The “Superstore Sales” dataset is a comprehensive and versatile collection of data that provides valuable insights into sales, customer behavior, and product performance. This dataset offers a rich resource for in-depth analysis.
Containing information from diverse regions and segments, the dataset enables exploration of trends, patterns, and correlations in sales and customer preferences. The dataset encompasses sales transactions, enabling researchers and analysts to understand buying patterns, identify high-demand products, and assess the effectiveness of different shipping modes.
Moreover, the dataset provides an opportunity to examine the impact of various factors such as discounts, geographical locations, and product categories on profitability. By analyzing this dataset, businesses and data enthusiasts can uncover actionable insights for optimizing pricing strategies, supply chain management, and customer engagement.
Whether used for educational purposes, business strategy formulation, or data analysis practice, the “Superstore Sales” dataset offers a comprehensive platform to delve into the dynamics of sales operations, customer interactions, and the factors that drive business success.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.4
## ✔ ggplot2 3.4.3 ✔ stringr 1.5.0
## ✔ lubridate 1.9.2 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(reshape2)
##
## Attaching package: 'reshape2'
##
## The following object is masked from 'package:tidyr':
##
## smiths
library(pwr)
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
library(caTools)
library(caret)
library(ROSE)
## Loaded ROSE 0.0-4
library(caret)
library(ggplot2)
library(reshape2)
library(moments)
df <-read.csv('/Users/fahadmehfooz/Desktop/IUPUI/First Semester/Intro to Statistics/Intro to Stats Dataset/Dataset 1/Superstore.csv')
head(df, 5)
## Row.ID Order.ID Order.Date Ship.Date Ship.Mode Customer.ID
## 1 1 CA-2013-152156 09-11-2013 12-11-2013 Second Class CG-12520
## 2 2 CA-2013-152156 09-11-2013 12-11-2013 Second Class CG-12520
## 3 3 CA-2013-138688 13-06-2013 17-06-2013 Second Class DV-13045
## 4 4 US-2012-108966 11-10-2012 18-10-2012 Standard Class SO-20335
## 5 5 US-2012-108966 11-10-2012 18-10-2012 Standard Class SO-20335
## Customer.Name Segment Country City State
## 1 Claire Gute Consumer United States Henderson Kentucky
## 2 Claire Gute Consumer United States Henderson Kentucky
## 3 Darrin Van Huff Corporate United States Los Angeles California
## 4 Sean O'Donnell Consumer United States Fort Lauderdale Florida
## 5 Sean O'Donnell Consumer United States Fort Lauderdale Florida
## Postal.Code Region Product.ID Category Sub.Category
## 1 42420 South FUR-BO-10001798 Furniture Bookcases
## 2 42420 South FUR-CH-10000454 Furniture Chairs
## 3 90036 West OFF-LA-10000240 Office Supplies Labels
## 4 33311 South FUR-TA-10000577 Furniture Tables
## 5 33311 South OFF-ST-10000760 Office Supplies Storage
## Product.Name Sales Quantity
## 1 Bush Somerset Collection Bookcase 261.9600 2
## 2 Hon Deluxe Fabric Upholstered Stacking Chairs, Rounded Back 731.9400 3
## 3 Self-Adhesive Address Labels for Typewriters by Universal 14.6200 2
## 4 Bretford CR4500 Series Slim Rectangular Table 957.5775 5
## 5 Eldon Fold 'N Roll Cart System 22.3680 2
## Discount Profit
## 1 0.00 41.9136
## 2 0.00 219.5820
## 3 0.00 6.8714
## 4 0.45 -383.0310
## 5 0.20 2.5164
colnames(df)
## [1] "Row.ID" "Order.ID" "Order.Date" "Ship.Date"
## [5] "Ship.Mode" "Customer.ID" "Customer.Name" "Segment"
## [9] "Country" "City" "State" "Postal.Code"
## [13] "Region" "Product.ID" "Category" "Sub.Category"
## [17] "Product.Name" "Sales" "Quantity" "Discount"
## [21] "Profit"
dim(df)
## [1] 9994 21
summary(df[, colnames(df)])
## Row.ID Order.ID Order.Date Ship.Date
## Min. : 1 Length:9994 Length:9994 Length:9994
## 1st Qu.:2499 Class :character Class :character Class :character
## Median :4998 Mode :character Mode :character Mode :character
## Mean :4998
## 3rd Qu.:7496
## Max. :9994
## Ship.Mode Customer.ID Customer.Name Segment
## Length:9994 Length:9994 Length:9994 Length:9994
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Country City State Postal.Code
## Length:9994 Length:9994 Length:9994 Min. : 1040
## Class :character Class :character Class :character 1st Qu.:23223
## Mode :character Mode :character Mode :character Median :56430
## Mean :55190
## 3rd Qu.:90008
## Max. :99301
## Region Product.ID Category Sub.Category
## Length:9994 Length:9994 Length:9994 Length:9994
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Product.Name Sales Quantity Discount
## Length:9994 Min. : 0.444 Min. : 1.00 Min. :0.0000
## Class :character 1st Qu.: 17.280 1st Qu.: 2.00 1st Qu.:0.0000
## Mode :character Median : 54.490 Median : 3.00 Median :0.2000
## Mean : 229.858 Mean : 3.79 Mean :0.1562
## 3rd Qu.: 209.940 3rd Qu.: 5.00 3rd Qu.:0.2000
## Max. :22638.480 Max. :14.00 Max. :0.8000
## Profit
## Min. :-6599.978
## 1st Qu.: 1.729
## Median : 8.666
## Mean : 28.657
## 3rd Qu.: 29.364
## Max. : 8399.976
There are 9994 values in every column.
Central tendency can be observed here for all the numeric columns.
columns_to_count <- c("Category", "Region", "Country", "Segment", "State")
# Looping through the categorical columns and printing the counts
for (col in columns_to_count) {
if (col %in% names(df)) {
cat("Counts for", col, ":\n")
print(table(df[[col]]))
cat("\n") # Corrected this line
} else {
cat(col, "is not a column in the dataframe.\n\n")
}
}
## Counts for Category :
##
## Furniture Office Supplies Technology
## 2121 6026 1847
##
## Counts for Region :
##
## Central East South West
## 2323 2848 1620 3203
##
## Counts for Country :
##
## United States
## 9994
##
## Counts for Segment :
##
## Consumer Corporate Home Office
## 5191 3020 1783
##
## Counts for State :
##
## Alabama Arizona Arkansas
## 61 224 60
## California Colorado Connecticut
## 2001 182 82
## Delaware District of Columbia Florida
## 96 10 383
## Georgia Idaho Illinois
## 184 21 492
## Indiana Iowa Kansas
## 149 30 24
## Kentucky Louisiana Maine
## 139 42 8
## Maryland Massachusetts Michigan
## 105 135 255
## Minnesota Mississippi Missouri
## 89 53 66
## Montana Nebraska Nevada
## 15 38 39
## New Hampshire New Jersey New Mexico
## 27 130 37
## New York North Carolina North Dakota
## 1128 249 7
## Ohio Oklahoma Oregon
## 469 66 124
## Pennsylvania Rhode Island South Carolina
## 587 56 42
## South Dakota Tennessee Texas
## 12 183 985
## Utah Vermont Virginia
## 53 11 224
## Washington West Virginia Wisconsin
## 506 4 110
## Wyoming
## 1
# Viewing the missing values proportions
missing_vals <- colSums(is.na(df)) / nrow(df)
missing_vals
## Row.ID Order.ID Order.Date Ship.Date Ship.Mode
## 0 0 0 0 0
## Customer.ID Customer.Name Segment Country City
## 0 0 0 0 0
## State Postal.Code Region Product.ID Category
## 0 0 0 0 0
## Sub.Category Product.Name Sales Quantity Discount
## 0 0 0 0 0
## Profit
## 0
get_mode <- function(x) {
unique_x <- unique(x)
unique_x[which.max(tabulate(match(x, unique_x)))]
}
summarize_numeric_columns <- function(df) {
numeric_columns <- sapply(df, is.numeric)
stats <- data.frame()
for (col_name in names(df)[numeric_columns]) {
column_data <- df[[col_name]]
stats[col_name, "Mean"] <- mean(column_data, na.rm = TRUE)
stats[col_name, "Median"] <- median(column_data, na.rm = TRUE)
stats[col_name, "Mode"] <- get_mode(column_data)
col_IQR <- IQR(column_data, na.rm = TRUE)
stats[col_name, "IQR"] <- col_IQR
stats[col_name, "Lower Bound"] <- quantile(column_data, 0.25, na.rm = TRUE) - 1.5 * col_IQR
stats[col_name, "Upper Bound"] <- quantile(column_data, 0.75, na.rm = TRUE) + 1.5 * col_IQR
}
return(stats)
}
summary_stats_df <- summarize_numeric_columns(df)
summary_stats_df
## Mean Median Mode IQR Lower Bound
## Row.ID 4.997500e+03 4997.5000 1.00 4996.50000 -4995.50000
## Postal.Code 5.519038e+04 56430.5000 10035.00 66785.00000 -76954.50000
## Sales 2.298580e+02 54.4900 12.96 192.66000 -271.71000
## Quantity 3.789574e+00 3.0000 3.00 3.00000 -2.50000
## Discount 1.562027e-01 0.2000 0.00 0.20000 -0.30000
## Profit 2.865690e+01 8.6665 0.00 27.63525 -39.72413
## Upper Bound
## Row.ID 14990.50000
## Postal.Code 190185.50000
## Sales 498.93000
## Quantity 9.50000
## Discount 0.50000
## Profit 70.81687
selected_columns <- df[, c("Sales", "Quantity", "Discount", "Profit")]
# Calculating kurtosis and skewness
kurtosis_values <- sapply(selected_columns, kurtosis)
skewness_values <- sapply(selected_columns, skewness)
# Combining the results into a data frame
skew_kurt_result <- rbind(kurtosis = kurtosis_values, skewness = skewness_values)
print(skew_kurt_result)
## Sales Quantity Discount Profit
## kurtosis 308.15843 4.990293 5.407740 399.989229
## skewness 12.97081 1.278353 1.684042 7.560297
All of them are more peaked than a normal distribution (kurtosis).
None of the columns are normally distributed (skewness).
Interpretation:
Skewness:
Definition: Skewness measures the degree of asymmetry of a distribution. A distribution can be asymmetrical on either the right (positive skew) or left (negative skew) side.
Interpretation:
Positive Skew (Right-skewed): The tail on the right side of the distribution is longer or fatter than the left side. It indicates that a large number of data points are clustered on the left, with a few exceptionally large values to the right.
Negative Skew (Left-skewed): The tail on the left side of the distribution is longer or fatter than the right side. This suggests that a large number of observations are clustered on the right, with some exceptionally small values to the left.
Zero or Close to Zero: If the skewness is zero or close to zero, the data is considered to be fairly symmetrical.
Kurtosis:
Definition: Kurtosis measures the “tailedness” of the distribution. It’s a descriptor of the shape of the tails and the peak of the distribution, relative to a normal distribution. Interpretation:
High Kurtosis (Leptokurtic): A distribution with a kurtosis greater than 3 (excess kurtosis greater than 0) is said to be leptokurtic. Leptokurtic distributions have heavy tails or outliers. The peak is also higher and sharper than the peak of a normal distribution.
Low Kurtosis (Platykurtic): A distribution with a kurtosis less than 3 (excess kurtosis less than 0) is platykurtic. Platykurtic distributions have lighter tails or fewer outliers. The peak is lower and broader than the peak of a normal distribution.
Normal Kurtosis (Mesokurtic): A kurtosis of exactly 3 (excess kurtosis of 0) indicates a mesokurtic distribution, which has a shape similar to a normal distribution.
# Creating a histogram
hist(df$Sales,
main = "Distribution of Profit",
xlab = "Profit", # X-axis label
ylab = "Frequency", # Y-axis label
col = "green", # Bar color
border = "black", # Border color
breaks = 20,
freq = FALSE) # Number of bins or breaks
# Displaying density also
lines(density(df$Profit), col = "black", lwd = 2)
qqnorm(df$Profit)
qqline(df$Profit, col = "red")
Its a right skewed distribution. The profit distribution extends to 9000 which can likely be outliers. We would have to dig deeper into this.
hist(df$Sales,
main = "Distribution of Quantity",
xlab = "Quantity", # X-axis label
ylab = "Frequency", # Y-axis label
col = "green", # Bar color
border = "black", # Border color
breaks = 20,
freq = FALSE) # Number of bins or breaks
# Displaying density also
lines(density(df$Quantity), col = "black", lwd = 2)
qqnorm(df$Sales)
qqline(df$Sales, col = "red")
> This is also a right skewed distribution.
The Q-Q plot also shows the same, the line diverges on the upper right side.
category_table <- table(df$Category)
category_percentages <- round(100 * category_table / sum(category_table), 1)
labels <- paste(names(category_percentages), "-", category_percentages, "%", sep = "")
pie(category_table,
labels = labels,
main = "Categories - Variable Distribution",
xlab = "Categories",
ylab = "Frequency")
The most sold category is office supplies.
barplot(table(df$Region),
main = "Region Variable Distribution",
xlab = "Region",
ylab = "Frequency")
The heighest sale is from west region.
ggplot(df, aes(y = Sales)) +
geom_boxplot(coef = 1.5) +
labs(y = "Sales") +
ggtitle("Box Plot of Sales")
> So we can see a number of outliers in Sales that can mean a certain
number of things. The sales were specifically high on these days, could
be the discounts given were high or other factors.
ggplot(df, aes(y = Profit)) +
geom_boxplot(coef = 1.5) +
labs(y = "Profit") +
ggtitle("Box Plot of Profit")
ggplot(data = df, aes(x = Segment)) +
geom_bar() +
labs(x = "Segment", y = "Count") +
ggtitle("Bar Plot of Segment")
plot(df$Profit, df$Sales,
main = "Scatter Plot: Sales vs. Profit",
xlab = "Sales",
ylab = "Profit",
col = "red"
)
ggplot(df, aes(x = Quantity, y = Discount)) +
geom_point() +
labs(x = "Quantity", y = "Discount") +
ggtitle("Scatter Plot of Quantity vs. Discount")
The plot seems pretty uniform that means quantity is not affecting the discount.
df$Category <- as.factor(df$Category)
df$Segment <- as.factor(df$Segment)
# Create a grouped bar plot
ggplot(df, aes(x = Category, fill = Segment)) +
geom_bar(position = "dodge", color = "black", stat = "count") +
labs(title = "Grouped Bar Plot of Category and Segment",
x = "Category",
y = "Count") +
scale_fill_manual(values = c("red", "blue", "green"))
# df_num is containing only numeric columns of df
df_num <- df[sapply(df, is.numeric)]
# Calculating the correlation matrix
df_corr <- cor(df_num)
# Melting the correlation matrix for ggplot
df_corr_melted <- melt(df_corr)
# Creating the heatmap plot
heatmap_plot <- ggplot(data = df_corr_melted, aes(x = Var1, y = Var2, fill = value)) +
geom_tile() +
geom_text(aes(label = round(value, 2)), vjust = 1) +
scale_fill_gradientn(colors = c("blue", "white", "red")) + # Custom color gradient
labs(title = "Correlation Heatmap for Continuous Variables", x = "Features", y = "Features", fill = "Correlation")
# Printing the heatmap plot
print(heatmap_plot)
> No strong correlations can be seen here.
Choice of test:
ANOVA is used for comparing means of continuous data across multiple groups defined by categorical variables.
Chi-Square Test is used for testing relationships between categorical variables or checking the distribution of categorical variables against expected distributions.
H0: There is no significant difference in quantity ordered between different states
HA: There is a significant difference in quantity ordered between different states.
Significance level: 0.05, Power level: 0.8, Minimum Effect Size: 0.3.
# Since we are finding a relationship between continuous and categorical column, we need to write an anova test
result_statevsquantity <- aov(Quantity ~ State, data = df)
summary(result_statevsquantity)
## Df Sum Sq Mean Sq F value Pr(>F)
## State 48 219 4.556 0.92 0.631
## Residuals 9945 49258 4.953
Since the probability or p value is 0.631 i.e greater than 0.05, we fail to reject the null hypothesis. And hence there is no significant difference in quantity between different states.
