Load data
Dataset Information
Peek at the dataset:
the final dataset includes 42 complete triads and 57 dyads from the 195 total triads.
Abbreviations
- “S.” = “Supervisor”.
- “FE.” = “Focal Employee”.
- “CW.” = “Coworker”.
- “VQ” = “Voice Quality”.
- “VS” = “Voice Solicitation”.
- “NS” = “Needs-Supply fit”.
Gender information
Demographic Breakdown
Gender Breakdown in Clean Dataset
How many coworker-focal employee pairs had different genders or the same gender?
##
## DifferentGenders SameGenders
## 46 32
Correlations
Pre-registered Analyses
Supervisor ratings of voice quality
Main Effects
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: supervisor_voice_quality ~ employee_gender_f + (1 | triad_id)
## Data: full_data
##
## REML criterion at convergence: 312.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.22122 -0.35124 0.01865 0.34890 1.57679
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 1.4150 1.1895
## Residual 0.4577 0.6766
## Number of obs: 98, groups: triad_id, 64
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.0657 0.1889 86.7940 26.82 <2e-16 ***
## employee_gender_fMan 0.1872 0.1891 53.9865 0.99 0.326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## emply_gnd_M -0.486
Controls
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## supervisor_voice_quality ~ employee_gender_f + s_gender_f + self_expertise +
## gender_diverse_pair + (1 | triad_id)
## Data: full_data
##
## REML criterion at convergence: 201.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8863 -0.3073 0.1070 0.3510 1.4455
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 1.6416 1.2813
## Residual 0.5958 0.7719
## Number of obs: 61, groups: triad_id, 35
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.80130 0.52276 50.13745 9.185 2.53e-12
## employee_gender_fMan 0.30379 0.28329 36.45065 1.072 0.291
## s_gender_fMan 0.18551 0.48854 31.83884 0.380 0.707
## self_expertise 0.08974 0.08748 38.71167 1.026 0.311
## gender_diverse_pairSameGenders -0.26754 0.49809 31.44497 -0.537 0.595
##
## (Intercept) ***
## employee_gender_fMan
## s_gender_fMan
## self_expertise
## gender_diverse_pairSameGenders
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) emp__M s_gn_M slf_xp
## emply_gnd_M -0.420
## s_gendr_fMn -0.534 -0.100
## self_exprts -0.578 0.480 0.005
## gndr_dvr_SG -0.414 0.029 0.065 0.046
Coworker’s/Employee’s self-ratings of voice solicitation
Main Effects
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: self_voice ~ employee_gender_f + (1 | triad_id)
## Data: full_data
##
## REML criterion at convergence: 365.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.5416 -1.0127 0.0724 0.7335 1.9234
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 0.000 0.000
## Residual 3.575 1.891
## Number of obs: 89, groups: triad_id, 60
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.9149 0.2758 87.0000 14.194 <2e-16 ***
## employee_gender_fMan -0.5518 0.4015 87.0000 -1.374 0.173
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## emply_gnd_M -0.687
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Controls
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: self_voice ~ employee_gender_f + s_gender_f + gender_diverse_pair +
## self_expertise + (1 | triad_id)
## Data: full_data
##
## REML criterion at convergence: 265.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.86180 -0.80290 0.03008 0.67272 2.42014
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 0.000 0.000
## Residual 3.433 1.853
## Number of obs: 66, groups: triad_id, 37
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.4310 0.6365 61.0000 5.391 1.2e-06 ***
## employee_gender_fMan -0.4880 0.4759 61.0000 -1.025 0.3092
## s_gender_fMan -0.4336 0.4744 61.0000 -0.914 0.3643
## gender_diverse_pairSameGenders -0.2655 0.4796 61.0000 -0.554 0.5819
## self_expertise 0.2723 0.1424 61.0000 1.912 0.0606 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) emp__M s_gn_M gn__SG
## emply_gnd_M -0.441
## s_gendr_fMn -0.446 -0.145
## gndr_dvr_SG -0.302 0.004 0.061
## self_exprts -0.716 0.237 0.051 0.017
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Interactions
I tested if the following variables moderated our effects: >
Employee/Coworker’s self-rated demands-abilities fit (note: there was no
main effect of gender on this variable, even with controls)
> Employee/Coworker’s self-rated needs-supply fit (note: there was no
main effect of gender on this variable, even with controls)
> Supervisor’s gender
> Employee/Coworker’s self-rated expertise in DEI
We did not see any significant or marginal interactions on these variables.
