  4.8456716  6.730852  7.1723844  5.9533507
## 330   6.955649       6.703018  5.9297810  7.693565  8.1512370  5.9524764
## 81    7.070936       7.043198  7.3045958  7.815205  9.0845229  5.9433397
## 49    7.083883       7.015945  6.7605199  7.708234  8.5665420  5.9429261
## 42    7.604201       7.460859  7.4032567  7.462121  8.0607678  5.9344076
## 17    7.361497       7.244435  7.0250133  7.682792  8.4698337  5.9116917
## 3     7.033448       6.956153  6.4824464  7.390737  7.9977068  5.9088359
## 134   7.268940       7.092057  7.0748958  8.058615  9.3394948  5.8799805
## 164   7.412696       7.471508  7.7317115  7.684106  9.0199120  5.8764163
## 275   7.299106       7.254010  7.1052396  7.387061  8.0771879  5.8698030
## 177   7.127078       7.240190  6.5412970  6.420371  6.5951084  5.8690828
## 129   6.568715       6.730604  5.1116629  6.627358  7.1549715  5.8610638
## 51    7.373712       7.236595  7.2664047  8.026170  9.2635386  5.8584959
## 376   7.499331       7.313091  7.3367198  7.978903  9.1263619  5.8481215
## 118   7.187639       7.045844  7.2358803  8.046794  9.3661660  5.8427328
## 56    7.211811       7.364237  6.7282146  6.363701  6.5406310  5.8340497
## 143   7.432923       7.251362  7.2873982  8.020783  9.2234569  5.8198950
## 343   7.013298       7.196087  7.5083777  7.627970  9.1019498  5.8155224
## 285   7.678090       7.428693  7.5727862  8.031737  9.1700172  5.7884839
## 173   7.417551       7.465166  6.9380106  6.474234  6.6372358  5.7866799
## 16    7.279983       7.037603  7.0226809  8.028909  9.2751311  5.7518589
## 65    7.281840       7.041293  6.8922328  7.944825  9.0456541  5.7463026
## 154   7.164166       6.954535  6.8947315  8.019578  9.3429651  5.7305127
## 127   7.402672       7.501250  7.8481194  7.577777  9.0216872  5.7249897
## 334   7.099889       7.203644  6.3667049  6.268031  6.3942452  5.7124761
## 208   7.103819       6.943920  6.6524872  7.811368  9.0940865  5.7049456
## 302   6.939632       6.988984  6.5052197  6.485760  6.7774245  5.7011389
## 103   7.734209       7.356157  7.6452778  8.030337  9.1361785  5.6859720
## 247   7.043723       6.901928  6.6299664  8.006268  9.4424431  5.6842461
## 281   7.128484       6.902427  6.6742379  7.851727  9.1528010  5.6514063
## 296   6.943090       6.805973  6.5962407  7.774894  9.0328425  5.6381851
## 301   6.958899       6.760912  6.5552383  7.843058  9.1733913  5.6350948
## 257   7.222522       6.982430  6.7904879  7.840845  9.1443543  5.6010470
## 181   7.089413       7.056098  6.3997235  6.308019  6.4303556  5.5901863
## 78    6.939395       7.029115  6.0227356  6.249604  6.4411874  5.5812969
## 75    7.008933       6.863252  6.6832695  7.400160  8.3072065  5.5793057
## 307   7.229756       6.858669  6.7189436  7.806189  9.0180083  5.5083162
## 374   6.714652       6.556483  6.4247127  7.969653  9.4742189  5.5002658
## 115   6.633907       6.675872  4.1100068  2.960524  0.0000000  5.4201213
## 12    6.553053       6.683907  4.0481406  2.942521  0.0311488  5.4156198
## 96    7.647274       7.515615  6.8807179  5.998371  5.9676367  5.3718361
## 144   6.551182       6.388334  5.9808691  7.938537  9.5766848  5.3370609
## 337   7.806334       7.664884  8.3143315  8.088411  9.8620346  5.3238177
## 214   7.663058       7.584765  8.2172133  8.070524  9.8881387  5.3197747
## 327   6.832335       6.701831  6.5370740  6.951669  7.7561176  5.3196990
## 329   7.133708       7.276348  7.3647611  6.964655  8.2953864  5.3138410
## 77    7.695630       7.659878  7.0403064  6.036438  6.1752632  5.2948309
## 206   7.328316       7.219256  8.3871476  7.868629  9.6248002  5.2891032
## 282   7.354399       7.349056  6.7838956  6.039713  6.2921534  5.2872941
## 137   7.590941       7.562206  6.9653803  6.031327  6.2137224  5.2710119
## 303   7.469524       7.568053  6.4246223  5.476601  5.3282074  5.2601653
## 125   7.740603       7.674441  7.0735867  6.035463  6.1751383  5.2498542
## 141   7.584194       7.515693  6.9544434  6.031790  6.2284518  5.2173906
## 151   7.603876       7.443712  8.0872629  8.059861  9.8848080  5.2116438
## 290   7.970823       7.780250  8.3584158  7.945264  9.5957062  5.1701606
## 38    7.511367       7.407343  7.9158041  8.022605  9.9059102  5.1654722
## 101   6.996048       6.953533  6.3852160  6.487641  7.1214716  5.1553691
## 205   6.153852       6.440600  3.5601990  3.461709  1.8863935  5.1285007
## 359   7.485843       7.354490  7.5632718  7.584211  9.0618401  5.0848347
## 375   7.406812       7.246985  7.5403349  7.514078  9.0401519  5.0532865
## 66    8.071121       7.761250  8.3693120  7.858686  9.4099244  5.0527513
## 54    6.279347       6.573113  3.7277832  3.411463  1.8846487  5.0417703
## 370   5.888629       6.095377  3.4702107  3.964973  2.8487492  5.0413470
## 44    7.267555       7.032972  6.6661086  5.937655  5.9856667  5.0398711
## 292   7.496248       7.350120  7.5807317  7.586647  9.0950778  5.0327585
## 260   7.137609       6.972976  6.9409512  6.640754  7.4315786  5.0005367
## 136   6.775247       6.668526  7.8743419  7.910797 10.0000000  4.9592842
## 335   6.032381       6.288720  3.4438220  3.403177  1.9797969  4.9521033
## 365   6.638892       6.572986  5.9690110  6.433178  7.2329672  4.9254877
## 380   6.125149       6.431378  3.6579093  3.515931  2.2051582  4.9232910
## 60    6.849836       6.734807  6.2217612  6.438713  7.2043524  4.9110006
## 165   7.167849       7.050481  6.5678658  6.394216  7.0876167  4.8842461
## 11    6.623880       6.562652  5.8906743  6.398113  7.2397634  4.8416761
## 97    6.987147       6.792586  6.3662965  6.425930  7.0991926  4.8376531
## 91    6.588592       6.779391  5.5519841  4.899369  4.8921813  4.6525374
## 9     6.753290       7.126639  5.2157706  4.609996  4.6422474  4.6288642
## 161   5.864151       6.028671  3.5415614  4.341300  4.0541810  4.6130217
## 238   6.062568       6.188066  3.8891173  4.616148  4.5607769  4.6016232
## 175   6.433054       6.813420  4.8000112  4.462383  4.3812541  4.5917756
## 57    6.370872       6.779001  5.0753784  3.806258  3.3084878  4.5328257
## 267   5.804791       5.960698  3.5256607  4.538188  4.5501431  4.5295198
## 368   5.436184       5.668967  2.7690621  3.759779  3.0530644  4.5258224
## 31    5.673704       5.831950  3.5525712  4.637828  4.7640411  4.5207050
## 194   6.870730       7.096710  5.7605079  4.893648  5.0780736  4.4922644
## 61    6.861595       7.099271  5.6931397  4.836213  5.0540848  4.4823218
## 228   6.764919       7.162695  5.8402333  4.234621  4.1519380  4.4807809
## 71    6.348105       6.549410  3.6303482  3.288315  2.1043235  4.4523024
## 63    5.784584       5.919438  3.6799828  4.638668  4.7442197  4.4507526
## 112   6.493901       6.855554  4.9517294  4.484904  4.4950472  4.4480001
## 105   6.909050       6.950145  6.0892990  5.678907  6.4283596  4.4106078
## 94    6.390476       6.782231  4.8106513  3.520721  2.8102860  4.4040322
## 39    6.373566       6.741930  5.1847955  3.739309  3.1783103  4.4013934
## 25    6.418001       6.532698  6.2100081  5.606810  6.5332312  4.3910126
## 269   6.436965       6.812346  5.0940205  3.644803  3.0377855  4.3814898
## 221   5.834736       6.114466  3.2011703  3.145327  2.1032724  4.3715567
## 284   6.961440       7.037623  6.1575318  5.655445  6.4301891  4.3663876
## 62    6.411556       6.782259  5.2111830  3.766975  3.2766497  4.3639398
## 201   6.634026       6.909129  5.0054294  4.281248  4.0964957  4.3559906
## 379   6.700844       6.945538  5.5943175  4.773165  4.9845570  4.3378494
## 92    6.014905       6.264226  3.4352963  3.132095  2.0189006  4.3143720
## 236   6.313106       6.724917  5.2463908  4.015816  3.9469518  4.3128962
## 142   6.975720       6.979388  6.1246366  5.658026  6.4280083  4.3039610
## 179   6.378409       6.776185  5.5287169  4.216862  4.2997830  4.2971578
## 295   6.301404       6.669768  4.9913485  3.653655  3.1194087  4.2929270
## 89    6.162570       6.554326  4.7029267  3.616943  3.1526350  4.2908373
## 15    6.962810       6.910338  6.0658728  5.673085  6.4523067  4.2824457
## 13    6.661356       6.995974  5.6943398  4.083631  3.9349730  4.2778641
## 336   6.856906       7.108617  5.6501095  4.690089  4.9919818  4.2737694
## 273   