Null Hypothesis (H0): There is no significant interaction effect between “State” and “Category”
Alternative Hypothesis (HA): There is a significant interaction effect between “State” and “Category”
Significance level: 0.05, Power level: 0.8, Minimum Effect Size: 0.3.
state_vs_category <- chisq.test(table(df$State, df$Category))
## Warning in chisq.test(table(df$State, df$Category)): Chi-squared approximation
## may be incorrect
state_vs_category
##
## Pearson's Chi-squared test
##
## data: table(df$State, df$Category)
## X-squared = 102.86, df = 96, p-value = 0.2974
Since the probability or p value is 0.2974 i.e greater than 0.05, we fail to reject the null hypothesis.
H0: There’s no effect of subcategory on sales.
HA: Subcategory does have an effect on sales.
# If there are more than 10 subcategories, consolidating them
if (length(unique(df$Sub.Category)) > 10) {
# Here, we'll group the subcategories with the smallest counts into a "Other" category
subcat_counts <- table(df$Sub.Category)
small_subcats <- names(subcat_counts)[order(subcat_counts)][1:(length(subcat_counts)-10)]
df$Sub.Category[df$Sub.Category %in% small_subcats] <- 'Other'
}
result <- aov(Sales ~ Sub.Category, data = df)
anova_summary <- summary(result)
print(anova_summary)
## Df Sum Sq Mean Sq F value Pr(>F)
## Sub.Category 10 3.111e+08 31105056 86.97 <2e-16 ***
## Residuals 9983 3.571e+09 357666
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
significance_level <- 0.05
p_value <- anova_summary[[1]]$'Pr(>F)'[1]
if (p_value < significance_level) {
print("Reject the null hypothesis: Sales differ among the subcategories.")
} else {
print("Do not reject the null hypothesis: There's no significant difference in sales among the subcategories.")
}
## [1] "Reject the null hypothesis: Sales differ among the subcategories."
A significance level of 0.05 corresponds to a 95% confidence interval. This means that if the same experiment or study were repeated many times, 95% of the calculated confidence intervals would contain the true population parameter.
# Converting date strings to Date objects
df$Order.Date <- as.Date(df$Order.Date, format = "%d-%m-%Y")
df$Ship.Date <- as.Date(df$Ship.Date, format = "%d-%m-%Y")
# Calculating the number of days between order date and ship date
df$Days_Between <- as.numeric(df$Ship.Date - df$Order.Date)
head(df["Days_Between"], 5)
## Days_Between
## 1 3
## 2 3
## 3 4
## 4 7
## 5 7
cols_to_encode <- c("Ship.Mode", "Segment", "Country", "City", "State", "Region", "Category", "Sub.Category")
# Identify columns with more than one level
cols_with_multiple_levels <- sapply(df[cols_to_encode], function(x) length(unique(x)) > 1)
# Create a formula for one-hot encoding with only columns having multiple levels
formula <- as.formula(paste("~", paste(cols_to_encode[cols_with_multiple_levels], collapse = " + ")))
# Create dummy variables
dummy_vars <- dummyVars(formula, data = df)
encoded_data <- predict(dummy_vars, newdata = df)
# Select the columns from 'df' that you want to keep
continuous_cols <- c("Sales", "Quantity", "Discount", "Profit", "Days_Between")
# Combine the selected columns from 'df' with 'encoded_data'
final_data <- cbind(encoded_data, df[continuous_cols])
# Print the result
head(final_data, 1)
## Ship.ModeFirst Class Ship.ModeSame Day Ship.ModeSecond Class
## 1 0 0 1
## Ship.ModeStandard Class Segment.Consumer Segment.Corporate
## 1 0 1 0
## Segment.Home Office CityAberdeen CityAbilene CityAkron CityAlbuquerque
## 1 0 0 0 0 0
## CityAlexandria CityAllen CityAllentown CityAltoona CityAmarillo CityAnaheim
## 1 0 0 0 0 0 0
## CityAndover CityAnn Arbor CityAntioch CityApopka CityApple Valley
## 1 0 0 0 0 0
## CityAppleton CityArlington CityArlington Heights CityArvada CityAsheville
## 1 0 0 0 0 0
## CityAthens CityAtlanta CityAtlantic City CityAuburn CityAurora CityAustin
## 1 0 0 0 0 0 0
## CityAvondale CityBakersfield CityBaltimore CityBangor CityBartlett
## 1 0 0 0 0 0
## CityBayonne CityBaytown CityBeaumont CityBedford CityBelleville CityBellevue
## 1 0 0 0 0 0 0
## CityBellingham CityBethlehem CityBeverly CityBillings CityBloomington
## 1 0 0 0 0 0
## CityBoca Raton CityBoise CityBolingbrook CityBossier City CityBowling Green
## 1 0 0 0 0 0
## CityBoynton Beach CityBozeman CityBrentwood CityBridgeton CityBristol
## 1 0 0 0 0 0
## CityBroken Arrow CityBroomfield CityBrownsville CityBryan CityBuffalo
## 1 0 0 0 0 0
## CityBuffalo Grove CityBullhead City CityBurbank CityBurlington CityCaldwell
## 1 0 0 0 0 0
## CityCamarillo CityCambridge CityCanton CityCarlsbad CityCarol Stream
## 1 0 0 0 0 0
## CityCarrollton CityCary CityCedar Hill CityCedar Rapids CityChampaign
## 1 0 0 0 0 0
## CityChandler CityChapel Hill CityCharlotte CityCharlottesville
## 1 0 0 0 0
## CityChattanooga CityChesapeake CityChester CityCheyenne CityChicago CityChico
## 1 0 0 0 0 0 0
## CityChula Vista CityCincinnati CityCitrus Heights CityClarksville
## 1 0 0 0 0
## CityCleveland CityClifton CityClinton CityClovis CityCoachella
## 1 0 0 0 0 0
## CityCollege Station CityColorado Springs CityColumbia CityColumbus
## 1 0 0 0 0
## CityCommerce City CityConcord CityConroe CityConway CityCoon Rapids
## 1 0 0 0 0 0
## CityCoppell CityCoral Gables CityCoral Springs CityCorpus Christi
## 1 0 0 0 0
## CityCosta Mesa CityCottage Grove CityCovington CityCranston
## 1 0 0 0 0
## CityCuyahoga Falls CityDallas CityDanbury CityDanville CityDavis
## 1 0 0 0 0 0
## CityDaytona Beach CityDearborn CityDearborn Heights CityDecatur CityDeer Park
## 1 0 0 0 0 0
## CityDelray Beach CityDeltona CityDenver CityDes Moines CityDes Plaines
## 1 0 0 0 0 0
## CityDetroit CityDover CityDraper CityDublin CityDubuque CityDurham CityEagan
## 1 0 0 0 0 0 0 0
## CityEast Orange CityEast Point CityEau Claire CityEdinburg CityEdmond
## 1 0 0 0 0 0
## CityEdmonds CityEl Cajon CityEl Paso CityElkhart CityElmhurst CityElyria
## 1 0 0 0 0 0 0
## CityEncinitas CityEnglewood CityEscondido CityEugene CityEvanston CityEverett
## 1 0 0 0 0 0 0
## CityFairfield CityFargo CityFarmington CityFayetteville CityFlorence
## 1 0 0 0 0 0
## CityFort Collins CityFort Lauderdale CityFort Worth CityFrankfort
## 1 0 0 0 0
## CityFranklin CityFreeport CityFremont CityFresno CityFrisco CityGaithersburg
## 1 0 0 0 0 0 0
## CityGarden City CityGarland CityGastonia CityGeorgetown CityGilbert
## 1 0 0 0 0 0
## CityGladstone CityGlendale CityGlenview CityGoldsboro CityGrand Island
## 1 0 0 0 0 0
## CityGrand Prairie CityGrand Rapids CityGrapevine CityGreat Falls CityGreeley
## 1 0 0 0 0 0
## CityGreen Bay CityGreensboro CityGreenville CityGreenwood CityGresham
## 1 0 0 0 0 0
## CityGrove City CityGulfport CityHackensack CityHagerstown CityHaltom City
## 1 0 0 0 0 0
## CityHamilton CityHampton CityHarlingen CityHarrisonburg CityHattiesburg
## 1 0 0 0 0 0
## CityHelena CityHempstead CityHenderson CityHendersonville CityHesperia
## 1 0 0 1 0 0
## CityHialeah CityHickory CityHighland Park CityHillsboro CityHolland
## 1 0 0 0 0 0
## CityHollywood CityHolyoke CityHomestead CityHoover CityHot Springs
## 1 0 0 0 0 0
## CityHouston CityHuntington Beach CityHuntsville CityIndependence
## 1 0 0 0 0
## CityIndianapolis CityInglewood CityIowa City CityIrving CityJackson
## 1 0 0 0 0 0
## CityJacksonville CityJamestown CityJefferson City CityJohnson City
## 1 0 0 0 0
## CityJonesboro CityJupiter CityKeller CityKenner CityKenosha CityKent
## 1 0 0 0 0 0 0
## CityKirkwood CityKissimmee CityKnoxville CityLa Crosse CityLa Mesa
## 1 0 0 0 0 0
## CityLa Porte CityLa Quinta CityLafayette CityLaguna Niguel CityLake Charles
## 1 0 0 0 0 0
## CityLake Elsinore CityLake Forest CityLakeland CityLakeville CityLakewood
## 1 0 0 0 0 0
## CityLancaster CityLansing CityLaredo CityLas Cruces CityLas Vegas CityLaurel
## 1 0 0 0 0 0 0
## CityLawrence CityLawton CityLayton CityLeague City CityLebanon CityLehi
## 1 0 0 0 0 0 0
## CityLeominster CityLewiston CityLincoln Park CityLinden CityLindenhurst
## 1 0 0 0 0 0
## CityLittle Rock CityLittleton CityLodi CityLogan CityLong Beach CityLongmont
## 1 0 0 0 0 0 0
## CityLongview CityLorain CityLos Angeles CityLouisville CityLoveland
## 1 0 0 0 0 0
## CityLowell CityLubbock CityMacon CityMadison CityMalden CityManchester
## 1 0 0 0 0 0 0
## CityManhattan CityMansfield CityManteca CityMaple Grove CityMargate
## 1 0 0 0 0 0
## CityMarietta CityMarion CityMarlborough CityMarysville CityMason CityMcallen
## 1 0 0 0 0 0 0
## CityMedford CityMedina CityMelbourne CityMemphis CityMentor CityMeriden
## 1 0 0 0 0 0 0
## CityMeridian CityMesa CityMesquite CityMiami CityMiddletown CityMidland
## 1 0 0 0 0 0 0
## CityMilford CityMilwaukee CityMinneapolis CityMiramar CityMishawaka
## 1 0 0 0 0 0
## CityMission Viejo CityMissoula CityMissouri City CityMobile CityModesto
## 1 0 0 0 0 0
## CityMonroe CityMontebello CityMontgomery CityMoorhead CityMoreno Valley
## 1 0 0 0 0 0
## CityMorgan Hill CityMorristown CityMount Pleasant CityMount Vernon
## 1 0 0 0 0
## CityMurfreesboro CityMurray CityMurrieta CityMuskogee CityNaperville
## 1 0 0 0 0 0
## CityNashua CityNashville CityNew Albany CityNew Bedford CityNew Brunswick
## 1 0 0 0 0 0
## CityNew Castle CityNew Rochelle CityNew York City CityNewark CityNewport News
## 1 0 0 0 0 0
## CityNiagara Falls CityNoblesville CityNorfolk CityNormal CityNorman
## 1 0 0 0 0 0
## CityNorth Charleston CityNorth Las Vegas CityNorth Miami CityNorwich
## 1 0 0 0 0
## CityOak Park CityOakland CityOceanside CityOdessa CityOklahoma City
## 1 0 0 0 0 0
## CityOlathe CityOlympia CityOmaha CityOntario CityOrange CityOrem
## 1 0 0 0 0 0 0
## CityOrland Park CityOrlando CityOrmond Beach CityOswego CityOverland Park
## 1 0 0 0 0 0
## CityOwensboro CityOxnard CityPalatine CityPalm Coast CityPark Ridge
## 1 0 0 0 0 0
## CityParker CityParma CityPasadena CityPasco CityPassaic CityPaterson
## 1 0 0 0 0 0 0
## CityPearland CityPembroke Pines CityPensacola CityPeoria CityPerth Amboy
## 1 0 0 0 0 0
## CityPharr CityPhiladelphia CityPhoenix CityPico Rivera CityPine Bluff
## 1 0 0 0 0 0
## CityPlainfield CityPlano CityPlantation CityPleasant Grove CityPocatello
## 1 0 0 0 0 0
## CityPomona CityPompano Beach CityPort Arthur CityPort Orange
## 1 0 0 0 0
## CityPort Saint Lucie CityPortage CityPortland CityProvidence CityProvo
## 1 0 0 0 0 0
## CityPueblo CityQuincy CityRaleigh CityRancho Cucamonga CityRapid City
## 1 0 0 0 0 0
## CityReading CityRedding CityRedlands CityRedmond CityRedondo Beach
## 1 0 0 0 0 0
## CityRedwood City CityReno CityRenton CityRevere CityRichardson CityRichmond
## 1 0 0 0 0 0 0
## CityRio Rancho CityRiverside CityRochester CityRochester Hills CityRock Hill
## 1 0 0 0 0 0
## CityRockford CityRockville CityRogers CityRome CityRomeoville CityRoseville
## 1 0 0 0 0 0 0
## CityRoswell CityRound Rock CityRoyal Oak CitySacramento CitySaginaw
## 1 0 0 0 0 0
## CitySaint Charles CitySaint Cloud CitySaint Louis CitySaint Paul
## 1 0 0 0 0
## CitySaint Peters CitySaint Petersburg CitySalem CitySalinas
## 1 0 0 0 0
## CitySalt Lake City CitySan Angelo CitySan Antonio CitySan Bernardino
## 1 0 0 0 0
## CitySan Clemente CitySan Diego CitySan Francisco CitySan Gabriel CitySan Jose
## 1 0 0 0 0 0
## CitySan Luis Obispo CitySan Marcos CitySan Mateo CitySandy Springs
## 1 0 0 0 0
## CitySanford CitySanta Ana CitySanta Barbara CitySanta Clara CitySanta Fe
## 1 0 0 0 0 0
## CitySanta Maria CityScottsdale CitySeattle CitySheboygan CityShelton
## 1 0 0 0 0 0
## CitySierra Vista CitySioux Falls CitySkokie CitySmyrna CitySouth Bend
## 1 0 0 0 0 0
## CitySouthaven CitySparks CitySpokane CitySpringdale CitySpringfield
## 1 0 0 0 0 0
## CitySterling Heights CityStockton CitySuffolk CitySummerville CitySunnyvale
## 1 0 0 0 0 0
## CitySuperior CityTallahassee CityTamarac CityTampa CityTaylor CityTemecula
## 1 0 0 0 0 0 0
## CityTempe CityTexarkana CityTexas City CityThe Colony CityThomasville
## 1 0 0 0 0 0
## CityThornton CityThousand Oaks CityTigard CityTinley Park CityToledo
## 1 0 0 0 0 0
## CityTorrance CityTrenton CityTroy CityTucson CityTulsa CityTuscaloosa
## 1 0 0 0 0 0 0
## CityTwin Falls CityTyler CityUrbandale CityUtica CityVacaville CityVallejo
## 1 0 0 0 0 0 0
## CityVancouver CityVineland CityVirginia Beach CityVisalia CityWaco
## 1 0 0 0 0 0
## CityWarner Robins CityWarwick CityWashington CityWaterbury CityWaterloo
## 1 0 0 0 0 0
## CityWatertown CityWaukesha CityWausau CityWaynesboro CityWest Allis
## 1 0 0 0 0 0
## CityWest Jordan CityWest Palm Beach CityWestfield CityWestland
## 1 0 0 0 0
## CityWestminster CityWheeling CityWhittier CityWichita CityWilmington
## 1 0 0 0 0 0
## CityWilson CityWoodbury CityWoodland CityWoodstock CityWoonsocket CityYonkers
## 1 0 0 0 0 0 0
## CityYork CityYucaipa CityYuma StateAlabama StateArizona StateArkansas
## 1 0 0 0 0 0 0
## StateCalifornia StateColorado StateConnecticut StateDelaware
## 1 0 0 0 0
## StateDistrict of Columbia StateFlorida StateGeorgia StateIdaho StateIllinois
## 1 0 0 0 0 0
## StateIndiana StateIowa StateKansas StateKentucky StateLouisiana StateMaine
## 1 0 0 0 1 0 0
## StateMaryland StateMassachusetts StateMichigan StateMinnesota
## 1 0 0 0 0
## StateMississippi StateMissouri StateMontana StateNebraska StateNevada
## 1 0 0 0 0 0
## StateNew Hampshire StateNew Jersey StateNew Mexico StateNew York
## 1 0 0 0 0
## StateNorth Carolina StateNorth Dakota StateOhio StateOklahoma StateOregon
## 1 0 0 0 0 0
## StatePennsylvania StateRhode Island StateSouth Carolina StateSouth Dakota
## 1 0 0 0 0
## StateTennessee StateTexas StateUtah StateVermont StateVirginia
## 1 0 0 0 0 0
## StateWashington StateWest Virginia StateWisconsin StateWyoming RegionCentral
## 1 0 0 0 0 0
## RegionEast RegionSouth RegionWest Category.Furniture Category.Office Supplies
## 1 0 1 0 1 0
## Category.Technology Sub.CategoryAccessories Sub.CategoryAppliances
## 1 0 0 0
## Sub.CategoryArt Sub.CategoryBinders Sub.CategoryChairs
## 1 0 0 0
## Sub.CategoryFurnishings Sub.CategoryLabels Sub.CategoryOther
## 1 0 0 1
## Sub.CategoryPaper Sub.CategoryPhones Sub.CategoryStorage Sales Quantity
## 1 0 0 0 261.96 2
## Discount Profit Days_Between
## 1 0 41.9136 3
# Set a random seed for reproducibility
set.seed(123)
# Splitting the data into training and test sets (e.g., 70% for training and 30% for testing)
split <- sample.split(final_data$Sales, SplitRatio = 0.7)
train_data <- final_data[split, ]
test_data <- final_data[!split, ]
# Creating a linear regression model
lm_model <- lm(Sales ~ ., data = train_data)
# Printing the summary of the linear regression model
summary(lm_model)
##
## Call:
## lm(formula = Sales ~ ., data = train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1181.8 -131.4 -25.2 60.6 8466.5
