# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("MSFT", "NVDA", "JPM")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "JPM" "MSFT" "NVDA"
weights <- c(0.40, 0.30, 0.30)
weights
## [1] 0.4 0.3 0.3
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 JPM 0.4
## 2 MSFT 0.3
## 3 NVDA 0.3
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0718
## 2 2013-06-28 0.132
## 3 2013-09-30 0.0178
## 4 2013-12-31 0.100
## 5 2014-03-31 0.0820
## 6 2014-06-30 0.000629
## 7 2014-09-30 0.0541
## 8 2014-12-31 0.0466
## 9 2015-03-31 -0.0342
## 10 2015-06-30 0.0635
## 11 2015-09-30 0.0254
## 12 2015-12-31 0.193
## 13 2016-03-31 -0.0156
## 14 2016-06-30 0.0853
## 15 2016-09-30 0.182
## 16 2016-12-30 0.265
## 17 2017-03-31 0.0351
## 18 2017-06-30 0.119
## 19 2017-09-29 0.109
## 20 2017-12-29 0.115
Scatter plot
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = date, y = portfolio.returns)) +
geom_point(color = "cornflowerblue") +
# Formatting
scale_x_date(date_breaks = "1 year",
date_labels = "%Y") +
# Labeling
labs(y = "quarterly returns",
x = NULL,
title = "Portfolio Returns Scatter")
Histogram
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.005) +
labs(x = "returns",
title = "Portfolio Returns Distribution")
Histogram & Density Plot
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format())
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
## $x
## [1] "returns"
##
## $y
## [1] "distribution"
##
## $title
## [1] "Portfolio Histogram & Density"
##
## attr(,"class")
## [1] "labels"
What return should you expect from the portfolio in a typical quarter?
In a typical quarter you can expect most times a return between 1% and 15%. This portfolio is fairly volatile, and it is possible to receive negative returns or returns higher than 20%.