Exploratory analyses - Analyses with gender diverse pairs
Voice Quality
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: supervisor_voice_quality ~ employee_gender_f + (1 | triad_id)
## Data: gender_diverse_pair_data
##
## REML criterion at convergence: 118.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1391 -0.4068 0.1235 0.3223 1.2337
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 1.2254 1.1070
## Residual 0.4751 0.6893
## Number of obs: 39, groups: triad_id, 22
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.1952 0.2847 28.1499 18.250 <2e-16 ***
## employee_gender_fMan 0.2183 0.2317 17.8512 0.942 0.359
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## emply_gnd_M -0.391
Voice Quality - Control
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## supervisor_voice_quality ~ employee_gender_f + s_gender_f + self_expertise +
## (1 | triad_id)
## Data: gender_diverse_pair_data
##
## REML criterion at convergence: 119.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.11058 -0.34307 0.07657 0.31325 1.34328
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 1.3194 1.1486
## Residual 0.4655 0.6823
## Number of obs: 39, groups: triad_id, 22
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.65954 0.57418 33.84096 8.115 1.9e-09 ***
## employee_gender_fMan 0.34295 0.28608 21.63333 1.199 0.244
## s_gender_fMan 0.44821 0.55053 20.48455 0.814 0.425
## self_expertise 0.07708 0.10172 25.77087 0.758 0.455
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) emp__M s_gn_M
## emply_gnd_M -0.531
## s_gendr_fMn -0.600 0.014
## self_exprts -0.649 0.596 0.052
Voice Solicitation
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: self_voice ~ employee_gender_f + (1 | triad_id)
## Data: gender_diverse_pair_data
##
## REML criterion at convergence: 166.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8671 -0.9614 0.1794 0.8214 1.4950
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 0.000 0.00
## Residual 2.925 1.71
## Number of obs: 43, groups: triad_id, 23
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.1932 0.3646 41.0000 11.500 2.08e-14 ***
## employee_gender_fMan -1.0979 0.5218 41.0000 -2.104 0.0415 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## emply_gnd_M -0.699
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Voice Solicitation - Control
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: self_voice ~ employee_gender_f + s_gender_f + self_expertise +
## (1 | triad_id)
## Data: gender_diverse_pair_data
##
## REML criterion at convergence: 165.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0066 -0.8444 0.1390 0.7228 1.8195
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 0.000 0.000
## Residual 2.934 1.713
## Number of obs: 43, groups: triad_id, 23
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.8051 0.7898 39.0000 4.818 2.22e-05 ***
## employee_gender_fMan -0.8714 0.5645 39.0000 -1.544 0.131
## s_gender_fMan -0.3572 0.5460 39.0000 -0.654 0.517
## self_expertise 0.1855 0.1689 39.0000 1.098 0.279
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) emp__M s_gn_M
## emply_gnd_M -0.598
## s_gendr_fMn -0.541 0.070
## self_exprts -0.772 0.378 0.142
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Interesting Interactions
summary(lmer(self_voice_quality~employee_gender_f*self_demands_abilities+(1|triad_id), gender_diverse_pair_data))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: self_voice_quality ~ employee_gender_f * self_demands_abilities +
## (1 | triad_id)
## Data: gender_diverse_pair_data
##
## REML criterion at convergence: 111.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2039 -0.3940 0.1821 0.5328 1.7144
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 0.1944 0.4409
## Residual 0.5831 0.7636
## Number of obs: 42, groups: triad_id, 23
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.64943 0.48555 37.41723
## employee_gender_fMan 0.65335 0.76640 36.97580
## self_demands_abilities 0.55404 0.09654 36.71277
## employee_gender_fMan:self_demands_abilities -0.28633 0.16779 37.49984
## t value Pr(>|t|)
## (Intercept) 5.457 3.31e-06 ***
## employee_gender_fMan 0.852 0.3994
## self_demands_abilities 5.739 1.45e-06 ***
## employee_gender_fMan:self_demands_abilities -1.707 0.0962 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) emp__M slf_d_
## emply_gnd_M -0.640
## slf_dmnds_b -0.919 0.610
## emply__M:__ 0.558 -0.949 -0.603
sjPlot::plot_model(lmer(self_voice_quality~employee_gender_f*self_demands_abilities+(1|triad_id), gender_diverse_pair_data),
type = "int",
mdrt.values = "meansd",
axis.title = c("Employee Gender", "Self-rated Voice Quality"),
legend.title = "Self-rated demands-abilities")
summary(lmer(self_voice_quality~employee_gender_f*s_gender_f+(1|triad_id), gender_diverse_pair_data))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: self_voice_quality ~ employee_gender_f * s_gender_f + (1 | triad_id)
## Data: gender_diverse_pair_data
##
## REML criterion at convergence: 132.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.19992 -0.57360 0.06099 0.51265 1.65591
##
## Random effects:
## Groups Name Variance Std.Dev.
## triad_id (Intercept) 0.1842 0.4292
## Residual 1.2134 1.1016
## Number of obs: 43, groups: triad_id, 23
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 5.00748 0.41758 38.64792 11.992
## employee_gender_fMan 0.03842 0.55537 21.44175 0.069
## s_gender_fMan 0.17109 0.52364 38.56653 0.327
## employee_gender_fMan:s_gender_fMan -1.20360 0.69952 20.73747 -1.721
## Pr(>|t|)
## (Intercept) 1.35e-14 ***
## employee_gender_fMan 0.945
## s_gender_fMan 0.746
## employee_gender_fMan:s_gender_fMan 0.100
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) emp__M s_gn_M
## emply_gnd_M -0.665
## s_gendr_fMn -0.797 0.530
## empl__M:__M 0.528 -0.794 -0.658
sjPlot::plot_model(
lmer(self_voice_quality~employee_gender_f*s_gender_f+(1|triad_id), gender_diverse_pair_data),
type = "int",
legend.title = "Supervisor Gender",
axis.title = c("Employee Gender", "Self-rated Voice Quality")
)