##
## Coefficients: (53 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.722e+02 3.965e+02 1.695 0.0900 .
## `Ship.ModeFirst Class` -5.309e+00 2.121e+01 -0.250 0.8023
## `Ship.ModeSame Day` -2.328e+01 3.579e+01 -0.650 0.5154
## `Ship.ModeSecond Class` 2.246e+01 1.676e+01 1.340 0.1802
## `Ship.ModeStandard Class` NA NA NA NA
## Segment.Consumer 8.854e+00 1.442e+01 0.614 0.5393
## Segment.Corporate -2.995e+00 1.577e+01 -0.190 0.8493
## `Segment.Home Office` NA NA NA NA
## CityAberdeen NA NA NA NA
## CityAbilene 1.717e-02 5.313e+02 0.000 1.0000
## CityAkron 2.216e+02 3.451e+02 0.642 0.5208
## CityAlbuquerque 3.227e+02 4.122e+02 0.783 0.4338
## CityAlexandria 4.114e+02 3.531e+02 1.165 0.2440
## CityAllen 8.518e+01 4.143e+02 0.206 0.8371
## CityAllentown 2.951e+02 4.003e+02 0.737 0.4611
## CityAltoona 8.566e+01 4.683e+02 0.183 0.8548
## CityAmarillo 6.690e+02 3.864e+02 1.731 0.0834 .
## CityAnaheim 3.291e+02 3.467e+02 0.949 0.3425
## CityAndover 8.743e+01 3.983e+02 0.220 0.8263
## `CityAnn Arbor` 2.515e+01 4.139e+02 0.061 0.9516
## CityAntioch NA NA NA NA
## CityApopka -2.658e+01 4.173e+02 -0.064 0.9492
## `CityApple Valley` 2.464e+02 3.923e+02 0.628 0.5300
## CityAppleton 6.421e+02 4.877e+02 1.317 0.1880
## CityArlington 2.584e+02 3.390e+02 0.762 0.4458
## `CityArlington Heights` 4.753e+01 5.139e+02 0.092 0.9263
## CityArvada 7.889e+01 4.052e+02 0.195 0.8456
## CityAsheville 2.674e+02 3.903e+02 0.685 0.4934
## CityAthens 2.179e+02 3.746e+02 0.582 0.5609
## CityAtlanta 2.571e+02 3.449e+02 0.745 0.4560
## `CityAtlantic City` NA NA NA NA
## CityAuburn 2.279e+02 3.475e+02 0.656 0.5121
## CityAurora 1.148e+02 3.221e+02 0.357 0.7214
## CityAustin 1.824e+02 3.497e+02 0.522 0.6020
## CityAvondale 5.596e+01 2.884e+02 0.194 0.8461
## CityBakersfield 1.873e+02 3.539e+02 0.529 0.5967
## CityBaltimore 1.017e+02 3.684e+02 0.276 0.7825
## CityBangor 4.337e+02 4.870e+02 0.891 0.3732
## CityBartlett -8.990e+01 5.317e+02 -0.169 0.8657
## CityBayonne NA NA NA NA
## CityBaytown 2.736e+02 5.308e+02 0.516 0.6062
## CityBeaumont 5.028e+01 3.969e+02 0.127 0.8992
## CityBedford 7.275e+01 4.139e+02 0.176 0.8605
## CityBelleville -7.683e+01 3.956e+02 -0.194 0.8460
## CityBellevue 2.577e+02 4.026e+02 0.640 0.5221
## CityBellingham 7.610e+02 4.357e+02 1.747 0.0807 .
## CityBethlehem 5.951e+02 4.218e+02 1.411 0.1584
## CityBeverly 5.417e+02 4.148e+02 1.306 0.1916
## CityBillings NA NA NA NA
## CityBloomington 1.124e+02 3.418e+02 0.329 0.7424
## `CityBoca Raton` 6.401e+01 4.645e+02 0.138 0.8904
## CityBoise 3.476e+02 8.071e+02 0.431 0.6667
## CityBolingbrook -2.047e+01 3.737e+02 -0.055 0.9563
## `CityBossier City` 5.726e+02 3.973e+02 1.441 0.1495
## `CityBowling Green` 1.279e+02 3.598e+02 0.355 0.7224
## `CityBoynton Beach` 1.101e+02 4.003e+02 0.275 0.7832
## CityBozeman 4.212e+02 5.660e+02 0.744 0.4568
## CityBrentwood 3.885e+02 3.592e+02 1.082 0.2794
## CityBridgeton -1.792e+02 4.601e+02 -0.390 0.6969
## CityBristol 1.516e+02 3.598e+02 0.421 0.6735
## `CityBroken Arrow` 4.805e+02 4.431e+02 1.084 0.2782
## CityBroomfield -2.019e+01 4.383e+02 -0.046 0.9633
## CityBrownsville 2.565e+01 3.867e+02 0.066 0.9471
## CityBryan 3.198e+01 3.966e+02 0.081 0.9357
## CityBuffalo 5.046e+02 3.669e+02 1.375 0.1690
## `CityBuffalo Grove` 2.145e+02 5.139e+02 0.417 0.6764
## `CityBullhead City` 8.073e+01 3.532e+02 0.229 0.8192
## CityBurbank 8.245e+02 4.421e+02 1.865 0.0622 .
## CityBurlington 7.491e+02 3.685e+02 2.033 0.0421 *
## CityCaldwell 4.065e+02 8.068e+02 0.504 0.6143
## CityCamarillo 1.745e+02 3.922e+02 0.445 0.6563
## CityCambridge 1.530e+02 3.873e+02 0.395 0.6928
## CityCanton 1.489e+02 4.303e+02 0.346 0.7293
## CityCarlsbad 3.331e+02 4.429e+02 0.752 0.4519
## `CityCarol Stream` 1.591e+02 3.922e+02 0.406 0.6850
## CityCarrollton 3.423e+02 3.622e+02 0.945 0.3447
## CityCary 1.537e+02 3.974e+02 0.387 0.6989
## `CityCedar Hill` 1.233e+02 5.312e+02 0.232 0.8164
## `CityCedar Rapids` 3.078e+02 5.463e+02 0.563 0.5732
## CityChampaign NA NA NA NA
## CityChandler 6.648e+01 2.736e+02 0.243 0.8080
## `CityChapel Hill` 2.204e+02 5.388e+02 0.409 0.6825
## CityCharlotte 2.667e+02 3.606e+02 0.740 0.4596
## CityCharlottesville 1.939e+02 5.259e+02 0.369 0.7124
## CityChattanooga -1.476e+02 3.797e+02 -0.389 0.6976
## CityChesapeake 1.508e+02 3.517e+02 0.429 0.6681
## CityChester 1.512e+02 3.880e+02 0.390 0.6967
## CityCheyenne 1.332e+03 5.661e+02 2.352 0.0187 *
## CityChicago 1.352e+02 3.146e+02 0.430 0.6673
## CityChico 1.917e+02 3.648e+02 0.526 0.5992
## `CityChula Vista` 6.233e+02 5.272e+02 1.182 0.2371
## CityCincinnati 1.528e+02 3.478e+02 0.439 0.6603
## `CityCitrus Heights` 2.922e+02 5.274e+02 0.554 0.5796
## CityClarksville 8.257e+02 3.976e+02 2.077 0.0379 *
## CityCleveland 2.123e+02 3.399e+02 0.625 0.5322
## CityClifton NA NA NA NA
## CityClinton 1.236e+02 3.711e+02 0.333 0.7392
## CityClovis 3.847e+02 5.659e+02 0.680 0.4966
## CityCoachella 2.516e+02 4.419e+02 0.569 0.5692
## `CityCollege Station` 6.026e+01 5.314e+02 0.113 0.9097
## `CityColorado Springs` 1.274e+02 3.487e+02 0.365 0.7149
## CityColumbia 2.894e+02 3.450e+02 0.839 0.4017
## CityColumbus 1.785e+02 3.319e+02 0.538 0.5908
## `CityCommerce City` 9.795e+01 5.243e+02 0.187 0.8518
## CityConcord 2.619e+02 3.561e+02 0.736 0.4621
## CityConroe NA NA NA NA
## CityConway NA NA NA NA
## `CityCoon Rapids` 2.062e+02 5.399e+02 0.382 0.7026
## CityCoppell 4.371e+01 4.463e+02 0.098 0.9220
## `CityCoral Gables` -1.366e+02 5.463e+02 -0.250 0.8025
## `CityCoral Springs` 5.664e+01 4.172e+02 0.136 0.8920
## `CityCorpus Christi` 1.306e+02 3.790e+02 0.345 0.7304
## `CityCosta Mesa` 2.286e+02 3.690e+02 0.620 0.5355
## `CityCottage Grove` 1.741e+02 5.399e+02 0.322 0.7471
## CityCovington 1.943e+02 4.194e+02 0.463 0.6432
## CityCranston 4.146e+02 4.106e+02 1.010 0.3127
## `CityCuyahoga Falls` 8.679e+01 4.386e+02 0.198 0.8431
## CityDallas 1.556e+02 3.429e+02 0.454 0.6500
## CityDanbury 2.885e+02 5.384e+02 0.536 0.5921
## CityDanville 1.860e+02 3.748e+02 0.496 0.6198
## CityDavis 2.040e+02 5.274e+02 0.387 0.6990
## `CityDaytona Beach` 4.706e+01 4.339e+02 0.108 0.9136
## CityDearborn 1.057e+02 4.303e+02 0.246 0.8060
## `CityDearborn Heights` 1.463e+02 4.042e+02 0.362 0.7173
## CityDecatur 8.020e+01 3.297e+02 0.243 0.8078
## `CityDeer Park` -4.057e+01 5.304e+02 -0.076 0.9390
## `CityDelray Beach` -1.773e+01 4.645e+02 -0.038 0.9695
## CityDeltona -1.236e+01 4.074e+02 -0.030 0.9758
## CityDenver 1.290e+02 3.385e+02 0.381 0.7032
## `CityDes Moines` 3.364e+02 3.723e+02 0.904 0.3662
## `CityDes Plaines` 5.964e+01 3.918e+02 0.152 0.8790
## CityDetroit 8.452e+01 3.633e+02 0.233 0.8160
## CityDover 2.065e+02 3.605e+02 0.573 0.5669
## CityDraper 1.480e+02 4.871e+02 0.304 0.7613
## CityDublin 2.080e+02 3.576e+02 0.581 0.5609
## CityDubuque 3.071e+02 4.639e+02 0.662 0.5081
## CityDurham 1.655e+02 3.854e+02 0.429 0.6676
## CityEagan 3.003e+02 3.867e+02 0.777 0.4375
## `CityEast Orange` -9.376e+01 4.129e+02 -0.227 0.8204
## `CityEast Point` 2.989e+02 4.421e+02 0.676 0.4991
## `CityEau Claire` 2.866e+02 4.336e+02 0.661 0.5086
## CityEdinburg 9.248e+01 4.462e+02 0.207 0.8358
## CityEdmond 5.021e+02 4.876e+02 1.030 0.3031
## CityEdmonds 2.948e+02 3.912e+02 0.753 0.4512
## `CityEl Cajon` 2.536e+02 5.276e+02 0.481 0.6308
## `CityEl Paso` 1.803e+02 3.579e+02 0.504 0.6146
## CityElkhart 2.306e+02 5.254e+02 0.439 0.6608
## CityElmhurst 2.936e+02 3.921e+02 0.749 0.4540
## CityElyria 1.879e+02 5.247e+02 0.358 0.7203
## CityEncinitas 8.106e+01 3.926e+02 0.206 0.8364
## CityEnglewood 1.872e+01 4.381e+02 0.043 0.9659
## CityEscondido 2.695e+02 4.096e+02 0.658 0.5106
## CityEugene 2.800e+02 3.771e+02 0.742 0.4579
## CityEvanston 7.583e+01 4.258e+02 0.178 0.8587
## CityEverett 1.647e+02 3.551e+02 0.464 0.6427
## CityFairfield 2.177e+02 3.408e+02 0.639 0.5230
## CityFargo 4.768e+02 4.435e+02 1.075 0.2823
## CityFarmington 4.315e+02 4.875e+02 0.885 0.3761
## CityFayetteville 1.147e+02 3.654e+02 0.314 0.7536
## CityFlorence 1.484e+02 3.476e+02 0.427 0.6695
## `CityFort Collins` 7.289e+01 3.695e+02 0.197 0.8437
## `CityFort Lauderdale` 1.073e+02 3.865e+02 0.278 0.7813
## `CityFort Worth` 1.675e+02 3.546e+02 0.472 0.6367
## CityFrankfort 1.684e+01 4.257e+02 0.040 0.9684
## CityFranklin 2.360e+02 3.484e+02 0.677 0.4982
## CityFreeport 2.003e+02 3.537e+02 0.566 0.5712
## CityFremont 2.811e+02 4.269e+02 0.659 0.5102
## CityFresno 2.819e+02 3.494e+02 0.807 0.4199
## CityFrisco 4.043e+01 4.459e+02 0.091 0.9278
## CityGaithersburg -5.669e+01 4.608e+02 -0.123 0.9021
## `CityGarden City` 4.005e+02 4.337e+02 0.924 0.3557
## CityGarland 1.967e+02 4.462e+02 0.441 0.6594
## CityGastonia 1.405e+02 4.560e+02 0.308 0.7581
## CityGeorgetown 2.274e+02 3.721e+02 0.611 0.5412
## CityGilbert 1.772e+02 2.634e+02 0.673 0.5012
## CityGladstone 1.846e+02 4.430e+02 0.417 0.6769
## CityGlendale 5.204e+01 2.294e+02 0.227 0.8206
## CityGlenview NA NA NA NA
## CityGoldsboro NA NA NA NA
## `CityGrand Island` 4.312e+02 5.664e+02 0.761 0.4465
## `CityGrand Prairie` 9.140e+01 3.738e+02 0.245 0.8068
## `CityGrand Rapids` 1.845e+01 3.921e+02 0.047 0.9625
## CityGrapevine NA NA NA NA
## `CityGreat Falls` 3.673e+02 4.226e+02 0.869 0.3848
## CityGreeley 6.870e+01 4.382e+02 0.157 0.8754
## `CityGreen Bay` 4.055e+02 4.871e+02 0.833 0.4051
## CityGreensboro 1.998e+02 3.813e+02 0.524 0.6003
## CityGreenville 3.004e+02 3.852e+02 0.780 0.4356
## CityGreenwood 3.083e+02 5.253e+02 0.587 0.5573
## CityGresham 2.557e+02 3.950e+02 0.647 0.5175
## `CityGrove City` -3.103e+02 5.250e+02 -0.591 0.5546
## CityGulfport 1.376e+02 5.506e+02 0.250 0.8026
## CityHackensack -1.098e+02 3.953e+02 -0.278 0.7812
## CityHagerstown 3.766e+01 5.437e+02 0.069 0.9448
## `CityHaltom City` 1.910e+02 3.973e+02 0.481 0.6307
## CityHamilton 2.688e+02 4.395e+02 0.612 0.5408
## CityHampton 7.933e+01 3.597e+02 0.221 0.8254
## CityHarlingen -5.750e+00 4.145e+02 -0.014 0.9889
## CityHarrisonburg 3.852e+02 3.722e+02 1.035 0.3007
## CityHattiesburg 8.544e+01 4.015e+02 0.213 0.8315
## CityHelena 1.529e+02 5.662e+02 0.270 0.7871
## CityHempstead 1.624e+02 3.711e+02 0.438 0.6617
## CityHenderson 2.904e+02 3.395e+02 0.855 0.3923
## CityHendersonville 1.284e+02 4.146e+02 0.310 0.7568
## CityHesperia 3.209e+02 5.272e+02 0.609 0.5427
## CityHialeah -9.876e+01 3.786e+02 -0.261 0.7942
## CityHickory 3.324e+01 5.387e+02 0.062 0.9508
## `CityHighland Park` 1.153e+02 3.548e+02 0.325 0.7453
## CityHillsboro 2.888e+02 4.443e+02 0.650 0.5157
## CityHolland 1.699e+02 4.614e+02 0.368 0.7127
## CityHollywood 