6.660654       6.912365  5.0908659  4.420074  4.4470306  4.2704640
## 124   6.790153       6.770430  5.9921424  5.660443  6.4859676  4.2487648
## 107   6.005776       6.180997  3.5923427  4.431232  4.5754459  4.2475426
## 172   6.595526       6.676388  5.8104973  5.637073  6.5425943  4.2445721
## 69    6.033901       6.306980  3.7886397  2.800542  1.4028252  4.2425351
## 276   6.642859       6.647614  6.4676867  5.580557  6.4475056  4.2215070
## 251   6.273036       6.680169  5.3934490  4.164334  4.2779311  4.2063089
## 332   6.114006       6.477691  4.4872491  3.526539  2.9776560  4.1920517
## 203   6.232408       6.314356  6.1156386  5.558025  6.5720267  4.1742119
## 180   6.245016       6.622736  4.9953208  3.659177  3.2493517  4.1708595
## 299   6.169910       6.584061  5.2558901  4.278542  4.6977212  4.1562480
## 59    6.780837       6.611406  5.4793355  5.692803  6.5630409  4.1493806
## 138   6.563286       6.918957  5.6162788  4.164462  4.3687337  4.1294922
## 2     6.131943       6.388282  3.4977074  3.026825  2.0282229  4.1291036
## 367   6.691408       6.613206  5.7349201  5.644817  6.5152682  4.1255912
## 242   6.129050       6.526826  5.5925715  4.546919  5.2105379  4.1235425
## 319   6.553293       6.823717  5.2016255  4.481763  4.7340399  4.1109566
## 98    6.416473       6.795535  4.8928172  3.555662  3.2061933  4.1074584
## 132   6.521408       6.817563  5.5529575  4.889159  5.5989130  4.1026340
## 121   5.981201       6.397691  4.8542080  4.087924  4.3604429  4.0971788
## 41    6.731552       6.941158  5.5591113  4.700236  5.1792512  4.0913880
## 217   6.953194       6.793120  6.1597462  5.639513  6.3952176  4.0884173
## 346   5.970134       6.240507  3.3122673  3.006678  2.0798870  4.0777149
## 167   6.063030       6.470163  4.8926169  3.891340  4.0059775  4.0455654
## 230   6.647278       6.615859  4.5909892  4.432448  4.2469775  4.0414070
## 74    5.920469       6.153415  3.3035865  3.025413  2.0824201  4.0364827
## 323   6.493014       6.520074  5.3825771  5.597347  6.6006490  4.0239890
## 373   6.435623       6.736457  4.9087073  4.309715  4.6007551  3.9799721
## 104   6.189913       6.532853  5.5636215  4.794580  5.3264267  3.9780580
## 52    6.323417       6.011487  6.2264729  6.145862  7.5135654  3.9185630
## 287   6.376678       6.602659  5.0731416  4.444214  4.7460552  3.9174554
## 263   5.951527       6.180549  3.5042232  4.208220  4.5335154  3.9124766
## 188   6.524156       6.608377  5.5620963  5.343989  6.3548842  3.9115640
## 29    5.620588       6.053451  3.7991323  3.182879  2.7434421  3.9031089
## 195   6.047758       6.443195  5.0691436  4.002109  4.3085200  3.8920976
## 8     6.394809       6.626505  4.9968687  4.276104  4.4601088  3.8834456
## 68    6.043216       5.925247  4.5591120  5.635332  6.8139760  3.8709157
## 82    6.013636       6.216173  3.3336313  2.928741  2.0723223  3.8523811
## 150   6.615699       6.799574  5.4043686  4.585619  5.0933583  3.8515019
## 212   6.552958       6.673021  4.7758563  4.744686  5.5417924  3.8028758
## 140   6.909168       7.120665  5.8078097  4.423592  4.6749947  3.7835884
## 232   6.982083       7.219312  5.9211725  4.401991  4.6192347  3.7698370
## 34    7.001037       7.128324  5.8727983  4.414581  4.6292544  3.6972254
## 262   6.166611       6.079051  4.8091998  5.530570  6.6672323  3.6785285
## 353   5.525477       6.119629  4.6245096  2.839308  3.2326860  3.6771544
## 28    5.990731       6.372133  5.0975836  4.007823  4.5701759  3.6617035
## 147   6.305562       6.404367  5.3264324  5.231515  6.8010173  3.5516532
## 86    6.318744       6.445084  5.7103646  5.531781  7.4543171  3.5007612
## 280   5.914227       6.028910  3.7142454  2.471361  1.5330905  3.3541289
## 45    6.046448       6.252078  3.6126087  3.937622  4.6257706  3.3320351
## 270   6.483800       6.656987  4.8901355  3.870022  4.2569004  3.3204851
## 100   6.434728       6.548083  5.7200978  5.392932  6.9733289  3.2274238
## 364   6.952040       6.570023  6.7608863  6.143913  8.1817593  3.1242445
## 306   6.531438       6.646768  6.2719130  5.550881  7.5413022  3.0760717
## 178   4.898941       5.394848  3.6050417  2.650884  3.3002051  3.0618062
## 348   6.413820       6.612714  5.1402711  3.030706  3.0456560  2.8636523
## 358   5.501018       5.915117  3.9891298  2.992980  3.3703000  2.8184642
## 204   6.065324       6.238206  3.1997544  3.273890  3.8186374  2.8042571
## 53    6.965968       6.967988  6.7865624  5.535530  8.1736413  2.6634737
## 43    7.025329       6.639788  6.4497437  4.576952  5.8078196  2.4886419
## 24    6.674288       6.723092  5.7440133  4.663361  6.7170698  2.3971520
## 102   5.555191       5.765296  4.5159299  3.909988  5.7311198  2.3179027
## 47    6.732983       6.853189  5.7412555  2.971331  3.7285144  2.2686723
## 220   5.783158       6.058402  4.8455430  3.643901  5.4650936  2.2015978
## 231   6.227190       6.321124  5.2113101  3.636817  5.2200840  2.1781667
## 377   6.551832       6.300919  6.1228585  4.418325  6.1022064  2.1732654
## 293   5.915336       6.080638  4.8708685  3.653822  5.4345342  2.1300423
## 300   5.732325       5.921019  4.3765380  3.599304  5.4150460  2.1030482
## 253   6.130708       6.402960  5.3185761  2.928461  3.9451288  2.0936459
## 333   6.324013       6.066677  5.5156219  4.202382  5.7418076  2.0909381
## 26    6.551317       6.279947  5.8465786  4.056513  5.4161552  1.9649097
## 152   6.228898       6.342086  5.1287271  2.585068  3.2486775  1.9499337
## 19    5.178263       5.620433  4.7638335  2.670168  3.2122434  1.8301616
## 248   5.902484       6.053099  4.5808071  2.293074  2.8602528  1.8004857
## 274   5.993028       5.766102  3.5218273  2.291376  2.3003808  1.7658176
## 366   5.256052       5.904005  4.5258761  2.444300  4.2702602  1.7563884
## 50    5.354570       5.983810  4.5095790  2.401527  4.1883094  1.6782098
## 255   5.054998       5.436349  4.4760573  2.649806  3.2815095  1.6563184
## 314   6.075319       6.118485  4.3938427  2.817650  4.1448534  1.6121760
## 109   5.209421       5.862053  4.5750702  2.391547  4.2897348  1.5860154
## 305   5.535437       5.632404  3.6602796  2.800438  4.2881581  1.5503930
## 356   5.763455       5.818317  4.1256131  2.792160  4.2162666  1.5311621
## 354   5.142093       5.783028  4.4485889  2.367013  4.2895406  1.5123095
## 216   5.330176       5.438840  3.2517146  2.757708  4.3284794  1.5107253
## 70    5.383730       5.522803  3.2001213  2.742834  4.3156069  1.4974701
## 5     5.708030       6.215632  5.0911949  2.367015  4.0989304  1.4681757
## 294   5.359463       5.934902  4.6547762  2.358059  4.2099975  1.4551039
## 340   5.335126       5.940974  4.6296657  2.349033  4.2253136  1.4480810
## 310   5.759855       5.796004  3.1645807  1.816586  2.3569623  1.4445262
## 244   6.089994       6.074681  4.6608339  2.778606  4.0711360  1.4416432
## 312   6.369464       6.197426  4.4925447  2.464412  3.3664594  1.4158327
## 298   5.670024       5.720208  3.1471325  2.097176  2.9691259  1.4058025
## 149   5.206877       5.315541  2.9720446  2.724192  4.3780575  1.4008426
## 211   5.512085       5.583322  2.4884141  1.452078  1.7511868  1.3907372
## 288   5.354283       5.472303  3.1902065  2.724008  4.3429057  1.3839613
## 313   5.760169       5.836084  3.4458080  1.899691  2.5640092  1.3627219
## 264   5.830031       5.905946  3.3457166  1.863484  2.5390511  1.3456130
## 277   5.904558       5.889136  3.7767637  2.012999  2.5507809  1.3228021
## 381   5.201145       5.298113  3.1000838  2.720491  4.4161568  1.3072745
## 128   5.060974       5.202385  2.1220924  1.434632  1.9408548  1.2996139
## 317   5.718838       5.703525  3.1924030  1.838259  2.4605175  1.2977098
## 338   5.027410       5.131395  1.9726887  1.654859  2.3551283  1.2964070
## 291   4.925027       5.031352  2.3621631  2.224550  3.4989965  1.2555543
## 234   5.109908       5.223250  2.3500509  1.644438  2.3801617  1.2493026
## 311   6.007986       5.826591  3.2672639  1.734234  2.1485884  1.2152527
## 35    4.676305       5.328936  3.4742813  2.248841  4.3474377  1.2148004
## 360   4.550569       4.696659  1.3062610  1.858782  3.0109760  1.1578584
## 316   5.362190       5.424070  2.7211042  1.725531  