6.949e+01 3.890e+02 0.179 0.8582
## CityHolyoke -1.083e+02 5.316e+02 -0.204 0.8386
## CityHomestead 2.081e+02 5.463e+02 0.381 0.7033
## CityHoover 1.725e+02 4.449e+02 0.388 0.6983
## `CityHot Springs` 2.631e+01 4.535e+02 0.058 0.9537
## CityHouston 1.928e+02 3.417e+02 0.564 0.5727
## `CityHuntington Beach` 2.908e+02 3.919e+02 0.742 0.4582
## CityHuntsville 1.829e+02 3.458e+02 0.529 0.5969
## CityIndependence 6.093e+02 5.287e+02 1.153 0.2491
## CityIndianapolis 2.461e+02 3.455e+02 0.712 0.4764
## CityInglewood 1.751e+02 3.590e+02 0.488 0.6259
## `CityIowa City` NA NA NA NA
## CityIrving 3.019e+02 4.465e+02 0.676 0.4990
## CityJackson 1.829e+02 3.604e+02 0.508 0.6118
## CityJacksonville 1.525e+02 3.599e+02 0.424 0.6717
## CityJamestown 2.519e+03 5.296e+02 4.757 2.01e-06 ***
## `CityJefferson City` 2.789e+02 5.281e+02 0.528 0.5975
## `CityJohnson City` 9.855e+01 3.710e+02 0.266 0.7905
## CityJonesboro 5.996e+01 4.282e+02 0.140 0.8886
## CityJupiter NA NA NA NA
## CityKeller 2.421e+02 5.316e+02 0.455 0.6488
## CityKenner 5.719e+02 5.439e+02 1.052 0.2930
## CityKenosha 3.856e+02 4.269e+02 0.903 0.3664
## CityKent 2.122e+02 3.737e+02 0.568 0.5702
## CityKirkwood 3.159e+02 5.282e+02 0.598 0.5498
## CityKissimmee 4.971e+02 5.465e+02 0.910 0.3631
## CityKnoxville 1.230e+02 3.567e+02 0.345 0.7302
## `CityLa Crosse` 2.710e+02 4.427e+02 0.612 0.5406
## `CityLa Mesa` 2.555e+02 4.419e+02 0.578 0.5632
## `CityLa Porte` 9.274e+01 3.697e+02 0.251 0.8019
## `CityLa Quinta` 1.630e+02 5.273e+02 0.309 0.7572
## CityLafayette 5.374e+02 3.519e+02 1.527 0.1267
## `CityLaguna Niguel` 2.809e+01 4.417e+02 0.064 0.9493
## `CityLake Charles` 2.451e+02 4.617e+02 0.531 0.5956
## `CityLake Elsinore` -3.750e+01 5.275e+02 -0.071 0.9433
## `CityLake Forest` 2.953e+02 4.418e+02 0.668 0.5039
## CityLakeland 7.055e+01 3.865e+02 0.183 0.8552
## CityLakeville 2.294e+02 3.803e+02 0.603 0.5463
## CityLakewood 1.528e+02 3.465e+02 0.441 0.6592
## CityLancaster 1.496e+02 3.401e+02 0.440 0.6601
## CityLansing 4.368e+01 3.918e+02 0.112 0.9112
## CityLaredo 2.005e+02 3.740e+02 0.536 0.5919
## `CityLas Cruces` 4.218e+02 4.875e+02 0.865 0.3870
## `CityLas Vegas` 3.423e+01 4.312e+02 0.079 0.9367
## CityLaurel 1.531e+02 5.434e+02 0.282 0.7781
## CityLawrence 1.284e+02 3.442e+02 0.373 0.7092
## CityLawton 2.895e+02 4.878e+02 0.594 0.5528
## CityLayton NA NA NA NA
## `CityLeague City` 1.566e+02 3.868e+02 0.405 0.6856
## CityLebanon 1.038e+02 5.318e+02 0.195 0.8453
## CityLehi 1.201e+02 5.657e+02 0.212 0.8319
## CityLeominster 2.053e+02 3.874e+02 0.530 0.5961
## CityLewiston 4.362e+02 5.663e+02 0.770 0.4412
## `CityLincoln Park` 9.643e+01 4.614e+02 0.209 0.8344
## CityLinden -2.788e+02 5.424e+02 -0.514 0.6072
## CityLindenhurst 3.918e+02 5.286e+02 0.741 0.4586
## `CityLittle Rock` 5.620e+01 4.000e+02 0.140 0.8883
## CityLittleton -2.963e+02 5.242e+02 -0.565 0.5719
## CityLodi NA NA NA NA
## CityLogan 2.631e+02 4.336e+02 0.607 0.5439
## `CityLong Beach` 2.470e+02 3.398e+02 0.727 0.4674
## CityLongmont 1.818e+02 4.052e+02 0.449 0.6537
## CityLongview 1.663e+02 4.663e+02 0.357 0.7214
## CityLorain 4.038e+02 3.651e+02 1.106 0.2688
## `CityLos Angeles` 2.458e+02 3.357e+02 0.732 0.4642
## CityLouisville 2.542e+02 3.332e+02 0.763 0.4457
## CityLoveland 7.417e+01 3.877e+02 0.191 0.8483
## CityLowell 1.994e+02 3.653e+02 0.546 0.5852
## CityLubbock 1.414e+02 3.969e+02 0.356 0.7217
## CityMacon 1.807e+02 3.819e+02 0.473 0.6360
## CityMadison 6.170e+02 4.191e+02 1.472 0.1410
## CityMalden 2.250e+02 4.472e+02 0.503 0.6149
## CityManchester 2.169e+02 3.842e+02 0.564 0.5724
## CityManhattan 4.464e+02 5.659e+02 0.789 0.4303
## CityMansfield 8.410e+01 4.463e+02 0.188 0.8505
## CityManteca 1.505e+02 4.418e+02 0.341 0.7334
## `CityMaple Grove` 3.407e+02 4.256e+02 0.800 0.4235
## CityMargate NA NA NA NA
## CityMarietta 6.477e+01 3.816e+02 0.170 0.8652
## CityMarion 2.670e+02 3.541e+02 0.754 0.4510
## CityMarlborough 1.674e+02 5.312e+02 0.315 0.7526
## CityMarysville -1.088e+02 5.482e+02 -0.199 0.8427
## CityMason 2.158e+02 4.063e+02 0.531 0.5952
## CityMcallen 1.301e+02 3.557e+02 0.366 0.7145
## CityMedford 2.578e+02 4.118e+02 0.626 0.5313
## CityMedina 1.022e+02 3.653e+02 0.280 0.7796
## CityMelbourne 3.176e+01 5.464e+02 0.058 0.9537
## CityMemphis 2.689e+02 3.526e+02 0.763 0.4458
## CityMentor 2.849e+02 3.888e+02 0.733 0.4638
## CityMeriden 2.556e+02 3.753e+02 0.681 0.4958
## CityMeridian 3.991e+02 7.357e+02 0.542 0.5875
## CityMesa -2.232e+01 2.227e+02 -0.100 0.9202
## CityMesquite 8.958e+01 4.133e+02 0.217 0.8284
## CityMiami 1.387e+02 3.697e+02 0.375 0.7076
## CityMiddletown 3.380e+02 3.895e+02 0.868 0.3855
## CityMidland 1.709e+02 3.855e+02 0.443 0.6576
## CityMilford 1.283e+02 4.067e+02 0.316 0.7523
## CityMilwaukee 3.212e+02 3.997e+02 0.804 0.4216
## CityMinneapolis 5.196e+02 3.676e+02 1.413 0.1576
## CityMiramar -1.745e+01 4.075e+02 -0.043 0.9658
## CityMishawaka 2.112e+02 5.254e+02 0.402 0.6877
## `CityMission Viejo` 1.127e+02 4.096e+02 0.275 0.7831
## CityMissoula 6.365e+02 5.660e+02 1.125 0.2607
## `CityMissouri City` -9.021e+01 5.302e+02 -0.170 0.8649
## CityMobile 4.717e+01 3.687e+02 0.128 0.8982
## CityModesto 4.267e+01 4.419e+02 0.097 0.9231
## CityMonroe 4.493e+02 3.690e+02 1.218 0.2234
## CityMontebello 2.514e+02 5.271e+02 0.477 0.6334
## CityMontgomery 1.402e+02 3.686e+02 0.380 0.7037
## CityMoorhead 1.742e+02 4.566e+02 0.382 0.7028
## `CityMoreno Valley` 2.711e+02 3.689e+02 0.735 0.4625
## `CityMorgan Hill` -1.421e+00 4.420e+02 -0.003 0.9974
## CityMorristown -1.739e+01 3.906e+02 -0.045 0.9645
## `CityMount Pleasant` 1.451e+02 5.434e+02 0.267 0.7895
## `CityMount Vernon` 2.739e+02 3.835e+02 0.714 0.4750
## CityMurfreesboro 1.245e+02 3.705e+02 0.336 0.7369
## CityMurray 2.594e+02 4.582e+02 0.566 0.5714
## CityMurrieta NA NA NA NA
## CityMuskogee 2.891e+02 4.877e+02 0.593 0.5534
## CityNaperville 8.991e+01 3.547e+02 0.253 0.7999
## CityNashua 2.372e+02 5.451e+02 0.435 0.6635
## CityNashville 2.603e+02 3.521e+02 0.739 0.4597
## `CityNew Albany` 1.561e+02 4.394e+02 0.355 0.7224
## `CityNew Bedford` 1.440e+02 4.467e+02 0.322 0.7471
## `CityNew Brunswick` 5.546e+01 5.427e+02 0.102 0.9186
## `CityNew Castle` -3.804e+01 4.394e+02 -0.087 0.9310
## `CityNew Rochelle` 1.282e+02 3.671e+02 0.349 0.7269
## `CityNew York City` 2.587e+02 3.379e+02 0.766 0.4440
## CityNewark 1.975e+02 3.390e+02 0.583 0.5602
## `CityNewport News` 1.923e+02 3.629e+02 0.530 0.5961
## `CityNiagara Falls` 1.343e+02 4.438e+02 0.303 0.7623
## CityNoblesville 2.069e+02 5.256e+02 0.394 0.6938
## CityNorfolk NA NA NA NA
## CityNormal 1.971e+02 5.140e+02 0.383 0.7014
## CityNorman NA NA NA NA
## `CityNorth Charleston` 3.371e+02 5.371e+02 0.628 0.5302
## `CityNorth Las Vegas` 4.122e+02 4.284e+02 0.962 0.3361
## `CityNorth Miami` -8.090e+00 5.468e+02 -0.015 0.9882
## CityNorwich 3.088e+02 4.236e+02 0.729 0.4660
## `CityOak Park` 1.928e+02 4.092e+02 0.471 0.6375
## CityOakland 2.254e+02 3.474e+02 0.649 0.5165
## CityOceanside 1.672e+02 3.455e+02 0.484 0.6285
## CityOdessa 1.211e+02 4.143e+02 0.292 0.7700
## `CityOklahoma City` 4.500e+02 4.066e+02 1.107 0.2684
## CityOlathe 4.639e+02 4.432e+02 1.047 0.2954
## CityOlympia 1.936e+02 4.196e+02 0.461 0.6446
## CityOmaha 3.840e+02 4.038e+02 0.951 0.3417
## CityOntario NA NA NA NA
## CityOrange -7.829e+01 4.126e+02 -0.190 0.8495
## CityOrem 4.805e+02 4.225e+02 1.137 0.2555
## `CityOrland Park` 2.164e+02 5.138e+02 0.421 0.6736
## CityOrlando -7.708e+01 4.004e+02 -0.193 0.8474
## `CityOrmond Beach` NA NA NA NA
## CityOswego 5.322e+02 4.255e+02 1.251 0.2111
## `CityOverland Park` 3.820e+02 4.428e+02 0.863 0.3884
## CityOwensboro 2.615e+02 4.398e+02 0.594 0.5522
## CityOxnard 3.683e+02 3.687e+02 0.999 0.3178
## CityPalatine -2.387e+01 5.138e+02 -0.046 0.9630
## `CityPalm Coast` 3.114e+01 4.335e+02 0.072 0.9427
## `CityPark Ridge` 4.234e+02 4.255e+02 0.995 0.3197
## CityParker 5.155e+01 3.638e+02 0.142 0.8873
## CityParma 3.397e+02 3.712e+02 0.915 0.3601
## CityPasadena 2.134e+02 3.428e+02 0.622 0.5337
## CityPasco 3.768e+02 4.098e+02 0.920 0.3578
## CityPassaic -1.800e+02 4.025e+02 -0.447 0.6548
## CityPaterson -1.700e+02 3.765e+02 -0.452 0.6516
## CityPearland 1.345e+02 4.138e+02 0.325 0.7453
## `CityPembroke Pines` -4.426e+00 3.891e+02 -0.011 0.9909
## CityPensacola -2.965e+01 5.464e+02 -0.054 0.9567
## CityPeoria 2.554e+01 2.380e+02 0.107 0.9145
## `CityPerth Amboy` -3.741e-01 4.600e+02 -0.001 0.9994
## CityPharr 1.341e+02 5.308e+02 0.253 0.8005
## CityPhiladelphia 2.551e+02 3.699e+02 0.690 0.4904
## CityPhoenix 1.265e+02 2.130e+02 0.594 0.5524
## `CityPico Rivera` 2.175e+02 5.274e+02 0.412 0.6801
## `CityPine Bluff` -2.863e+01 5.619e+02 -0.051 0.9594
## CityPlainfield 1.210e+02 3.839e+02 0.315 0.7527
## CityPlano 1.919e+02 3.646e+02 0.526 0.5988
## CityPlantation 2.787e+01 3.955e+02 0.070 0.9438
## `CityPleasant Grove` 3.160e+02 4.337e+02 0.728 0.4664
## CityPocatello 3.616e+02 7.202e+02 0.502 0.6156
## CityPomona 2.546e+02 3.921e+02 0.649 0.5161
## `CityPompano Beach` -5.998e+00 4.335e+02 -0.014 0.9890
## `CityPort Arthur` -1.042e+01 3.972e+02 -0.026 0.9791
## `CityPort Orange` 7.375e+01 5.469e+02 0.135 0.8927
## `CityPort Saint Lucie` -3.538e+02 5.465e+02 -0.647 0.5174
## CityPortage 2.775e+02 5.254e+02 0.528 0.5974
## CityPortland 1.941e+02 3.509e+02 0.553 0.5803
## CityProvidence 3.859e+02 4.026e+02 0.959 0.3378
## CityProvo 4.527e+02 4.224e+02 1.072 0.2839
## CityPueblo 1.898e+02 3.638e+02 0.522 0.6019
## CityQuincy 4.928e+01 3.369e+02 0.146 0.8837
## CityRaleigh 1.608e+02 3.676e+02 0.438 0.6618
## `CityRancho Cucamonga` 2.377e+02 3.923e+02 0.606 0.5447
## `CityRapid City` NA NA NA NA
## CityReading 1.835e+02 4.218e+02 0.435 0.6635
## CityRedding 2.673e+02 5.274e+02 0.507 0.6123
## CityRedlands 2.935e+02 3.571e+02 0.822 0.4112
## CityRedmond 1.493e+02 3.631e+02 0.411 0.6809
## `CityRedondo Beach` 2.153e+02 3.742e+02 0.575 0.5650
## `CityRedwood City` 1.136e+02 5.271e+02 0.215 0.8294
## CityReno NA NA NA NA
## CityRenton NA NA NA NA
## CityRevere 9.943e+01 4.147e+02 0.240 0.8105
## CityRichardson 6.911e+02 5.311e+02 1.301 0.1932
## CityRichmond 1.786e+02 3.321e+02 0.538 0.5907
## `CityRio Rancho` 3.601e+02 4.876e+02 0.738 0.4602
## CityRiverside 2.868e+02 3.689e+02 0.777 0.4369
## CityRochester 2.519e+02 3.439e+02 0.732 0.4639
## `CityRochester Hills` 1.122e+01 5.437e+02 0.021 0.9835
## `CityRock Hill` 2.363e+02 5.370e+02 0.440 0.6599
## CityRockford 3.506e+02 3.414e+02 1.027 0.3045
## CityRockville 6.564e+01 4.302e+02 0.153 0.8787
## CityRogers -1.888e+02 5.621e+02 -0.336 0.7370
## CityRome 1.672e+02 3.838e+02 0.436 0.6631
## CityRomeoville 6.372e+01 5.136e+02 0.124 0.9013
## CityRoseville 1.394e+02 3.489e+02 0.400 0.6895
## CityRoswell 3.126e+02 3.542e+02 0.883 0.3775
## `CityRound Rock` -2.804e+00 4.143e+02 -0.007 0.9946
## `CityRoyal Oak` 1.625e+02 4.614e+02 0.352 0.7247
## CitySacramento 1.955e+02 3.688e+02 0.530 0.5960
## CitySaginaw -1.999e+01 3.973e+02 -0.050 0.9599
## `CitySaint Charles` 9.950e+01 3.529e+02 0.282 0.7780
## `CitySaint Cloud` 3.717e+02 5.395e+02 0.689 0.4908
## `CitySaint Louis` 2.932e+01 4.104e+02 0.071 0.9430
## `CitySaint Paul` 1.064e+02 5.399e+02 0.197 0.8438
## `CitySaint Peters` NA NA NA NA
## `CitySaint Petersburg` 1.035e+02 3.845e+02 0.269 0.7878
## CitySalem 1.693e+02 3.423e+02 0.495 0.6208
## CitySalinas 1.908e+02 3.923e+02 0.486 0.6268
## `CitySalt Lake City` 3.472e+02 4.273e+02 0.812 0.4166
## `CitySan Angelo` -3.135e+01 4.141e+02 -0.076 0.9397
## `CitySan Antonio` 5.945e+02 3.461e+02 1.718 0.0859 .
## `CitySan Bernardino` 2.414e+02 3.691e+02 0.654 0.5131
## `CitySan Clemente` 2.080e+02 5.275e+02 0.394 0.6934
## `CitySan Diego` 2.776e+02 3.376e+02 0.822 0.4109
## `CitySan Francisco` 2.628e+02 3.359e+02 0.782 0.4340
## `CitySan Gabriel` 6.418e+02 4.421e+02 1.452 0.1467
## `CitySan Jose` 1.641e+02 3.430e+02 0.478 0.6325
## `CitySan Luis Obispo` 2.377e+02 5.275e+02 0.451 0.6524
## `CitySan Marcos` 1.213e+02 4.463e+02 0.272 0.7858
## `CitySan Mateo` 1.796e+02 5.279e+02 0.340 0.7336
## `CitySandy Springs` 1.642e+02 3.621e+02 0.453 0.6502
## CitySanford -1.843e+01 5.461e+02 -0.034 0.9731
## `CitySanta Ana` -8.262e+01 3.812e+02 -0.217 0.8284
## `CitySanta Barbara` 2.675e+02 3.923e+02 0.682 0.4954
## `CitySanta Clara` 2.271e+02 3.922e+02 0.579 0.5626
## `CitySanta Fe` 2.132e+02 4.874e+02 0.437 0.6618
## `CitySanta Maria` 1.523e+02 5.277e+02 0.289 0.7728
## CityScottsdale 1.474e+01 2.499e+02 0.059 0.9530
## CitySeattle 2.714e+02 3.675e+02 0.739 0.4601
## CitySheboygan 3.693e+02 4.435e+02 0.833 0.4051
## CityShelton 2.004e+02 5.385e+02 0.372 0.7097
## `CitySierra Vista` 5.484e+01 3.531e+02 0.155 0.8766
## `CitySioux Falls` 3.449e+02 4.187e+02 0.824 0.4102
## CitySkokie 1.740e+02 3.734e+02 0.466 0.6413
## CitySmyrna 1.425e+02 3.464e+02 0.411 0.6809
## `CitySouth Bend` 6.766e+01 3.898e+02 0.174 0.8622
## CitySouthaven 1.068e+02 4.226e+02 0.253 0.8005
## CitySparks 3.103e+02 4.756e+02 0.652 0.5141
## CitySpokane 1.017e+02 4.193e+02 0.243 0.8083
## CitySpringdale 1.470e+02 5.618e+02 0.262 0.7936
## CitySpringfield 2.477e+02 3.323e+02 0.745 0.4561
## `CitySterling Heights` 9.008e+01 4.615e+02 0.195 0.8453
## CityStockton 1.704e+02 3.921e+02 0.434 0.6640
## CitySuffolk 2.587e+02 3.795e+02 0.682 0.4954
## CitySummerville 1.081e+02 4.535e+02 0.238 0.8115
## CitySunnyvale 1.696e+02 3.815e+02 0.445 0.6566
## CitySuperior 3.637e+02 4.273e+02 0.851 0.3948
## CityTallahassee 2.841e+02 3.815e+02 0.745 0.4565
## CityTamarac 4.132e+02 4.174e+02 0.990 0.3223
## CityTampa 1.007e+02 3.741e+02 0.269 0.7878
## CityTaylor 3.734e+01 4.615e+02 0.081 0.9355
## CityTemecula 3.222e+02 4.098e+02 0.786 0.4318
## CityTempe 8.192e+00 2.558e+02 0.032 0.9745
## CityTexarkana -8.434e+01 4.824e+02 -0.175 0.8612
## `CityTexas City` -5.758e+01 4.145e+02 -0.139 0.8895
## `CityThe Colony` NA NA NA NA
## CityThomasville 1.177e+02 5.387e+02 0.218 0.8271
## CityThornton 3.976e+01 3.696e+02 0.108 0.9143
## `CityThousand Oaks` 1.916e+02 3.814e+02 0.502 0.6155
## CityTigard 3.757e+02 3.716e+02 1.011 0.3121
## `CityTinley Park` -8.752e+01 5.134e+02 -0.170 0.8647
## CityToledo 2.406e+02 3.421e+02 0.703 0.4818
## CityTorrance 3.869e+02 4.093e+02 0.945 0.3445
## CityTrenton -8.741e+01 3.808e+02 -0.230 0.8184
## CityTroy 2.770e+02 3.436e+02 0.806 0.4202
## CityTucson 2.191e+01 2.192e+02 0.100 0.9204
## CityTulsa 3.369e+02 4.038e+02 0.834 0.4042
## CityTuscaloosa NA NA NA NA
## `CityTwin Falls` 4.532e+02 7.539e+02 0.601 0.5478
## CityTyler 3.595e+02 4.138e+02 0.869 0.3850
## CityUrbandale 3.576e+02 4.334e+02 0.825 0.4094
## CityUtica 1.866e+02 3.669e+02 0.509 0.6111
## CityVacaville NA NA NA NA
## CityVallejo 2.197e+02 4.097e+02 0.536 0.5919
## CityVancouver 2.702e+02 4.356e+02 0.620 0.5351
## CityVineland -1.367e+02 4.025e+02 -0.340 0.7342
## `CityVirginia Beach` 2.261e+02 3.549e+02 0.637 0.5241
## CityVisalia 1.183e+02 4.095e+02 0.289 0.7727
## CityWaco 2.372e+02 3.791e+02 0.626 0.5316
## `CityWarner Robins` 1.017e+02 4.423e+02 0.230 0.8183
## CityWarwick 3.544e+02 4.874e+02 0.727 0.4673
## CityWashington 2.324e+02 4.227e+02 0.550 0.5825
## CityWaterbury 2.363e+02 3.776e+02 0.626 0.5315
## CityWaterloo 3.891e+02 5.462e+02 0.712 0.4763
## CityWatertown 3.182e+02 3.711e+02 0.858 0.3911
## CityWaukesha 1.484e+02 5.664e+02 0.262 0.7933
## CityWausau 2.865e+02 4.432e+02 0.646 0.5181
## CityWaynesboro 3.256e+02 3.669e+02 0.887 0.3749
## `CityWest Allis` 7.056e+01 5.664e+02 0.125 0.9009
## `CityWest Jordan` 3.284e+02 4.431e+02 0.741 0.4586
## `CityWest Palm Beach` 1.314e+01 4.337e+02 0.030 0.9758
## CityWestfield -5.691e+01 4.127e+02 -0.138 0.8903
## CityWestland 9.996e+01 3.856e+02 0.259 0.7954
## CityWestminster 3.214e+02 3.572e+02 0.900 0.3682
## CityWheeling 1.680e+02 4.255e+02 0.395 0.6930
## CityWhittier NA NA NA NA
## CityWichita 3.299e+02 4.336e+02 0.761 0.4468
## CityWilmington 1.336e+02 3.495e+02 0.382 0.7023
## CityWilson 1.310e+02 4.241e+02 0.309 0.7573
## CityWoodbury 2.843e+02 4.567e+02 0.623 0.5336
## CityWoodland 2.914e+02 4.419e+02 0.660 0.5096
## CityWoodstock 1.530e+02 3.786e+02 0.404 0.6861
## CityWoonsocket 4.065e+02 4.875e+02 0.834 0.4043
## CityYonkers 3.001e+02 3.592e+02 0.835 0.4035
## CityYork 1.767e+02 4.115e+02 0.429 0.6676
## CityYucaipa NA NA NA NA
## CityYuma NA NA NA NA
## StateAlabama 2.247e+02 2.553e+02 0.880 0.3789
## StateArizona 2.870e+02 3.365e+02 0.853 0.3937
## StateArkansas 3.142e+02 3.063e+02 1.026 0.3051
## StateCalifornia 1.224e+02 2.395e+02 0.511 0.6092
## StateColorado 2.603e+02 2.490e+02 1.046 0.2958
## StateConnecticut 1.447e+02 2.559e+02 0.566 0.5717
## StateDelaware 1.884e+02 2.475e+02 0.761 0.4466
## `StateDistrict of Columbia` NA NA NA NA
## StateFlorida 2.634e+02 2.770e+02 0.951 0.3418
## StateGeorgia 1.640e+02 2.359e+02 0.695 0.4869
## StateIdaho -6.915e+00 5.752e+02 -0.012 0.9904
## StateIllinois 1.936e+02 2.386e+02 0.811 0.4172
## StateIndiana 1.986e+02 2.314e+02 0.858 0.3908
## StateIowa -1.342e+01 2.746e+02 -0.049 0.9610
## StateKansas NA NA NA NA
## StateKentucky 1.283e+02 2.406e+02 0.533 0.5938
## StateLouisiana -1.633e+02 2.716e+02 -0.601 0.5477
## StateMaine NA NA NA NA
## StateMaryland 1.979e+02 2.626e+02 0.754 0.4512
## StateMassachusetts 2.035e+02 2.095e+02 0.971 0.3314
## StateMichigan 2.912e+02 2.648e+02 1.100 0.2715
## StateMinnesota 8.582e+01 2.663e+02 0.322 0.7472
## StateMississippi 1.917e+02 2.768e+02 0.693 0.4886
## StateMissouri 2.125e+02 2.396e+02 0.887 0.3751
## StateMontana NA NA NA NA
## StateNebraska NA NA NA NA
## StateNevada 2.730e+02 3.434e+02 0.795 0.4266
## `StateNew Hampshire` 1.089e+02 2.749e+02 0.396 0.6919
## `StateNew Jersey` 4.498e+02 2.700e+02 1.666 0.0957 .
## `StateNew Mexico` NA NA NA NA
## `StateNew York` 1.285e+02 2.450e+02 0.525 0.5999
## `StateNorth Carolina` 1.604e+02 2.623e+02 0.612 0.5408
## `StateNorth Dakota` NA NA NA NA
## StateOhio 1.201e+02 2.319e+02 0.518 0.6045
## StateOklahoma NA NA NA NA
## StateOregon 7.871e+01 2.426e+02 0.324 0.7456
## StatePennsylvania 1.671e+02 2.838e+02 0.589 0.5560
## `StateRhode Island` NA NA NA NA
## `StateSouth Carolina` 1.021e+02 2.510e+02 0.407 0.6840
## `StateSouth Dakota` NA NA NA NA
## StateTennessee 2.128e+02 2.258e+02 0.942 0.3460
## StateTexas 1.493e+02 2.495e+02 0.598 0.5497
## StateUtah NA NA NA NA
## StateVermont -3.329e+02 3.207e+02 -1.038 0.2993
## StateVirginia 1.875e+02 2.357e+02 0.795 0.4266
## StateWashington 1.139e+02 2.759e+02 0.413 0.6797
## `StateWest Virginia` 2.703e+02 4.410e+02 0.613 0.5400
## StateWisconsin NA NA NA NA
## StateWyoming NA NA NA NA
## RegionCentral NA NA NA NA
## RegionEast NA NA NA NA
## RegionSouth NA NA NA NA
## RegionWest NA NA NA NA
## Category.Furniture -5.294e+02 4.343e+01 -12.189 < 2e-16 ***
## `Category.Office Supplies` -1.012e+03 4.355e+01 -23.232 < 2e-16 ***
## Category.Technology NA NA NA NA
## Sub.CategoryAccessories -1.106e+03 5.017e+01 -22.046 < 2e-16 ***
## Sub.CategoryAppliances -6.761e+01 2.973e+01 -2.274 0.0230 *
## Sub.CategoryArt -2.044e+02 2.489e+01 -8.212 2.60e-16 ***
## Sub.CategoryBinders -1.773e+02 2.593e+01 -6.837 8.80e-12 ***
## Sub.CategoryChairs -2.395e+02 4.009e+01 -5.975 2.43e-09 ***
## Sub.CategoryFurnishings -6.457e+02 3.835e+01 -16.837 < 2e-16 ***
## Sub.CategoryLabels -2.089e+02 3.163e+01 -6.604 4.33e-11 ***
## Sub.CategoryOther -1.116e+02 2.650e+01 -4.209 2.60e-05 ***
## Sub.CategoryPaper -2.031e+02 2.204e+01 -9.216 < 2e-16 ***
## Sub.CategoryPhones -9.462e+02 4.908e+01 -19.278 < 2e-16 ***
## Sub.CategoryStorage NA NA NA NA
## Quantity 4.442e+01 2.264e+00 19.615 < 2e-16 ***
## Discount 2.182e+02 4.991e+01 4.373 1.24e-05 ***
## Profit 1.514e+00 2.303e-02 65.737 < 2e-16 ***
## Days_Between -9.531e-01 5.362e+00 -0.178 0.8589
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 406.5 on 6438 degrees of freedom
## Multiple R-squared: 0.5793, Adjusted R-squared: 0.543
## F-statistic: 15.94 on 556 and 6438 DF, p-value: < 2.2e-16
# Making predictions on the test set
predictions <- predict(lm_model, newdata = test_data)
## Warning in predict.lm(lm_model, newdata = test_data): prediction from
## rank-deficient fit; attr(*, "non-estim") has doubtful cases
# Calculating the performance metrics (e.g., RMSE)
rmse <- sqrt(mean((predictions - test_data$Sales)^2))
# Printing the RMSE
print(paste("Root Mean Squared Error (RMSE):", rmse))
## [1] "Root Mean Squared Error (RMSE): 652.608684865285"
head(predictions, 5)
## 2 4 5 8 11
## 816.0427 144.5988 169.4996 545.6848 976.0285
# Set a random seed for reproducibility
set.seed(123)
# Splitting the data into training and test sets (e.g., 70% for training and 30% for testing)
split <- sample.split(final_data$Sales, SplitRatio = 0.85)
train_data <- final_data[split, ]
test_data <- final_data[!split, ]
# Creating a linear regression model
lm_model2 <- lm(Sales ~ ., data = train_data)
# Printing the summary of the linear regression model
summary(lm_model2)
##
## Call:
## lm(formula = Sales ~ ., data = train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1600.2 -140.7 -24.3 70.1 22745.9