2.4695509  1.1533124
## 133   5.019526       5.594965  4.6668602  2.286413  4.2882560  1.1504010
## 166   5.181647       5.679893  4.7412284  2.267447  4.1925934  1.1005246
## 225   4.597295       4.724671  1.2511273  1.532265  2.4488534  1.0244122
## 185   5.056695       5.627455  4.7060735  2.185087  4.2196415  0.8832531
## 106   3.819789       4.000967  0.0000000  1.615822  2.9718686  0.7773095
## 23    4.201715       4.345466  0.4509558  1.229730  2.1180902  0.6796507
## 139   5.763283       5.893996  3.3057397  1.593385  2.7790038  0.5290082
## 223   5.875402       5.975706  3.4300045  1.541953  2.6360606  0.4695739
## 84    5.981392       6.053625  3.6773525  1.568544  2.6552389  0.4523523
## 33    5.966449       6.048040  3.6095699  1.540800  2.6562329  0.3475306
## 304   5.622567       5.704158  3.1463211  1.512940  2.7315471  0.3218229
## 113   5.624758       5.713366  3.1293772  1.492802  2.7169344  0.2631538
## 4     5.490305       5.578913  3.1069057  1.535527  2.8536597  0.2396920
## 250   5.176069       5.751756  2.7523837  0.000000  0.8922214  0.0000000
##        ScoreM7    ScoreM8 RankOriginal RankNewScore RankM3 RankM4 RankM5 RankM6
## 352  9.1441598  7.0131427            6            5     20     20    110      1
## 1    8.8086323  6.8303646           28           25     36     28    125      2
## 308  8.9512090  6.9233040           14           14     26     30    130      3
## 229  9.3556066  7.0864254            3            4     14     17    127      4
## 183  8.9842125  7.1669431           27           26     30     21     94      5
## 372  9.0262323  7.1396728           25           19     32     31    109      6
## 10   8.7441320  6.8455688           30           28     42     36    135      7
## 209  8.7486679  6.8179200           39           42     40     27    106      8
## 361  8.8701502  6.9161581           44           45     37     23     93      9
## 345  9.7785055  6.8147767            4            3      2      1     26     10
## 30   8.8650614  6.9742023           37           41     34     37    122     11
## 324  9.0406773  7.1637326           34           34     27     26     96     12
## 268  9.3092118  6.6703209            8            7      8      8     60     13
## 87   8.8802863  6.9634512           15           22     33     45    144     14
## 76   8.9161890  6.9361614           53           50     38     24     89     15
## 83   8.7526736  6.8850339           49           53     45     34    107     16
## 213  8.5729230  6.9842903           73           68     61     40    116     17
## 328  8.5132090  6.5697398           23           40     49     49    152     18
## 48   8.4690362  7.1052608          139          124     66     29     81     19
## 309  8.7200304  6.9945142           43           48     52     44    138     20
## 357  8.6267114  6.9066829           75           77     51     22     85     21
## 321  9.7621049  6.9011298            2            2      3      7     63     22
## 160  8.9349836  7.0859304           16           24     29     47    148     23
## 110  7.9408403  6.9559731          120          107    107     54    169     24
## 256  8.2678645  6.5433957           78          113     56     35    113     25
## 222  8.4336823  7.1216772          158          149     68     32     77     26
## 322  9.0632988  6.6727335           38           43     16      6     35     27
## 85   9.4046922  6.6558365            7            8      5      5     50     28
## 245 10.0000000  7.0562004            1            1      1      3     53     29
## 254  9.3726013  6.9716059           20           17     13     10     57     30
## 193  8.6397743  6.5602027           50           57     35     33     78     31
## 342  9.2436396  6.6875029           11           12     11     14     65     32
## 157  9.7059724  7.0337659           10            9      4      2     19     33
## 261  8.8786588  6.3993400           31           31     19     18     70     34
## 265  9.2496282  6.7987464           12           15     12     15     64     35
## 22   8.8290644  7.0497630           24           39     46     51    153     36
## 196  8.2469592  6.8898861          159          152     70     43     99     37
## 283  9.3804264  6.6842946           19           18      7      4     28     38
## 170  8.8084457  6.7409647           13           16     28     53    142     39
## 266  8.6980857  6.5257174           46           49     23     38     84     40
## 95   9.0170559  6.7152898           32           29     18     25     67     41
## 198  6.2753036  5.3537773          174          102    150    158    251     42
## 252  9.2978834  6.8203525            9           11     10     19     68     43
## 278  9.5727565  7.0215598            5            6      6     13     62     44
## 289  7.3704729  6.5272527           52           13    103    160    261     45
## 130  8.7937961  6.8633837           35           37     44     48    124     46
## 341  7.9608432  6.6206097           70           79     84     61    171     47
## 226  9.0534226  6.7704879           18           21     17     42     90     48
## 58   7.2608264  6.4408198           67           38    111    159    258     49
## 55   9.2472918  7.0258416           29           33     15     16     56     50
## 73   8.7855400  6.0366010           33           23     21      9     12     51
## 174  8.7707794  6.0791320           36           27     22     11     10     52
## 246  8.4362479  5.7152423           22           20     25     39     61     53
## 186  8.2920473  5.7705586           42           35     48     41     59     54
## 239  8.8182161  6.2101194           40           30     24     12      8     55
## 344  7.0681650  5.1289176          121          122     88     57    118     56
## 169  7.3246795  5.9641268          217          241    151     50     31     57
## 148  3.4985830  2.2153860          277          300    296    144    206     58
## 235  4.0747576  2.4861705          208          239    244    150    214     59
## 191  3.8486815  2.1497637          220          258    243    149    215     60
## 224  6.6394232  5.1421305          118          117    155     92    177     61
## 27   4.2106346  2.8306027          177          190    253    161    235     62
## 189  4.7210819  3.2170347          170          175    232    152    216     63
## 7    4.5163977  3.3384713          178          186    251    156    223     64
## 67   7.6104022  5.4207483           77           80     73     56     74     65
## 184  7.9638451  5.0415181           55           51     31     46      6     66
## 249  4.6034986  3.2356276          147          158    237    164    234     67
## 325  4.2617098  3.0458375          201          221    260    165    230     68
## 120  6.4526487  3.7755058           97          170     81     55     82     69
## 286  5.6712245  5.1901857          380          381    199     52     43     70
## 72   6.8466159  4.5448344           89           70     92     65    114     71
## 378  6.1601032  6.3545407          280          289    190    206    304     72
## 37   7.2299114  5.6510938           74          155    104     66    165     73
## 279  6.4694952  4.0466140          128          207     99     58     83     74
## 32   6.2629974  6.1751292          259          267    166    208    312     75
## 331  6.0034130  6.2277196          278          287    195    229    318     76
## 320  6.1270775  6.0337989          218          252    170    225    319     77
## 46   6.4995814  6.4684341          225          237    160    209    311     78
## 159  4.6770505  3.5270493          213          256    250    154    212     79
## 259  6.3018019  6.2819480          257          270    167    210    310     80
## 271  6.4754538  4.2230129          107          180    118     63    133     81
## 362  6.0886931  6.1970506          287          298    183    211    305     82
## 182  5.7225071  6.1054144          329          339    223    207    296     83
## 369  5.7746002  6.1216149          324          325    213    212    299     84
## 192  6.6712668  4.4721116          163          