##
## Coefficients: (33 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.160e+03 4.430e+02 2.619 0.00883 **
## `Ship.ModeFirst Class` 7.661e+00 2.362e+01 0.324 0.74565
## `Ship.ModeSame Day` -1.001e+01 4.000e+01 -0.250 0.80232
## `Ship.ModeSecond Class` 1.376e+01 1.862e+01 0.739 0.45989
## `Ship.ModeStandard Class` NA NA NA NA
## Segment.Consumer -8.083e+00 1.609e+01 -0.502 0.61551
## Segment.Corporate -2.062e+01 1.759e+01 -1.172 0.24111
## `Segment.Home Office` NA NA NA NA
## CityAberdeen NA NA NA NA
## CityAbilene 2.210e+02 6.380e+02 0.346 0.72903
## CityAkron 3.419e+02 4.027e+02 0.849 0.39591
## CityAlbuquerque 1.536e+02 4.626e+02 0.332 0.73982
## CityAlexandria 4.555e+02 4.088e+02 1.114 0.26521
## CityAllen 2.749e+02 4.893e+02 0.562 0.57424
## CityAllentown 8.180e+02 4.733e+02 1.728 0.08397 .
## CityAltoona 6.308e+02 5.598e+02 1.127 0.25988
## CityAmarillo 6.654e+02 4.322e+02 1.540 0.12370
## CityAnaheim 5.603e+02 4.044e+02 1.385 0.16597
## CityAndover 1.087e+02 4.679e+02 0.232 0.81633
## `CityAnn Arbor` 1.505e+02 4.679e+02 0.322 0.74776
## CityAntioch 5.373e+02 6.351e+02 0.846 0.39754
## CityApopka -2.704e+02 4.682e+02 -0.578 0.56355
## `CityApple Valley` 5.205e+02 4.498e+02 1.157 0.24722
## CityAppleton 5.662e+02 5.646e+02 1.003 0.31593
## CityArlington 3.800e+02 3.935e+02 0.966 0.33425
## `CityArlington Heights` 1.166e+02 6.210e+02 0.188 0.85105
## CityArvada 2.368e+02 4.582e+02 0.517 0.60528
## CityAsheville 3.099e+02 4.577e+02 0.677 0.49837
## CityAthens 2.801e+02 4.406e+02 0.636 0.52495
## CityAtlanta 3.694e+02 3.997e+02 0.924 0.35543
## `CityAtlantic City` 2.893e+00 6.514e+02 0.004 0.99646
## CityAuburn 3.871e+02 4.051e+02 0.956 0.33928
## CityAurora 2.081e+02 3.757e+02 0.554 0.57976
## CityAustin 3.672e+02 4.033e+02 0.910 0.36263
## CityAvondale 1.808e+02 3.549e+02 0.510 0.61033
## CityBakersfield 4.197e+02 4.112e+02 1.021 0.30743
## CityBaltimore 1.962e+02 4.235e+02 0.463 0.64325
## CityBangor 1.949e+02 5.054e+02 0.386 0.69983
## CityBartlett 2.622e+01 6.386e+02 0.041 0.96725
## CityBayonne -2.440e+01 6.516e+02 -0.037 0.97013
## CityBaytown 4.743e+02 6.375e+02 0.744 0.45690
## CityBeaumont 2.540e+02 4.670e+02 0.544 0.58657
## CityBedford 2.745e+02 4.536e+02 0.605 0.54519
## CityBelleville 8.894e+01 4.486e+02 0.198 0.84284
## CityBellevue 3.628e+02 4.716e+02 0.769 0.44175
## CityBellingham 9.044e+02 5.141e+02 1.759 0.07859 .
## CityBethlehem 1.009e+03 4.880e+02 2.067 0.03878 *
## CityBeverly 6.173e+02 4.892e+02 1.262 0.20700
## CityBillings NA NA NA NA
## CityBloomington 1.820e+02 3.975e+02 0.458 0.64698
## `CityBoca Raton` -2.501e+02 5.507e+02 -0.454 0.64967
## CityBoise 2.015e+02 8.820e+02 0.228 0.81929
## CityBolingbrook 1.138e+02 4.296e+02 0.265 0.79105
## `CityBossier City` 6.915e+02 4.656e+02 1.485 0.13752
## `CityBowling Green` 2.355e+02 4.149e+02 0.567 0.57040
## `CityBoynton Beach` -2.059e+02 4.531e+02 -0.454 0.64957
## CityBozeman 2.778e+02 6.663e+02 0.417 0.67675
## CityBrentwood 5.963e+02 4.161e+02 1.433 0.15186
## CityBridgeton -1.149e+02 5.467e+02 -0.210 0.83352
## CityBristol 3.043e+02 4.209e+02 0.723 0.46974
## `CityBroken Arrow` 3.472e+02 5.059e+02 0.686 0.49253
## CityBroomfield 1.198e+02 4.583e+02 0.261 0.79377
## CityBrownsville 2.045e+02 4.539e+02 0.450 0.65237
## CityBryan 2.929e+02 4.438e+02 0.660 0.50927
## CityBuffalo 6.351e+02 4.274e+02 1.486 0.13727
## `CityBuffalo Grove` 2.398e+02 5.099e+02 0.470 0.63810
## `CityBullhead City` 2.277e+02 4.346e+02 0.524 0.60038
## CityBurbank 1.073e+03 5.273e+02 2.035 0.04193 *
## CityBurlington 7.068e+02 4.285e+02 1.649 0.09912 .
## CityCaldwell 1.741e+02 9.053e+02 0.192 0.84754
## CityCamarillo 4.480e+02 4.499e+02 0.996 0.31930
## CityCambridge 1.749e+02 4.445e+02 0.394 0.69395
## CityCanton 2.920e+02 5.025e+02 0.581 0.56113
## CityCarlsbad 2.387e+02 4.783e+02 0.499 0.61774
## `CityCarol Stream` 2.192e+02 4.302e+02 0.510 0.61029
## CityCarrollton 5.245e+02 4.180e+02 1.255 0.20963
## CityCary 1.894e+02 4.668e+02 0.406 0.68499
## `CityCedar Hill` 3.297e+02 6.379e+02 0.517 0.60526
## `CityCedar Rapids` 3.796e+02 6.560e+02 0.579 0.56284
## CityChampaign 4.138e+02 6.205e+02 0.667 0.50485
## CityChandler 1.614e+02 3.144e+02 0.513 0.60786
## `CityChapel Hill` 2.745e+02 6.470e+02 0.424 0.67132
## CityCharlotte 2.483e+02 4.169e+02 0.596 0.55149
## CityCharlottesville 2.595e+02 6.337e+02 0.409 0.68221
## CityChattanooga -2.588e+01 4.384e+02 -0.059 0.95292
## CityChesapeake 2.193e+02 4.088e+02 0.536 0.59172
## CityChester 6.865e+02 4.527e+02 1.516 0.12947
## CityCheyenne 1.212e+03 6.664e+02 1.819 0.06888 .
## CityChicago 2.108e+02 3.678e+02 0.573 0.56647
## CityChico 4.264e+02 4.284e+02 0.995 0.31967
## `CityChula Vista` 6.595e+02 4.857e+02 1.358 0.17453
## CityCincinnati 2.452e+02 4.059e+02 0.604 0.54580
## `CityCitrus Heights` 5.279e+02 6.352e+02 0.831 0.40597
## CityClarksville 6.570e+02 4.454e+02 1.475 0.14025
## CityCleveland 3.610e+02 3.954e+02 0.913 0.36129
## CityClifton 4.331e+01 6.516e+02 0.066 0.94700
## CityClinton 1.768e+02 4.268e+02 0.414 0.67870
## CityClovis 2.530e+02 6.662e+02 0.380 0.70412
## CityCoachella 4.934e+02 5.271e+02 0.936 0.34923
## `CityCollege Station` 2.303e+02 6.381e+02 0.361 0.71814
## `CityColorado Springs` 2.006e+02 3.988e+02 0.503 0.61503
## CityColumbia 3.900e+02 3.980e+02 0.980 0.32716
## CityColumbus 2.625e+02 3.863e+02 0.679 0.49692
## `CityCommerce City` 2.027e+02 6.314e+02 0.321 0.74816
## CityConcord 6.782e+02 4.103e+02 1.653 0.09837 .
## CityConroe 9.008e+00 6.381e+02 0.014 0.98874
## CityConway NA NA NA NA
## `CityCoon Rapids` 3.835e+02 5.439e+02 0.705 0.48075
## CityCoppell 2.275e+02 4.895e+02 0.465 0.64211
## `CityCoral Gables` -4.772e+02 6.546e+02 -0.729 0.46606
## `CityCoral Springs` -2.236e+02 4.683e+02 -0.478 0.63300
## `CityCorpus Christi` 3.291e+02 4.371e+02 0.753 0.45160
## `CityCosta Mesa` 4.354e+02 4.245e+02 1.026 0.30514
## `CityCottage Grove` 3.505e+02 6.490e+02 0.540 0.58916
## CityCovington 2.827e+02 4.932e+02 0.573 0.56648
## CityCranston 2.990e+02 4.593e+02 0.651 0.51505
## `CityCuyahoga Falls` 2.090e+02 4.820e+02 0.434 0.66463
## CityDallas 3.581e+02 3.967e+02 0.903 0.36670
## CityDanbury 4.246e+02 6.478e+02 0.655 0.51222
## CityDanville 3.901e+02 4.428e+02 0.881 0.37841
## CityDavis 4.201e+02 6.351e+02 0.661 0.50833
## `CityDaytona Beach` -3.265e+02 4.904e+02 -0.666 0.50563
## CityDearborn 2.121e+02 4.680e+02 0.453 0.65034
## `CityDearborn Heights` 2.445e+02 4.594e+02 0.532 0.59466
## CityDecatur 2.017e+02 3.814e+02 0.529 0.59689
## `CityDeer Park` 1.561e+02 6.371e+02 0.245 0.80648
## `CityDelray Beach` -2.972e+02 5.113e+02 -0.581 0.56110
## CityDeltona -3.487e+02 4.773e+02 -0.731 0.46503
## CityDenver 2.207e+02 3.931e+02 0.561 0.57459
## `CityDes Moines` 3.906e+02 4.312e+02 0.906 0.36504
## `CityDes Plaines` 1.506e+02 4.300e+02 0.350 0.72617
## CityDetroit 2.566e+02 4.139e+02 0.620 0.53537
## CityDover 5.403e+02 4.194e+02 1.288 0.19767
## CityDraper 1.030e+02 5.258e+02 0.196 0.84468
## CityDublin 2.727e+02 4.118e+02 0.662 0.50787
## CityDubuque 4.379e+02 5.125e+02 0.855 0.39285
## CityDurham 1.964e+02 4.423e+02 0.444 0.65701
## CityEagan 4.637e+02 4.540e+02 1.021 0.30714
## `CityEast Orange` -2.934e+01 4.862e+02 -0.060 0.95188
## `CityEast Point` 3.631e+02 5.270e+02 0.689 0.49088
## `CityEau Claire` 1.519e+02 4.932e+02 0.308 0.75807
## CityEdinburg 2.923e+02 5.302e+02 0.551 0.58145
## CityEdmond 3.934e+02 5.645e+02 0.697 0.48596
## CityEdmonds 4.015e+02 4.473e+02 0.898 0.36939
## `CityEl Cajon` 4.315e+02 5.273e+02 0.818 0.41319
## `CityEl Paso` 3.950e+02 4.151e+02 0.951 0.34143
## CityElkhart 2.496e+02 5.240e+02 0.476 0.63389
## CityElmhurst 3.317e+02 4.444e+02 0.746 0.45545
## CityElyria 3.406e+02 6.321e+02 0.539 0.58999
## CityEncinitas 3.302e+02 4.503e+02 0.733 0.46339
## CityEnglewood 1.342e+02 5.224e+02 0.257 0.79726
## CityEscondido 5.082e+02 4.859e+02 1.046 0.29562
## CityEugene 4.510e+02 4.443e+02 1.015 0.31015
## CityEvanston 1.195e+02 4.673e+02 0.256 0.79825
## CityEverett 1.982e+02 4.097e+02 0.484 0.62856
## CityFairfield 3.723e+02 3.969e+02 0.938 0.34831
## CityFargo 3.254e+02 4.935e+02 0.659 0.50965
## CityFarmington 3.121e+02 5.644e+02 0.553 0.58033
## CityFayetteville 1.636e+02 4.232e+02 0.387 0.69913
## CityFlorence 2.727e+02 3.992e+02 0.683 0.49449
## `CityFort Collins` 1.965e+02 4.347e+02 0.452 0.65121
## `CityFort Lauderdale` -2.367e+02 4.502e+02 -0.526 0.59908
## `CityFort Worth` 3.360e+02 4.089e+02 0.822 0.41124
## CityFrankfort 8.417e+01 5.099e+02 0.165 0.86890
## CityFranklin 2.717e+02 4.018e+02 0.676 0.49895
## CityFreeport 3.367e+02 4.168e+02 0.808 0.41918
## CityFremont 2.423e+02 4.782e+02 0.507 0.61241
## CityFresno 4.994e+02 4.059e+02 1.230 0.21858
## CityFrisco 2.308e+02 5.298e+02 0.436 0.66315
## CityGaithersburg 1.768e+01 5.452e+02 0.032 0.97414
## `CityGarden City` 2.784e+02 4.933e+02 0.564 0.57259
## CityGarland 4.022e+02 5.302e+02 0.759 0.44812
## CityGastonia 1.618e+02 5.419e+02 0.299 0.76529
## CityGeorgetown 3.177e+02 4.377e+02 0.726 0.46796
## CityGilbert 2.848e+02 2.872e+02 0.992 0.32125
## CityGladstone 2.861e+02 5.283e+02 0.542 0.58817
## CityGlendale 1.608e+02 2.773e+02 0.580 0.56197
## CityGlenview NA NA NA NA
## CityGoldsboro 1.221e+02 6.477e+02 0.188 0.85052
## `CityGrand Island` 3.136e+02 6.667e+02 0.470 0.63805
## `CityGrand Prairie` 2.993e+02 4.222e+02 0.709 0.47835
## `CityGrand Rapids` 1.397e+02 4.526e+02 0.309 0.75756
## CityGrapevine 2.528e+02 6.376e+02 0.397 0.69174
## `CityGreat Falls` 2.377e+02 4.739e+02 0.502 0.61599
## CityGreeley 1.960e+02 5.226e+02 0.375 0.70762
## `CityGreen Bay` 2.594e+02 5.257e+02 0.494 0.62165
## CityGreensboro 2.465e+02 4.363e+02 0.565 0.57219
## CityGreenville 1.914e+02 4.422e+02 0.433 0.66508
## CityGreenwood 5.382e+02 5.240e+02 1.027 0.30436
## CityGresham 3.951e+02 4.674e+02 0.845 0.39788
## `CityGrove City` 2.695e+01 5.238e+02 0.051 0.95897
## CityGulfport 1.135e+02 5.108e+02 0.222 0.82415
## CityHackensack -2.849e+01 4.637e+02 -0.061 0.95101
## CityHagerstown 9.308e+01 6.506e+02 0.143 0.88623
## `CityHaltom City` 3.847e+02 4.675e+02 0.823 0.41057
## CityHamilton 3.782e+02 4.605e+02 0.821 0.41155
## CityHampton 2.108e+02 4.162e+02 0.507 0.61249
## CityHarlingen 2.135e+02 4.678e+02 0.457 0.64801
## CityHarrisonburg 5.037e+02 4.386e+02 1.149 0.25079
## CityHattiesburg 2.196e+02 4.570e+02 0.480 0.63089
## CityHelena 6.519e+01 5.259e+02 0.124 0.90135
## CityHempstead 3.350e+02 4.316e+02 0.776 0.43764
## CityHenderson 3.840e+02 3.940e+02 0.975 0.32977
## CityHendersonville 2.195e+02 4.681e+02 0.469 0.63908
## CityHesperia 4.167e+02 4.855e+02 0.858 0.39078
## CityHialeah -4.579e+02 4.378e+02 -1.046 0.29560
## CityHickory 8.167e+01 6.469e+02 0.126 0.89953
## `CityHighland Park` 1.983e+02 4.126e+02 0.481 0.63076
## CityHillsboro 3.671e+02 4.670e+02 0.786 0.43178
## CityHolland 1.940e+02 5.027e+02 0.386 0.69953
## CityHollywood -2.701e+02 4.504e+02 -0.600 0.54875
## CityHolyoke -8.512e+01 6.379e+02 -0.133 0.89384
## CityHomestead -2.226e+02 5.506e+02 -0.404 0.68603
## CityHoover 2.000e+02 4.873e+02 0.410 0.68156
## `CityHot Springs` 5.247e+00 5.349e+02 0.010 0.99217
## CityHouston 3.745e+02 3.953e+02 0.947 0.34348
## `CityHuntington Beach` 5.068e+02 4.634e+02 1.094 0.27412
## CityHuntsville 3.362e+02 3.992e+02 0.842 0.39979
## CityIndependence 7.977e+02 5.285e+02 1.510 0.13121
## CityIndianapolis 3.198e+02 4.020e+02 0.796 0.42626
## CityInglewood 4.382e+02 4.125e+02 1.062 0.28811
## `CityIowa City` 5.859e+02 6.554e+02 0.894 0.37141
## CityIrving 4.065e+02 4.675e+02 0.870 0.38455
## CityJackson 3.216e+02 4.103e+02 0.784 0.43321
## CityJacksonville 1.766e+02 4.166e+02 0.424 0.67164
## CityJamestown 1.739e+03 5.295e+02 3.285 0.00103 **
## `CityJefferson City` 3.629e+02 6.359e+02 0.571 0.56827
## `CityJohnson City` 2.243e+02 4.263e+02 0.526 0.59879
## CityJonesboro -1.304e+01 4.796e+02 -0.027 0.97831
## CityJupiter NA NA NA NA
## CityKeller 4.625e+02 6.382e+02 0.725 0.46869
## CityKenner 6.766e+02 6.526e+02 1.037 0.29991
## CityKenosha 2.898e+02 4.736e+02 0.612 0.54052
## CityKent 3.250e+02 4.250e+02 0.765 0.44446
## CityKirkwood 4.181e+02 6.360e+02 0.657 0.51101
## CityKissimmee 1.818e+02 6.549e+02 0.278 0.78134
## CityKnoxville 3.992e+02 4.113e+02 0.971 0.33180
## `CityLa Crosse` 1.376e+02 5.055e+02 0.272 0.78542
## `CityLa Mesa` 4.761e+02 5.271e+02 0.903 0.36650
## `CityLa Porte` 1.989e+02 4.188e+02 0.475 0.63483
## `CityLa Quinta` 3.875e+02 6.351e+02 0.610 0.54182
## CityLafayette 6.824e+02 4.088e+02 1.670 0.09505 .