260    106     60     71     85
## 349  6.6224942  4.4398326          113          183    108     64    129     86
## 326  6.6836655  4.5679586          145          236    101     59     69     87
## 382  6.3904047  4.2290271          197          288    115     62     66     88
## 210  6.0144591  6.5094943          327          335    218    217    300     89
## 240  5.7063387  6.2787953          340          351    224    214    293     90
## 111  6.3187421  3.9568577           76           66    102    105    140     91
## 197  2.8220583  2.9689502          332          343    357    235    314     92
## 350  6.5451872  4.1994852           51           52     93    118    145     93
## 258  6.5888357  4.1904654           58           56     91    113    141     94
## 200  6.1781121  4.4031814          131          119    156    123    137     95
## 219  6.2314936  3.5353983          106           76     62    124    115     96
## 6    3.3864995  3.4022630          284          307    332    237    316     97
## 168  4.2556147  3.1630486          199          218    271    194    239     98
## 315  3.5321862  3.5317899          271          309    324    238    317     99
## 339  6.3936790  4.2775612           96          109    152     97    117    100
## 126  4.9207663  2.4715593          188          223    176    120    101    101
## 122  6.4635818  4.3477780           91           98    148    101    120    102
## 158  4.4007995  1.5980759          195          233    179    122     91    103
## 199  6.0565199  3.6609281          160          131     95    127    102    104
## 371  6.2403763  4.0811052           98           87     87    153    154    105
## 233  4.5673898  3.0554280          240          259    269    171    175    106
## 116  5.8273435  4.0674952          132          172    153    157    179    107
## 64   6.4691303  4.1541288           80           97    132    104    131    108
## 202  6.0397334  4.4530440          155          139    133    173    193    109
## 347  6.1984050  3.8490506          143          133     79    128    103    110
## 90   5.1712328  3.6665732          192          174    240    166    168    111
## 218  9.8660913  8.1890414           17           10      9    136    149    112
## 119  5.0627386  2.2494662          104          120    140    137    128    113
## 14   4.4673922  3.3425657          286          285    303    170    167    114
## 237  4.7710831  3.6071067          216          208    292    178    204    115
## 93   5.0059458  3.5931817          236          228    261    168    166    116
## 153  3.6248481  3.2040730          318          328    319    195    227    117
## 207  4.6050286  1.9592582          182          216    177    140    123    118
## 21   6.4646439  3.7429901           63           69     90     91     80    119
## 99   4.7053448  3.6214229          272          277    298    167    158    120
## 272  4.2131831  1.8699066          250          294    207    143    121    121
## 123  4.8569071  3.7534662          245          250    290    175    178    122
## 190  6.4664830  3.6121448          110           84     64    129     76    123
## 363  6.2389351  3.1815988           69           71     69     72     58    124
## 155  6.8701326  4.6588215           64           81    119    116    134    125
## 40   6.6279953  3.5806236          105           73     59    100     52    126
## 146  3.7102177  3.1499036          314          331    316    196    231    127
## 176  4.5462083  2.0795160          224          271    193    135     92    128
## 187  6.6362881  3.6799800          117           83     58     99     48    129
## 243  6.1519453  3.6855755          127          134    137     94     86    130
## 117  3.1413213  4.0013564          353          366    373    241    309    131
## 145  6.6429857  4.8321939          103          126    175    115    112    132
## 131  6.2432922  3.2304394           56           62     75     95     75    133
## 162  5.0479120  3.7978925          232          240    277    169    164    134
## 227  6.4245265  3.6725467          140          103     65    109     49    135
## 241  6.2529746  3.6922190          184          146    109    110     33    136
## 171  5.9457446  2.5149243           62           61     72     67     23    137
## 79   6.5886723  4.6759360          119          141    162    117    111    138
## 36   4.5711102  3.1832290          193          193    272    190    213    139
## 80   5.9786069  3.6010196           94           94    131    146    136    140
## 351  4.8719382  4.0143872          260          263    304    179    188    141
## 297  6.0926676  3.1652752          108          116     85     82     54    142
## 135  5.4809096  4.0453148          186          211    186    174    190    143
## 88   5.8666531  3.2229738          124          132    127    112     72    144
## 163  5.9261839  3.1464443           72           65     96    141    104    145
## 215  6.1316377  3.7448169           61           60    123    151    143    146
## 156  6.4182455  3.6493797           93           96     83     85     51    147
## 114  5.9757566  3.4086974          114           90    105    155    132    148
## 318  5.7562115  3.0591503          102          112    125    134     98    149
## 18   6.2789816  3.5181867           45           54     82    138    126    150
## 355  5.9984413  3.3868422          146          148    120     86     38    151
## 108  6.5912533  3.4611957           83           86     54    111     55    152
## 20   4.7416958  3.4484643          268          269    280    172    159    153
## 330  6.3896027  4.9087265          167          209    200    121    100    154
## 81   6.3992605  3.7910520          144          138     94    106     39    155
## 49   5.7434240  3.1770168          142          147    139    119     73    156
## 42   5.9744466  3.1038856           65           75     80    142    108    157
## 17   6.1440356  3.5315441           99          105    116    126     79    158
## 3    5.5445676  3.3098051          149          159    163    147    119    159
## 134  5.6903174  2.6497350          115          130    112     71     18    160
## 164  6.2829902  3.1482073           88           72     63    125     46    161
## 275  5.8081945  3.1586208          109          100    110    148    105    162
## 177  5.4838441  3.6442331          136          106    158    186    183    163
## 129  4.7152593  3.0977701          222          204    255    177    160    164
## 51   5.8598017  2.6683600           95          108     98     77     21    165
## 376  5.8729408  2.6772558           81           95     89     83     32    166
## 118  5.6438419  2.6118138          126          137    100     73     16    167
## 56   5.5694389  3.6192740          125           88    141    189    187    168
## 143  5.8788388  2.6123191           86          101     97     79     22    169
## 343  6.0977705  3.1604371          151          115     78    130     34    170
## 285  6.0424117  2.6551720           57           82     74     74     25    171
## 173  5.9179133  3.8429820           87           74    126    182    181    172
## 16   5.6421602  2.4735524          112          143    117     76     20    173
## 65   5.7607033  2.8851015          111          140    129     88     41    174
## 154  5.6466591  2.6676475          130          160    128     80     17    175
## 127  6.1429265  2.8020109           92           67     60    133     45    176
## 334  5.4829965  3.7777614          138          114    173    192    202    177
## 208  5.3978805  2.4879797          137          164    146    107     37    178
## 302  5.4429719  3.6137526          172          151    161    181    174    179
## 103  6.0957416  2.6665094           48           89     67     75     30    180
## 247  5.5811547  2.8543766          148          173    147     81     14    181
## 281  5.3499318  2.3074470          135          171    144     98     27    182
## 296  5.3458413  2.7716630          171          187    149    114     44    183
## 301  