## `CityLaguna Niguel` 2.139e+02 4.855e+02 0.440 0.65960
## `CityLake Charles` 3.522e+02 5.483e+02 0.642 0.52070
## `CityLake Elsinore` 1.878e+02 6.352e+02 0.296 0.76748
## `CityLake Forest` 5.804e+02 4.502e+02 1.289 0.19738
## CityLakeland -2.136e+02 4.408e+02 -0.485 0.62792
## CityLakeville 3.415e+02 4.376e+02 0.780 0.43523
## CityLakewood 2.800e+02 4.016e+02 0.697 0.48573
## CityLancaster 6.864e+02 3.956e+02 1.735 0.08273 .
## CityLansing 1.805e+02 4.522e+02 0.399 0.68973
## CityLaredo 4.186e+02 4.283e+02 0.977 0.32844
## `CityLas Cruces` 2.709e+02 5.261e+02 0.515 0.60660
## `CityLas Vegas` 9.617e+01 5.102e+02 0.188 0.85050
## CityLaurel 2.221e+02 6.503e+02 0.341 0.73275
## CityLawrence 1.264e+02 3.963e+02 0.319 0.74981
## CityLawton 1.718e+02 5.647e+02 0.304 0.76096
## CityLayton NA NA NA NA
## `CityLeague City` 3.274e+02 4.446e+02 0.736 0.46154
## CityLebanon 2.045e+02 6.388e+02 0.320 0.74887
## CityLehi -1.864e+02 5.643e+02 -0.330 0.74112
## CityLeominster 1.938e+02 4.445e+02 0.436 0.66285
## CityLewiston 2.746e+02 6.667e+02 0.412 0.68048
## `CityLincoln Park` 7.423e+01 5.026e+02 0.148 0.88259
## CityLinden -2.233e+02 6.511e+02 -0.343 0.73166
## CityLindenhurst 5.714e+02 6.369e+02 0.897 0.36964
## `CityLittle Rock` 7.674e+01 4.633e+02 0.166 0.86844
## CityLittleton -1.450e+02 6.311e+02 -0.230 0.81828
## CityLodi 2.823e+02 6.355e+02 0.444 0.65691
## CityLogan 1.213e+02 4.933e+02 0.246 0.80573
## `CityLong Beach` 4.165e+02 3.951e+02 1.054 0.29187
## CityLongmont 3.021e+02 4.806e+02 0.629 0.52962
## CityLongview 2.838e+02 5.532e+02 0.513 0.60799
## CityLorain 4.745e+02 4.297e+02 1.104 0.26948
## `CityLos Angeles` 4.737e+02 3.907e+02 1.212 0.22540
## CityLouisville 3.049e+02 3.874e+02 0.787 0.43127
## CityLoveland 2.165e+02 4.581e+02 0.473 0.63651
## CityLowell 2.613e+02 4.167e+02 0.627 0.53057
## CityLubbock 3.371e+02 4.671e+02 0.722 0.47049
## CityMacon 2.252e+02 4.405e+02 0.511 0.60925
## CityMadison 4.916e+02 4.701e+02 1.046 0.29568
## CityMalden 9.332e+01 4.894e+02 0.191 0.84879
## CityManchester 3.493e+02 4.398e+02 0.794 0.42710
## CityManhattan 2.892e+02 6.664e+02 0.434 0.66432
## CityMansfield 2.529e+02 5.302e+02 0.477 0.63341
## CityManteca 3.928e+02 5.271e+02 0.745 0.45609
## `CityMaple Grove` 5.178e+02 4.829e+02 1.072 0.28359
## CityMargate -2.131e+02 6.548e+02 -0.325 0.74486
## CityMarietta 2.872e+02 4.403e+02 0.652 0.51433
## CityMarion 4.261e+02 4.072e+02 1.046 0.29537
## CityMarlborough 1.919e+02 6.375e+02 0.301 0.76336
## CityMarysville -4.978e+01 6.573e+02 -0.076 0.93964
## CityMason 3.405e+02 4.823e+02 0.706 0.48021
## CityMcallen 3.441e+02 4.107e+02 0.838 0.40204
## CityMedford 4.451e+02 4.672e+02 0.953 0.34072
## CityMedina 2.784e+02 4.245e+02 0.656 0.51200
## CityMelbourne -2.902e+02 6.548e+02 -0.443 0.65761
## CityMemphis 3.687e+02 4.077e+02 0.904 0.36582
## CityMentor 3.285e+02 4.369e+02 0.752 0.45212
## CityMeriden 4.319e+02 4.375e+02 0.987 0.32362
## CityMeridian 2.142e+02 8.825e+02 0.243 0.80824
## CityMesa 8.584e+01 2.712e+02 0.316 0.75165
## CityMesquite 3.490e+02 4.529e+02 0.771 0.44097
## CityMiami -2.099e+02 4.272e+02 -0.491 0.62324
## CityMiddletown 4.623e+02 4.470e+02 1.034 0.30107
## CityMidland 3.464e+02 4.382e+02 0.791 0.42923
## CityMilford 3.027e+02 4.675e+02 0.647 0.51733
## CityMilwaukee 2.068e+02 4.469e+02 0.463 0.64360
## CityMinneapolis 7.164e+02 4.262e+02 1.681 0.09285 .
## CityMiramar -3.649e+02 4.774e+02 -0.764 0.44463
## CityMishawaka 2.137e+02 5.242e+02 0.408 0.68352
## `CityMission Viejo` 4.004e+02 4.639e+02 0.863 0.38810
## CityMissoula 5.582e+02 6.662e+02 0.838 0.40209
## `CityMissouri City` 1.049e+02 6.369e+02 0.165 0.86913
## CityMobile 1.495e+02 4.233e+02 0.353 0.72385
## CityModesto 2.642e+02 5.271e+02 0.501 0.61621
## CityMonroe 4.584e+02 4.245e+02 1.080 0.28021
## CityMontebello 4.886e+02 6.349e+02 0.770 0.44161
## CityMontgomery 2.491e+02 4.230e+02 0.589 0.55595
## CityMoorhead 3.397e+02 5.436e+02 0.625 0.53207
## `CityMoreno Valley` 4.998e+02 4.287e+02 1.166 0.24371
## `CityMorgan Hill` 2.437e+02 4.639e+02 0.525 0.59941
## CityMorristown 6.870e+01 4.574e+02 0.150 0.88060
## `CityMount Pleasant` 2.579e+02 5.313e+02 0.485 0.62745
## `CityMount Vernon` 4.229e+02 4.314e+02 0.980 0.32697
## CityMurfreesboro 2.117e+02 4.232e+02 0.500 0.61691
## CityMurray 1.140e+02 5.260e+02 0.217 0.82844
## CityMurrieta NA NA NA NA
## CityMuskogee 1.600e+02 5.646e+02 0.283 0.77694
## CityNaperville 1.589e+02 4.125e+02 0.385 0.70001
## CityNashua 4.877e+02 5.488e+02 0.889 0.37424
## CityNashville 3.487e+02 4.072e+02 0.856 0.39182
## `CityNew Albany` 1.343e+02 4.826e+02 0.278 0.78078
## `CityNew Bedford` 1.049e+02 4.537e+02 0.231 0.81715
## `CityNew Brunswick` 1.203e+02 6.516e+02 0.185 0.85358
## `CityNew Castle` -8.239e+00 5.241e+02 -0.016 0.98746
## `CityNew Rochelle` 2.582e+02 4.276e+02 0.604 0.54587
## `CityNew York City` 4.270e+02 3.938e+02 1.084 0.27832
## CityNewark 4.398e+02 3.945e+02 1.115 0.26494
## `CityNewport News` 2.057e+02 4.189e+02 0.491 0.62333
## `CityNiagara Falls` 2.987e+02 4.886e+02 0.611 0.54101
## CityNoblesville 7.526e+02 4.825e+02 1.560 0.11886
## CityNorfolk NA NA NA NA
## CityNormal 2.232e+02 6.211e+02 0.359 0.71930
## CityNorman 1.075e+03 6.663e+02 1.613 0.10678
## `CityNorth Charleston` 4.447e+02 6.432e+02 0.691 0.48931
## `CityNorth Las Vegas` 4.781e+02 5.050e+02 0.947 0.34380
## `CityNorth Miami` -2.681e+02 5.507e+02 -0.487 0.62638
## CityNorwich 4.730e+02 5.023e+02 0.942 0.34639
## `CityOak Park` 3.201e+02 4.830e+02 0.663 0.50757
## CityOakland 4.683e+02 4.046e+02 1.158 0.24707
## CityOceanside 3.348e+02 4.025e+02 0.832 0.40552
## CityOdessa 3.187e+02 4.535e+02 0.703 0.48220
## `CityOklahoma City` 3.104e+02 4.536e+02 0.684 0.49375
## CityOlathe 3.329e+02 4.936e+02 0.674 0.50010
## CityOlympia 3.479e+02 4.805e+02 0.724 0.46909
## CityOmaha 2.750e+02 4.506e+02 0.610 0.54169
## CityOntario NA NA NA NA
## CityOrange 8.103e+00 4.638e+02 0.017 0.98606
## CityOrem 3.595e+02 4.738e+02 0.759 0.44807
## `CityOrland Park` 2.806e+02 6.209e+02 0.452 0.65135
## CityOrlando -4.107e+02 4.501e+02 -0.912 0.36165
## `CityOrmond Beach` NA NA NA NA
## CityOswego 5.373e+02 5.098e+02 1.054 0.29189
## `CityOverland Park` 2.346e+02 4.930e+02 0.476 0.63416
## CityOwensboro 3.597e+02 5.244e+02 0.686 0.49281
## CityOxnard 5.582e+02 4.242e+02 1.316 0.18829
## CityPalatine 3.586e+01 6.209e+02 0.058 0.95395
## `CityPalm Coast` -2.981e+02 5.110e+02 -0.583 0.55966
## `CityPark Ridge` 4.318e+02 5.099e+02 0.847 0.39705
## CityParker 1.800e+02 4.275e+02 0.421 0.67381
## CityParma 4.726e+02 4.209e+02 1.123 0.26158
## CityPasadena 4.038e+02 3.971e+02 1.017 0.30925
## CityPasco 4.592e+02 4.720e+02 0.973 0.33060
## CityPassaic -9.670e+01 4.639e+02 -0.208 0.83490
## CityPaterson -6.006e+01 4.338e+02 -0.138 0.88988
## CityPearland 3.296e+02 4.889e+02 0.674 0.50026
## `CityPembroke Pines` -3.067e+02 4.458e+02 -0.688 0.49152
## CityPensacola -3.436e+02 6.548e+02 -0.525 0.59974
## CityPeoria 1.225e+02 2.896e+02 0.423 0.67238
## `CityPerth Amboy` 1.242e+01 4.728e+02 0.026 0.97904
## CityPharr 3.389e+02 4.890e+02 0.693 0.48839
## CityPhiladelphia 7.616e+02 4.341e+02 1.754 0.07941 .
## CityPhoenix 2.171e+02 2.602e+02 0.834 0.40421
## `CityPico Rivera` 4.303e+02 6.353e+02 0.677 0.49823
## `CityPine Bluff` 7.590e+01 5.723e+02 0.133 0.89449
## CityPlainfield 1.580e+02 4.457e+02 0.355 0.72291
## CityPlano 3.827e+02 4.226e+02 0.905 0.36524
## CityPlantation -3.256e+02 4.532e+02 -0.718 0.47255
## `CityPleasant Grove` 3.028e+02 4.850e+02 0.624 0.53233
## CityPocatello 2.258e+02 8.547e+02 0.264 0.79167
## CityPomona 4.865e+02 4.499e+02 1.081 0.27965
## `CityPompano Beach` -3.501e+02 5.111e+02 -0.685 0.49336
## `CityPort Arthur` 1.668e+02 4.538e+02 0.368 0.71321
## `CityPort Orange` -2.151e+02 6.551e+02 -0.328 0.74271
## `CityPort Saint Lucie` -5.578e+02 5.507e+02 -1.013 0.31116
## CityPortage 3.489e+02 6.327e+02 0.551 0.58134
## CityPortland 3.160e+02 4.085e+02 0.773 0.43928
## CityProvidence 2.675e+02 4.503e+02 0.594 0.55252
## CityProvo 3.165e+02 4.737e+02 0.668 0.50409
## CityPueblo 2.151e+02 4.275e+02 0.503 0.61492
## CityQuincy 1.045e+02 3.919e+02 0.267 0.78974
## CityRaleigh 1.903e+02 4.262e+02 0.447 0.65521
## `CityRancho Cucamonga` 4.721e+02 4.638e+02 1.018 0.30877
## `CityRapid City` 2.984e+02 6.665e+02 0.448 0.65438
## CityReading 7.628e+02 4.880e+02 1.563 0.11802
## CityRedding 4.925e+02 6.351e+02 0.775 0.43807
## CityRedlands 5.128e+02 4.127e+02 1.243 0.21399
## CityRedmond 2.625e+02 4.265e+02 0.615 0.53828
## `CityRedondo Beach` 4.412e+02 4.406e+02 1.002 0.31659
## `CityRedwood City` 3.236e+02 6.348e+02 0.510 0.61023
## CityReno 1.918e+02 5.684e+02 0.337 0.73580
## CityRenton 1.112e+02 5.531e+02 0.201 0.84069
## CityRevere 1.099e+02 4.536e+02 0.242 0.80864
## CityRichardson 7.320e+02 5.299e+02 1.381 0.16725
## CityRichmond 2.564e+02 3.867e+02 0.663 0.50724
## `CityRio Rancho` 2.487e+02 5.645e+02 0.441 0.65958
## CityRiverside 5.939e+02 4.184e+02 1.419 0.15581
## CityRochester 4.060e+02 4.006e+02 1.013 0.31087
## `CityRochester Hills` 1.467e+02 6.480e+02 0.226 0.82091
## `CityRock Hill` 3.467e+02 6.432e+02 0.539 0.58994
## CityRockford 3.829e+02 4.026e+02 0.951 0.34160
## CityRockville 1.625e+02 4.715e+02 0.345 0.73037
## CityRogers -2.275e+02 6.733e+02 -0.338 0.73540
## CityRome 3.144e+02 4.530e+02 0.694 0.48766
## CityRomeoville 1.803e+02 6.206e+02 0.291 0.77140
## CityRoseville 3.583e+02 4.033e+02 0.889 0.37424
## CityRoswell 3.957e+02 4.099e+02 0.965 0.33438
## `CityRound Rock` 1.366e+03 4.535e+02 3.012 0.00260 **
## `CityRoyal Oak` 3.042e+02 5.427e+02 0.560 0.57520
## CitySacramento 7.530e+02 4.183e+02 1.800 0.07190 .