5.1568073  2.1055470          166          200    157    102     24    184
## 257  5.4770200  2.4551783          123          153    134    103     29    185
## 181  5.1173294  3.2134180          141          135    171    191    197    186
## 78   5.3109720  3.6976828          173          145    194    193    196    187
## 75   5.5344015  3.2571969          152          176    143    145     87    188
## 307  5.2967686  2.1693036          122          177    142    108     47    189
## 374  5.2105280  2.4393681          200          247    168     84     13    190
## 115  6.9815002 10.0000000          212          215    315    324    382    191
## 12   6.8975827  9.9663317          227          212    317    325    381    192
## 96   5.9904281  4.2318909           60           64    130    204    218    193
## 144  5.2482514  2.7789731          231          275    197     89     11    194
## 337  6.8037746  3.2854717           41           46     47     68      5    195
## 214  6.7275325  3.2511662           59           55     50     69      3    196
## 327  5.3340194  3.1153246          185          210    159    163    139    197
## 329  5.7471140  2.8866572          134           99     86    162     88    198
## 77   6.5325645  4.8848948           54           47    114    200    209    199
## 206  6.7332813  3.4046516          101          111     39     93      7    200
## 282  6.3070352  4.8771629          100           93    136    199    205    201
## 137  6.4961374  4.9345383           68           59    121    203    208    202
## 303  5.4897013  4.0029007           85           58    169    236    232    203
## 125  6.5441847  4.9048441           47           44    113    201    210    204
## 141  6.4619411  4.9384790           71           63    122    202    207    205
## 151  6.6753183  3.2078332           66           78     53     70      4    206
## 290  6.9226715  3.3932343           26           32     43     87      9    207
## 38   6.7110647  3.3816614           79           85     55     78      2    208
## 101  4.9721656  2.6341811          154          161    172    180    161    209
## 205  3.1953414  3.7189344          285          266    337    310    375    210
## 359  6.1826639  3.1183625           84           91     76    132     40    211
## 375  6.1030125  3.0601326           90          104     77    139     42    212
## 66   6.9540616  3.4704131           21           36     41     96     15    213
## 54   3.2103952  3.6333095          269          243    325    311    376    214
## 370  3.0852809  3.3938975          321          308    345    289    344    215
## 44   5.5356730  3.7441102          116          144    145    205    217    216
## 292  6.3021139  3.2363509           82           92     71    131     36    217
## 260  5.6825973  3.4036776          133          156    124    176    151    218
## 136  6.4326751  3.3522087          190          220     57     90      1    219
## 335  2.9019573  3.4510320          302          284    347    312    373    220
## 365  4.6950831  2.6604121          210          244    198    184    156    221
## 380  3.1982994  3.6225880          291          268    330    309    363    222
## 60   4.7665423  2.5503809          183          203    181    183    157    223
## 165  5.1351983  2.6948101          129          136    154    188    163    224
## 11   4.7203883  2.6219138          214          246    202    187    155    225
## 97   5.0877857  2.8954492          156          192    174    185    162    226
## 91   4.4948073  3.4558855          221          196    229    243    245    227
## 9    4.4182702  3.3681730          194          123    245    256    253    228
## 161  3.0859165  2.9399674          323          320    339    272    302    229
## 238  3.3888753  2.7775720          297          299    320    255    262    230
## 175  4.2041837  3.6078177          244          184    284    263    269    231
## 57   4.1962845  3.9193727          256          197    262    294    323    232
## 267  3.1444400  2.8548438          328          324    340    260    263    233
## 368  2.6874142  3.3949247          352          357    370    296    335    234
## 31   3.0776251  2.7221812          341          342    338    254    246    235
## 194  4.8487711  3.5040016          179          129    209    244    241    236
## 61   4.7101598  3.3578417          180          128    217    246    242    237
## 228  4.9199980  4.1298435          191          118    205    277    294    238
## 71   2.8240352  2.8917931          261          249    331    313    366    239
## 63   3.1452874  2.6523288          330          332    327    253    248    240
## 112  4.3089398  3.4988329          237          178    270    261    265    241
## 105  4.5752478  2.5393653          176          162    191    215    199    242
## 94   4.0508496  3.9754176          252          195    282    308    345    243
## 39   4.0853199  3.6568041          255          201    249    297    332    244
## 25   4.7196057  2.8785259          246          254    182    226    189    245
## 269  4.1785800  3.9629969          241          185    257    301    337    246
## 221  2.3932682  2.7908435          325          306    358    316    367    247
## 284  4.7146171  2.7310097          165          142    185    220    198    248
## 62   4.2845466  3.9431606          249          194    247    295    326    249
## 201  4.2328801  3.4671854          211          169    265    274    298    250
## 379  4.7098520  3.5059870          202          163    221    248    244    251
## 92   2.5578042  2.8150686          303          290    348    317    372    252
## 236  4.4908634  4.1788618          265          205    242    286    306    253
## 142  4.7091947  2.7360035          161          154    187    219    200    254
## 179  4.7443013  4.1460446          253          198    230    278    278    255
## 295  4.1678567  3.9668618          267          219    268    300    334    256
## 89   4.1066715  4.2635443          283          248    289    304    333    257
## 15   4.6621739  2.7458627          164          168    192    216    194    258
## 13   4.8333614  4.1051195          205          150    216    284    308    259
## 336  4.5130632  3.0432756          181          127    219    251    243    260
## 273  4.1387620  3.1220706          206          167    259    268    267    261
## 124  4.5010134  2.6109698          187          199    196    218    192    262
## 107  2.8539949  2.4078379          306          301    336    266    259    263
## 172  4.3916828  2.6181058          219          214    206    223    186    264
## 69   3.0204304  3.5021735          301          282    322    330    379    265
## 276  4.8648585  2.8801431          209          224    164    228    195    266
## 251  4.6701690  4.1802060          270          213    235    282    283    267
## 332  3.8752137  3.9464654          292          261    309    307    339    268
## 203  4.6435720  2.9067908          274          281    189    230    184    269
## 180  4.3266577  4.2953347          273          229    267    298    327    270
## 299  4.4642901  3.8035280          281          242    241    275    250    271
## 59   4.3430631  2.6867738          189          234    233    213    185    272
## 138  4.6325781  3.7511865          223          166    220    281    271    273
## 2    2.4613204  2.5388071          288          276    343    319    371    274
## 367  4.4194769  2.6280425          203          231    212    221    191    275
## 242  4.6909946  3.9012110          290          255    222    259    237    276
## 319  4.2437394  3.1548413          226          181    248    262    249    277
## 98   4.1135392  3.8056662          247          189    274    306    331    278
## 132  4.3764698  3.0388293          235          182    228    245    222    279
## 121  4.2726959  4.0417797          310          274    279    283    272    280
## 41   4.3693845  2.9425949          198          165    227    250    238    281
## 217  4.6286356  2.5782671          168          191    184    222    201    282
## 346  2.2644518  2.3874200          311          292    352    321    369    283
## 167  4.2030541  3.9264176          296          262    275    292    303    284
## 230  3.5612525  2.6456936          207          230    299    265    286    285
## 74   2.2017242  2.3669106          315          303    354    320    368    286
## 323  4.3515090  2.8019550          238          257    236    227    182    287
## 373  3.9618932  3.0026085          242          202    273    273    257    288
## 104  4.6892276  3.5959903          279          253    225    247    233    289
## 52   5.1677592  3.2594421          263          321    180    197    147    290
## 287  4.1872240  3.2868282          254          238    263    264    247    291
## 263  2.4859085  1.8006320          313          302    342    279    264    292
## 188  4.1270766  2.3253715          234          235    226    240    203    293
## 29   3.5213655  4.2841892          345          316    321    315    347    294
## 195  4.3012782  3.8476999          298          265    264    288    277    295
## 8    4.2217248  3.4585030          251          227    266    276    266    296
## 68   3.7796930  2.6718024          300          329    302    224    172    297
## 82   2.1192885  2.0868713          304          295    351    326    370    298
## 150  4.2507664  2.8767292          215          188    234    257    240    299
## 212  3.1804607  1.4736932          228          217    285    249    224    300
## 140  5.5267685  4.9597348          175          125    208    267    252    301
## 232  5.6190833  4.9379952          157          110    201    271    256    302
## 34   5.5925378  4.9577038          153          121    203    270    254    303
## 262  4.2104564  2.9008756          282          311    283    234    180    304
## 353  1.2544612  0.0000000          348          304    297    328    329    305
## 28   4.1475340  3.5223392          308          278    256    287    260    306
## 147  3.7474741  1.8375220          266          272    238    242    173    307
## 86   4.1025473  1.9701653          264          264    215    233    150    308
## 280  3.1982852  3.9011208          317          319    326    343    378    309
## 45   2.1620649  1.0702569          299          291    333    290    255    310
## 270  3.6389615  2.6438580          239          222    276    293    285    311
## 100  5.7767209  4.5901413          243          251    214    239    170    312
## 364  4.7122291  1.7808620          169          245    138    198     95    313
## 306  5.2084562  3.1833763          233          225    178    231    146    314
## 178  1.0801014  0.3538869          376          370    335    340    324    315
## 348  4.1141428  3.7616927          248          232    252    318    336    316
## 358  3.4861540  3.8633899          350          333    318    322    321    317
## 204  1.3593971  0.2697127          295          293    360    314    313    318
## 53   4.0830846  0.7483421          162          157    135    232     97    319
## 43   4.8961787  3.0838949          150          226    165    258    219    320
## 24   3.3652667  0.8191050          204          206    210    252    176    321
## 102  2.3309322  0.8434290          346          349    306    291    221    322
## 47   3.5348913  2.2542213          196          179    211    323    315    323
## 220  2.3191032  0.5177418          331          314    281    302    225    324
## 231  2.6254754  0.7077917          276          280    246    303    236    325
## 377  4.3356986  2.5779499          229          283    188    269    211    326
## 293  2.3550896  0.5077637          316          310    278    299    226    327
## 300  2.3010657  0.6522414          337          330    313    305    229    328
## 253  3.2948991  2.2732085          289          273    239    327    307    329
## 333  4.0097221  2.6459428          262          313    231    280    220    330
## 26   4.0862714  2.4851347          230          286    204    285    228    331
## 152  3.1054211  2.2865518          275          279    254    342    328    332
## 19   3.7378986  3.7897386          366          360    286    339    330    333
## 248  2.7474676  2.3176524          320          317    300    352    342    334
## 274  2.4831206  2.6311526          307          348    341    353    362    335
## 366  1.7300820  0.6269293          361          336    305    345    284    336
## 50   1.8925378  0.7229523          357          322    307    346    292    337
## 255  3.5672689  3.8331942          372          368    310    341    325    338
## 314  2.2689501  1.1433916          294          305    312    329    295    339
## 109  1.9107184  0.9216004          362          340    301    347    279    340
## 305  1.7385190  0.9040717          347          358    329    331    282    341
## 356  2.1186188  1.1585349          333          345    314    332    289    342
## 354  1.8873801  0.9481435          368          347    311    349    280    343
## 216  1.8788788  1.3453188          360          367    356    334    275    344
## 70   1.8952267  1.3783374          354          364    359    335    276    345
## 5    2.3696763  1.0676185          339          296    258    348    297    346
## 294  2.0562621  0.9807200          356          327    294    350    290    347
## 340  2.0929172  1.0605808          359          326    295    351    287    348
## 310  1.3842136  1.1000477          336          346    363    365    360    349
## 244  2.2876636  0.9405361          293          312    293    333    301    350
## 312  2.2318455  1.1441337          258          297    308    344    322    351
## 298  1.5751601  1.2357547          342          352    364    359    341    352
## 149  1.8858964  1.5643555          363          372    369    336    270    353
## 211  0.8476329  0.9591138          349          362    374    379    377    354
## 288  1.9117893  1.4660889          358          365    362    337    274    355
## 313  1.5671390  1.1214200          335          341    346    361    353    356
## 264  1.6508810  1.4327544          326          334    350    362    355    357
## 277  2.6559397  2.7216657          319          338    323    360    354    358
## 381  1.8257104  1.5320133          364          373    368    338    268    359
## 128  0.6369855  1.1380410          370          375    377    380    374    360
## 317  1.3934404  1.1364277          338          355    361    364    357    361
## 338  0.7374817  1.1033774          373          376    378    368    361    362
## 291  1.1600152  1.1460059          375          377    375    357    320    363
## 234  0.8891280  1.3601493          369          374    376    369    359    364
## 311  1.4571784  1.1528305          305          344    355    366    364    365
## 35   1.5876505  1.0734066          377          371    344    356    273    366
## 360  0.5662315  1.3208289          379          379    379    363    338    367
## 316  1.0794471  1.2318000          355          369    372    367    356    368
## 133  1.9069644  0.9499003          374          361    291    354    281    369
## 166  2.1566817  1.0776063          365          356    287    355    291    370
## 225  0.5874150  1.6034749          378          378    380    376    358    371
## 185  2.1794463  1.2349963          371          359    288    358    288    372
## 106  0.0000000  1.5409426          382          382    382    370    340    373
## 23   0.2457946  1.5870825          381          380    381    381    365    374
## 139  2.1509588  2.2689950          334          337    353    371    346    375
## 223  2.1673149  2.1259442          322          323    349    373    352    376
## 84   2.3403715  2.1958816          309          315    328    372    351    377
## 33   2.2820859  2.1483794          312          318    334    374    350    378
## 304  2.0418298  2.2706841          344          354    365    377    348    379
## 113  2.0446693  2.2490424          343          353    366    378    349    380
## 4    1.9633440  