## CitySaginaw 9.405e+01 4.593e+02 0.205 0.83778
## `CitySaint Charles` 1.605e+02 4.126e+02 0.389 0.69738
## `CitySaint Cloud` 4.993e+02 5.434e+02 0.919 0.35826
## `CitySaint Louis` 1.072e+02 4.868e+02 0.220 0.82572
## `CitySaint Paul` 2.300e+02 5.436e+02 0.423 0.67222
## `CitySaint Peters` 1.642e+02 6.363e+02 0.258 0.79641
## `CitySaint Petersburg` -2.404e+02 4.421e+02 -0.544 0.58667
## CitySalem 2.975e+02 3.988e+02 0.746 0.45568
## CitySalinas 4.271e+02 4.500e+02 0.949 0.34254
## `CitySalt Lake City` 1.724e+02 4.738e+02 0.364 0.71601
## `CitySan Angelo` 1.816e+02 4.891e+02 0.371 0.71051
## `CitySan Antonio` 6.551e+02 4.002e+02 1.637 0.10162
## `CitySan Bernardino` 4.763e+02 4.287e+02 1.111 0.26659
## `CitySan Clemente` 4.601e+02 6.352e+02 0.724 0.46894
## `CitySan Diego` 4.938e+02 3.925e+02 1.258 0.20841
## `CitySan Francisco` 4.895e+02 3.909e+02 1.252 0.21046
## `CitySan Gabriel` 7.812e+02 4.859e+02 1.608 0.10796
## `CitySan Jose` 4.044e+02 3.997e+02 1.012 0.31167
## `CitySan Luis Obispo` 4.812e+02 6.353e+02 0.757 0.44880
## `CitySan Marcos` 3.295e+02 4.889e+02 0.674 0.50041
## `CitySan Mateo` 4.075e+02 6.357e+02 0.641 0.52153
## `CitySandy Springs` 2.054e+02 4.185e+02 0.491 0.62353
## CitySanford -2.729e+02 5.504e+02 -0.496 0.62000
## `CitySanta Ana` 3.506e+02 4.183e+02 0.838 0.40191
## `CitySanta Barbara` 7.887e+02 4.337e+02 1.818 0.06906 .
## `CitySanta Clara` 4.386e+02 4.500e+02 0.975 0.32975
## `CitySanta Fe` 4.963e+01 5.644e+02 0.088 0.92992
## `CitySanta Maria` 3.857e+02 6.355e+02 0.607 0.54395
## CityScottsdale 9.728e+01 2.901e+02 0.335 0.73733
## CitySeattle 3.787e+02 4.257e+02 0.890 0.37364
## CitySheboygan 2.211e+02 5.064e+02 0.437 0.66245
## CityShelton 4.005e+02 5.425e+02 0.738 0.46045
## `CitySierra Vista` 1.354e+02 3.833e+02 0.353 0.72401
## `CitySioux Falls` 2.107e+02 4.698e+02 0.448 0.65386
## CitySkokie 1.956e+02 4.068e+02 0.481 0.63055
## CitySmyrna 2.388e+02 4.029e+02 0.593 0.55336
## `CitySouth Bend` 1.313e+02 4.606e+02 0.285 0.77561
## CitySouthaven 2.704e+02 4.766e+02 0.567 0.57048
## CitySparks 2.599e+02 5.684e+02 0.457 0.64754
## CitySpokane 1.070e+02 4.802e+02 0.223 0.82371
## CitySpringdale 1.539e+02 6.730e+02 0.229 0.81916
## CitySpringfield 3.413e+02 3.871e+02 0.882 0.37795
## `CitySterling Heights` 2.060e+02 5.428e+02 0.379 0.70436
## CityStockton 3.958e+02 4.636e+02 0.854 0.39324
## CitySuffolk 3.816e+02 4.385e+02 0.870 0.38427
## CitySummerville 2.241e+02 5.367e+02 0.418 0.67631
## CitySunnyvale 4.319e+02 4.405e+02 0.980 0.32688
## CitySuperior 2.392e+02 4.787e+02 0.500 0.61736
## CityTallahassee -1.343e+02 4.396e+02 -0.306 0.75998
## CityTamarac 7.514e+01 4.901e+02 0.153 0.87816
## CityTampa -2.412e+02 4.309e+02 -0.560 0.57565
## CityTaylor 1.930e+02 5.026e+02 0.384 0.70103
## CityTemecula 5.550e+02 4.861e+02 1.142 0.25363
## CityTempe 1.266e+02 2.933e+02 0.432 0.66609
## CityTexarkana -7.687e+01 5.721e+02 -0.134 0.89311
## `CityTexas City` 1.411e+02 4.895e+02 0.288 0.77312
## `CityThe Colony` 2.752e+02 5.307e+02 0.518 0.60414
## CityThomasville 2.012e+02 5.415e+02 0.372 0.71019
## CityThornton 1.454e+02 4.279e+02 0.340 0.73410
## `CityThousand Oaks` 4.215e+02 4.499e+02 0.937 0.34876
## CityTigard 5.012e+02 4.374e+02 1.146 0.25193
## `CityTinley Park` -9.046e+00 6.205e+02 -0.015 0.98837
## CityToledo 3.288e+02 3.974e+02 0.827 0.40801
## CityTorrance 8.018e+02 4.636e+02 1.729 0.08378 .
## CityTrenton 1.525e+01 4.356e+02 0.035 0.97207
## CityTroy 3.650e+02 4.007e+02 0.911 0.36227
## CityTucson 1.341e+02 2.673e+02 0.502 0.61588
## CityTulsa 2.396e+02 4.516e+02 0.530 0.59580
## CityTuscaloosa 2.367e+01 6.367e+02 0.037 0.97035
## `CityTwin Falls` 3.123e+02 9.055e+02 0.345 0.73023
## CityTyler 4.251e+02 4.533e+02 0.938 0.34839
## CityUrbandale 4.148e+02 5.126e+02 0.809 0.41845
## CityUtica 3.446e+02 4.314e+02 0.799 0.42443
## CityVacaville 1.819e+02 6.355e+02 0.286 0.77463
## CityVallejo 6.084e+02 4.638e+02 1.312 0.18966
## CityVancouver 4.134e+02 4.803e+02 0.861 0.38946
## CityVineland -9.540e+01 4.637e+02 -0.206 0.83702
## `CityVirginia Beach` 3.727e+02 4.088e+02 0.912 0.36191
## CityVisalia 3.824e+02 4.639e+02 0.824 0.40981
## CityWaco 4.243e+02 4.441e+02 0.955 0.33940
## `CityWarner Robins` 1.587e+02 5.272e+02 0.301 0.76337
## CityWarwick 2.927e+02 5.260e+02 0.556 0.57796
## CityWashington 1.671e+02 4.673e+02 0.358 0.72062
## CityWaterbury 3.908e+02 4.432e+02 0.882 0.37799
## CityWaterloo 4.514e+02 6.559e+02 0.688 0.49133
## CityWatertown 4.761e+02 4.316e+02 1.103 0.26998
## CityWaukesha -6.911e+00 6.668e+02 -0.010 0.99173
## CityWausau 1.464e+02 5.061e+02 0.289 0.77232
## CityWaynesboro 4.268e+02 4.265e+02 1.001 0.31693
## `CityWest Allis` -4.904e+01 6.666e+02 -0.074 0.94135
## `CityWest Jordan` 2.145e+02 4.933e+02 0.435 0.66371
## `CityWest Palm Beach` -3.271e+02 5.112e+02 -0.640 0.52229
## CityWestfield 9.824e+00 4.729e+02 0.021 0.98342
## CityWestland 2.396e+02 4.342e+02 0.552 0.58109
## CityWestminster 5.813e+02 4.127e+02 1.409 0.15898
## CityWheeling 3.658e+02 4.669e+02 0.783 0.43338
## CityWhittier NA NA NA NA
## CityWichita 2.067e+02 4.847e+02 0.426 0.66983
## CityWilmington 3.075e+02 4.061e+02 0.757 0.44899
## CityWilson 1.769e+02 4.801e+02 0.369 0.71244
## CityWoodbury 5.053e+02 5.038e+02 1.003 0.31586
## CityWoodland 5.017e+02 4.856e+02 1.033 0.30157
## CityWoodstock 2.013e+02 4.492e+02 0.448 0.65401
## CityWoonsocket 2.216e+02 5.259e+02 0.421 0.67348
## CityYonkers 4.766e+02 4.172e+02 1.142 0.25337
## CityYork 7.131e+02 4.877e+02 1.462 0.14373
## CityYucaipa 4.588e+02 6.353e+02 0.722 0.47022
## CityYuma NA NA NA NA
## StateAlabama 5.669e+00 2.593e+02 0.022 0.98256
## StateArizona 3.670e+01 3.608e+02 0.102 0.91898
## StateArkansas 1.732e+02 3.280e+02 0.528 0.59757
## StateCalifornia -2.407e+02 2.427e+02 -0.992 0.32128
## StateColorado 1.517e+01 2.551e+02 0.059 0.95258
## StateConnecticut -1.430e+02 2.673e+02 -0.535 0.59268
## StateDelaware -1.704e+02 2.537e+02 -0.672 0.50177
## `StateDistrict of Columbia` NA NA NA NA
## StateFlorida 4.736e+02 2.888e+02 1.640 0.10113
## StateGeorgia -2.641e+01 2.388e+02 -0.111 0.91192
## StateIdaho 3.315e+01 7.082e+02 0.047 0.96266
## StateIllinois -4.970e+00 2.434e+02 -0.020 0.98371
## StateIndiana 1.520e+01 2.327e+02 0.065 0.94792
## StateIowa -2.108e+02 2.894e+02 -0.728 0.46634
## StateKansas NA NA NA NA
## StateKentucky -8.211e+01 2.444e+02 -0.336 0.73691
## StateLouisiana -3.876e+02 2.836e+02 -1.367 0.17176
## StateMaine NA NA NA NA
## StateMaryland -4.977e+00 2.663e+02 -0.019 0.98509
## StateMassachusetts 4.542e+01 2.120e+02 0.214 0.83039
## StateMichigan 2.762e+01 2.624e+02 0.105 0.91617
## StateMinnesota -2.167e+02 2.771e+02 -0.782 0.43417
## StateMississippi -5.833e+01 2.754e+02 -0.212 0.83225
## StateMissouri -1.080e+01 2.434e+02 -0.044 0.96461
## StateMontana NA NA NA NA
## StateNebraska NA NA NA NA
## StateNevada 7.503e+01 3.863e+02 0.194 0.84603
## `StateNew Hampshire` -3.693e+02 2.857e+02 -1.293 0.19619
## `StateNew Jersey` 2.467e+02 2.813e+02 0.877 0.38054
## `StateNew Mexico` NA NA NA NA
## `StateNew York` -1.605e+02 2.505e+02 -0.641 0.52158
## `StateNorth Carolina` -2.693e+00 2.714e+02 -0.010 0.99209
## `StateNorth Dakota` NA NA NA NA
## StateOhio -1.100e+02 2.342e+02 -0.470 0.63867
## StateOklahoma NA NA NA NA
## StateOregon -1.895e+02 2.488e+02 -0.761 0.44647
## StatePennsylvania -4.921e+02 3.065e+02 -1.606 0.10838
## `StateRhode Island` NA NA NA NA
## `StateSouth Carolina` -1.253e+02 2.515e+02 -0.498 0.61827
## `StateSouth Dakota` NA NA NA NA
## StateTennessee -4.918e+01 2.247e+02 -0.219 0.82677
## StateTexas -1.655e+02 2.527e+02 -0.655 0.51245
## StateUtah NA NA NA NA
## StateVermont -3.550e+02 3.419e+02 -1.038 0.29915
## StateVirginia -4.155e+01 2.390e+02 -0.174 0.86200
## StateWashington -1.231e+02 2.905e+02 -0.424 0.67184
## `StateWest Virginia` -6.242e+01 4.753e+02 -0.131 0.89552
## StateWisconsin NA NA NA NA
## StateWyoming NA NA NA NA
## RegionCentral NA NA NA NA
## RegionEast NA NA NA NA
## RegionSouth NA NA NA NA
## RegionWest NA NA NA NA
## Category.Furniture -8.857e+02 4.804e+01 -18.436 < 2e-16 ***
## `Category.Office Supplies` -1.384e+03 4.829e+01 -28.668 < 2e-16 ***
## Category.Technology NA NA NA NA
## Sub.CategoryAccessories -1.479e+03 5.571e+01 -26.550 < 2e-16 ***
## Sub.CategoryAppliances -5.642e+01 3.298e+01 -1.711 0.08713 .
## Sub.CategoryArt -2.149e+02 2.775e+01 -7.746 1.07e-14 ***
## Sub.CategoryBinders -1.681e+02 2.886e+01 -5.823 6.01e-09 ***
## Sub.CategoryChairs -2.553e+02 4.442e+01 -5.747 9.44e-09 ***
## Sub.CategoryFurnishings -6.652e+02 4.259e+01 -15.621 < 2e-16 ***
## Sub.CategoryLabels -2.205e+02 3.510e+01 -6.283 3.49e-10 ***
## Sub.CategoryOther -1.240e+02 2.950e+01 -4.204 2.65e-05 ***
## Sub.CategoryPaper -2.068e+02 2.444e+01 -8.463 < 2e-16 ***
## Sub.CategoryPhones -1.303e+03 5.446e+01 -23.936 < 2e-16 ***
## Sub.CategoryStorage NA NA NA NA
## Quantity 5.067e+01 2.517e+00 20.128 < 2e-16 ***
## Discount 1.542e+02 5.528e+01 2.790 0.00529 **
## Profit 1.210e+00 2.398e-02 50.463 < 2e-16 ***
## Days_Between 3.285e+00 5.974e+00 0.550 0.58238
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 500.6 on 7917 degrees of freedom
## Multiple R-squared: 0.4514, Adjusted R-squared: 0.4115
## F-statistic: 11.31 on 576 and 7917 DF, p-value: < 2.2e-16
# Making predictions on the test set
predictions <- predict(lm_model2, newdata = test_data)
## Warning in predict.lm(lm_model2, newdata = test_data): prediction from
## rank-deficient fit; attr(*, "non-estim") has doubtful cases
# Calculating the performance metrics (e.g., RMSE)
rmse <- sqrt(mean((predictions - test_data$Sales)^2))
# Printing the RMSE
print(paste("Root Mean Squared Error (RMSE):", rmse))
## [1] "Root Mean Squared Error (RMSE): 404.803076422241"
# Compare models using AIC
aic_model1 <- AIC(lm_model)
aic_model2 <- AIC(lm_model2)
# Compare models using BIC
bic_model1 <- BIC(lm_model)
bic_model2 <- BIC(lm_model2)
# Printing the AIC and BIC values
print(paste("AIC for lm_model:", aic_model1))
## [1] "AIC for lm_model: 104433.670401841"
print(paste("AIC for lm_model2:", aic_model2))
## [1] "AIC for lm_model2: 130256.169483449"
print(paste("BIC for lm_model:", bic_model1))
## [1] "BIC for lm_model: 108257.616996843"
print(paste("BIC for lm_model2:", bic_model2))
## [1] "BIC for lm_model2: 134329.402133133"
AIC_BIC is better for lm_model as it is lower. Therefore, AIC-BIC suggest model 1 is better.
There are no missing values in the columns.
All of them are more peaked than a normal distribution (kurtosis). None of the columns are normally distributed (skewness). Except for days_between, all of them are right skewed.
So we can see a number of outliers in Sales that can mean a certain number of things. The sales were specifically high on these days, could be the discounts given were high or other fa
The plot seems pretty uniform that means quantity is not affecting the discount.
No strong linear correlations can be seen here.
Hypothesis testing suggests there is no significant difference in quantity ordered between different states.
Hypothesis testing also suggests there is no significant interaction effect between “State” and “Category”
Hypothesis testing also suggests sales differ among the subcategories.
Did feature engineering to create new feature days_between. Encoded categorical columns so they can be accepted by the model.
Data split into train and test sets.
Trained 2 different regression models which predicts on the basis of all the factors, what would be the Sale for a partcular superstore.
Finally compared and chose the right model on the basis of AIC-BIC score.