2.2559544          351          363    367    375    343    381
## 250  0.3733262  0.5867334          367          350    371    382    380    382
##     RankM7 RankM8
## 352     16     16
## 1       32     32
## 308     23     24
## 229     10      9
## 183     22      4
## 372     20      6
## 10      39     31
## 209     38     34
## 361     28     25
## 345      3     35
## 30      29     19
## 324     19      5
## 268     11     43
## 87      26     21
## 76      25     23
## 83      37     29
## 213     44     18
## 328     45     46
## 48      46      8
## 309     40     17
## 357     43     26
## 321      4     27
## 160     24     10
## 110     54     22
## 256     50     48
## 222     48      7
## 322     17     42
## 85       7     44
## 245      1     11
## 254      9     20
## 193     42     47
## 342     15     40
## 157      5     13
## 261     27     54
## 265     13     36
## 22      30     12
## 196     51     28
## 283      8     41
## 170     33     38
## 266     41     50
## 95      21     39
## 198    108     72
## 252     12     33
## 278      6     15
## 289     56     49
## 130     34     30
## 341     53     45
## 226     18     37
## 58      58     53
## 55      14     14
## 73      35     65
## 174     36     64
## 246     47     69
## 186     49     68
## 239     31     59
## 344     60     75
## 169     57     67
## 148    295    317
## 235    278    297
## 191    283    320
## 224     75     74
## 27     260    255
## 189    207    212
## 7      232    201
## 67      55     71
## 184     52     76
## 249    227    209
## 325    253    237
## 120     94    141
## 286    158     73
## 72      66     91
## 378    118     55
## 37      59     70
## 279     88    114
## 32     109     61
## 331    133     58
## 320    123     66
## 46      85     52
## 159    220    174
## 259    105     56
## 271     87    103
## 362    128     60
## 182    154     63
## 369    149     62
## 192     73     92
## 349     78     94
## 326     71     90
## 382    100    102
## 210    132     51
## 240    155     57
## 111    102    123
## 197    317    241
## 350     82    104
## 258     80    105
## 200    117     95
## 219    114    171
## 6      298    191
## 168    254    221
## 315    293    172
## 339     99     99
## 126    195    300
## 122     92     96
## 158    241    333
## 199    129    155
## 371    112    112
## 233    230    236
## 116    146    113
## 64      89    108
## 202    131     93
## 347    115    131
## 90     185    154
## 218      2      3
## 119    191    315
## 14     237    200
## 237    203    166
## 93     193    169
## 153    289    215
## 207    226    327
## 21      91    147
## 99     216    161
## 272    259    328
## 123    200    143
## 190     90    164
## 363    113    218
## 155     65     88
## 40      77    170
## 146    287    225
## 176    231    325
## 187     76    152
## 243    119    151
## 117    308    119
## 145     74     86
## 131    111    210
## 162    192    137
## 227     96    153
## 241    110    150
## 171    139    295
## 79      81     87
## 36     229    217
## 80     136    167
## 351    198    117
## 297    127    220
## 135    173    115
## 88     144    211
## 163    140    227
## 215    122    145
## 156     97    157
## 114    137    188
## 318    151    235
## 18     107    176
## 355    134    195
## 108     79    183
## 20     206    187
## 330    101     82
## 81      98    138
## 49     153    219
## 42     138    231
## 17     120    173
## 3      166    202
## 134    156    278
## 164    106    226
## 275    147    223
## 177    171    158
## 129    210    232
## 51     145    272
## 376    143    270
## 118    160    288
## 56     165    162
## 143    142    287
## 343    125    222
## 285    130    276
## 173    141    133
## 16     161    299
## 65     150    249
## 154    159    273
## 127    121    257
## 334    172    140
## 208    176    296
## 302    175    163
## 103    126    274
## 247    164    254
## 281    177    308
## 296    178    262
## 301    187    323
## 257    174    301
## 181    189    213
## 78     180    149
## 75     168    206
## 307    181    319
## 374    183    302
## 115     61      1
## 12      64      2
## 96     135    101
## 144    182    260
## 337     67    204
## 214     69    207
## 327    179    230
## 329    152    248
## 77      84     84
## 206     68    189
## 282    103     85
## 137     86     81
## 303    170    118
## 125     83     83
## 141     93     79
## 151     72    214
## 290     63    194
## 38      70    196
## 101    194    282
## 205    304    148
## 359    116    229
## 375    124    234
## 66      62    181
## 54     301    159
## 370    311    193
## 44     167    146
## 292    104    208
## 260    157    190
## 136     95    199
## 335    314    186
## 365    217    275
## 380    302    160
## 60     204    292
## 165    188    268
## 11     208    285
## 97     190    246
## 91     235    185
## 9      240    197
## 161    310    243
## 238    297    261
## 175    262    165
## 57     264    127
## 267    307    253
## 368    319    192
## 31     312    266
## 194    201    178
## 61     213    198
## 228    196    110
## 71     316    247
## 63     306    277
## 112    249    180
## 105    228    293
## 94     279    120
## 39     276    156
## 25     209    251
## 269    266    122
## 221    326    259
## 284    211    265
## 62     251    125
## 201    257    182
## 379    214    177
## 92     322    256
## 236    236    107
## 142    215    264
## 179    205    109
## 295    267    121
## 89     273    100
## 15     222    263
## 13     202    111
## 336    233    238
## 273    269    228
## 124    234    289
## 107    315    303
## 172    242    286
## 69     313    179
## 276    199    250
## 251    221    106
## 332    282    124
## 203    223    244
## 180    248     97
## 299    238    136
## 59     246    269
## 138    224    144
## 2      325    294
## 367    239    284
## 242    218    128
## 319    256    224
## 98     272    135
## 132    243    239
## 121    252    116
## 41     244    242
## 217    225    290
## 346    336    304
## 167    263    126
## 230    291    280
## 74     338    305
## 323    245    258
## 373    281    240
## 104    219    168
## 52     186    205
## 287    265    203
## 263    323    330
## 188    270    306
## 29     294     98
## 195    250    132
## 8      258    184
## 68     284    271
## 82     344    324
## 150    255    252
## 212    305    338
## 140    169     77
## 232    162     80
## 34     163     78
## 262    261    245
## 353    370    382
## 28     268    175
## 147    285    329
## 86     274    326
## 280    303    129
## 45     341    360
## 270    288    281
## 100    148     89
## 364    212    331
## 306    184    216
## 178    372    380
## 348    271    142
## 358    296    130
## 204    369    381
## 53     277    372
## 43     197    233
## 24     299    371
## 102    330    370
## 47     292    314
## 220    331    378
## 231    321    374
## 377    247    291
## 293    328    379
## 300    332    375
## 253    300    310
## 333    280    279
## 26     275    298
## 152    309    309
## 19     286    139
## 248    318    307
## 274    324    283
## 366    361    376
## 50     355    373
## 255    290    134
## 314    335    352
## 109    352    368
## 305    360    369
## 356    345    348
## 354    356    366
## 216    358    343
## 70     354    341
## 5      327    361
## 294    347    363
## 340    346    362
## 310    368    357
## 244    333    367
## 312    337    351
## 298    364    345
## 149    357    335
## 211    375    364
## 288    351    339
## 313    365    355
## 264    362    340
## 277    320    267
## 381    359    337
## 128    377    353
## 317    367    354
## 338    376    356
## 291    371    350
## 234    374    342
## 311    366    349
## 35     363    359
## 360    379    344
## 316    373    347
## 133    353    365
## 166    342    358
## 225    378    332
## 185    339    346
## 106    382    336
## 23     381    334
## 139    343    312
## 223    340    322
## 84     329    318
## 33     334    321
## 304    349    311
## 113    348    316
## 4      350    313
## 250    380    377

Rank Difference Boxplots

hist=read.csv('c:/users/lfult/documents/minimum wage/for sir/for histograms.csv')
boxplot(hist$Difference~hist$Model, horizontal = F, notch=TRUE, col=rainbow(6), ylab='Difference in Ranking', xlab='Model Number')

Python Libraries

#Basic Operating System Stuff
import os
import gc #garbage collector
import random #random seed generator

#Basic dataframe, array, and math stuff
import pandas as pd #data frame
import math #math functions
import numpy as np    #numerical package

#TensorFlow
import tensorflow as tf
from tensorflow.python.client import device_lib #GPU Check
import tensorflow.keras #keras
from tensorflow.keras import layers 
from tensorflow.keras import Sequential,Input,Model 
from tensorflow.keras.layers import Dense, Dropout, Flatten, Input, Add, Activation, ZeroPadding2D,GlobalAveragePooling2D
from tensorflow.keras.layers import BatchNormalization,Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D, LeakyReLU  
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint #use for early stopping and reduction on level-out
from tensorflow.keras.initializers import glorot_uniform, he_uniform #to initialize random weights for filters
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.preprocessing import image as image_utils
from tensorflow.keras.applications.imagenet_utils import preprocess_input, decode_predictions, preprocess_input
from tensorflow.keras.models import Model, load_model  #Can't do much without a model
from tensorflow.keras import utils
from tensorflow.keras.utils import get_file, plot_model, to_categorical, model_to_dot
from tensorflow.keras.metrics import AUC
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import ResNet50V2 
from tensorflow.keras.optimizers import Adam
import tensorflow.keras.backend as K #let's write our own metrics and loss functions



#Graphing
import seaborn as sns
from IPython.display import SVG #Same here
import matplotlib.pyplot as plt #plotting
import matplotlib #image save
from matplotlib.pyplot import imshow #Show images
from PIL import Image #Another image utility
import seaborn as sns
import pydot

Encoder/Decoder

full=r.mydata
train=full.iloc[:, [3,4,5,6,7,8,9,10,11]]
train
##           X1A       X1B       X1C  ...       X3A       X3B       X3C
## 0    0.876454  0.679524  0.821950  ...  0.296081  0.409132  0.978251
## 1    0.469000  0.301275 -2.092300  ...  0.427759  0.556290 -0.567498
## 2   -0.306983  0.587005  0.216335  ... -0.457682 -0.620902  1.116972
## 3   -0.908877  0.688564 -1.661572  ... -1.557264 -1.178275 -1.043113
## 4    0.401644  0.230071  0.146937  ...  0.352563  0.304395 -2.311420
## ..        ...       ...       ...  ...       ...       ...       ...
## 377  0.016846  0.356482  0.291466  ... -2.454380 -0.190875 -1.796170
## 378  0.269602 -0.274356 -0.357070  ...  0.988170  1.117096 -0.468412
## 379  0.300280  0.191226 -1.955005  ... -0.298687 -0.309723 -0.547100
## 380 -0.960661 -2.092283 -0.660316  ... -1.793695 -1.872533 -1.162017
## 381  0.210762  0.225109  0.727711  ... -3.195241 -0.956891  1.116972
## 
## [382 rows x 9 columns]
train2=full.iloc[:, [3,4,5,6,7,8,9,12,11]]

autoencoder=tf.keras.Sequential()
autoencoder = Sequential()
autoencoder.add(Input(shape=(9,)))
autoencoder.add(Dense(3,  activation='elu', name='weights'))
autoencoder.add(Dense(1,  activation='linear', name="bottleneck"))
autoencoder.compile(loss='mean_squared_error', optimizer = Adam())
autoencoder.summary()
## Model: "sequential_1"
## ┌─────────────────────────────────┬───────────────────────────┬────────────┐
## │ Layer (type)                    │ Output Shape              │    Param # │
## ├─────────────────────────────────┼───────────────────────────┼────────────┤
## │ weights (Dense)                 │ (None, 3)                 │         30 │
## ├─────────────────────────────────┼───────────────────────────┼────────────┤
## │ bottleneck (Dense)              │ (None, 1)                 │          4 │
## └─────────────────────────────────┴───────────────────────────┴────────────┘
##  Total params: 34 (136.00 B)
##  Trainable params: 34 (136.00 B)
##  Non-trainable params: 0 (0.00 B)
plot_model(autoencoder)


autoencoder2=tf.keras.Sequential()
autoencoder2 = Sequential()
autoencoder2.add(Input(shape=(9,)))
autoencoder2.add(Dense(3,  activation='elu', name='weights'))
autoencoder2.add(Dense(1,  activation='linear', name="bottleneck"))
autoencoder2.compile(loss='mean_squared_error', optimizer = Adam())

Models

mod10 = autoencoder.fit(train,train, batch_size=128, epochs=1000, verbose=0, validation_data=(train,train))
autoencoder.save("c:/users/lfult/documents/minimum wage/encoded.h5")
## WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.
mod11 = autoencoder2.fit(train2,train2, batch_size=128, epochs=1000, verbose=0, validation_data=(train2,train2))
autoencoder.save("c:/users/lfult/documents/minimum wage/encoded2.h5")
## WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.

Scores to Rankings

rating=pd.DataFrame(np.round(autoencoder.predict(train),2), columns=['Rating'])
## 
 1/12 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step
12/12 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step
rating2=pd.DataFrame(np.round(autoencoder2.predict(train2),2), columns=['Rating'])
## 
 1/12 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step
12/12 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step

rating['Geo']=full.GeoName
rating=rating.sort_values(by='Rating', ascending=False)
rating['Ranking']=np.arange(1,383)


rating2['Geo']=full.GeoName
rating2=rating.sort_values(by='Rating', ascending=False)
rating2['Ranking']=np.arange(1,383)
library(reticulate)
## Warning: package 'reticulate' was built under R version 4.3.2
py$rating[373:382,]
##     Rating                                      Geo Ranking
## 177  -1.02          Kahului-Wailuku-Lahaina, HI MSA     373
## 290  -1.09 Riverside-San Bernardino-Ontario, CA MSA     374
## 18   -1.09          Atlantic City-Hammonton, NJ MSA     375
## 254  -1.24                       Ocean City, NJ MSA     376
## 34   -1.34                       Binghamton, NY MSA     377
## 224  -1.43                           Merced, CA MSA     378
## 359  -1.44              Visalia-Porterville, CA MSA     379
## 22   -1.60                      Bakersfield, CA MSA     380
## 105  -2.09                        El Centro, CA MSA     381
## 285  -2.36                       Rapid City, SD MSA     382

Rankings with New Variable

py$rating2[373:382,]
##     Rating                                      Geo Ranking
## 177  -1.02          Kahului-Wailuku-Lahaina, HI MSA     373
## 290  -1.09 Riverside-San Bernardino-Ontario, CA MSA     374
## 18   -1.09          Atlantic City-Hammonton, NJ MSA     375
## 254  -1.24                       Ocean City, NJ MSA     376
## 34   -1.34                       Binghamton, NY MSA     377
## 224  -1.43                           Merced, CA MSA     378
## 359  -1.44              Visalia-Porterville, CA MSA     379
## 22   -1.60                      Bakersfield, CA MSA     380
## 105  -2.09                        El Centro, CA MSA     381
## 285  -2.36                       Rapid City, SD MSA     382