csv <- read.csv("D:/vito/Kuliah/mandarel kuis/avgIQpercountry.csv", sep = ","); csv
## Rank Country Average.IQ Continent
## 1 1 Japan 106.48 Asia
## 2 2 Taiwan 106.47 Asia
## 3 3 Singapore 105.89 Asia
## 4 4 Hong Kong 105.37 Asia
## 5 5 China 104.10 Asia
## 6 6 South Korea 102.35 Asia
## 7 7 Belarus 101.60 Europe
## 8 8 Finland 101.20 Europe
## 9 9 Liechtenstein 101.07 Europe
## 10 10 Germany 100.74 Europe
## 11 11 Netherlands 100.74 Europe
## 12 12 Estonia 100.72 Europe
## 13 13 Luxembourg 99.87 Europe
## 14 14 Macao 99.82 Asia
## 15 15 Cambodia 99.75 Asia
## 16 16 Canada 99.52 North America
## 17 17 Australia 99.24 Oceania
## 18 18 Hungary 99.24 Europe
## 19 19 Switzerland 99.24 Europe
## 20 20 United Kingdom 99.12 Europe
## 21 21 North Korea 98.82 Asia
## 22 22 Slovenia 98.60 Europe
## 23 23 New Zealand 98.57 Oceania
## 24 24 Austria 98.38 Europe
## 25 25 Iceland 98.26 Europe
## 26 26 Denmark 97.83 Europe
## 27 27 Belgium 97.49 Europe
## 28 28 United States 97.43 North America
## 29 29 Norway 97.13 Europe
## 30 30 Sweden 97.00 Europe
## 31 31 France 96.69 Europe
## 32 32 Poland 96.35 Europe
## 33 33 Slovakia 96.32 Europe
## 34 34 Russia 96.29 Europe/Asia
## 35 35 Lithuania 95.89 Europe
## 36 36 Croatia 95.75 Europe
## 37 37 Andorra 95.20 Europe
## 38 38 Ireland 95.13 Europe
## 39 39 Czech republic 94.92 Europe
## 40 40 Latvia 94.79 Europe
## 41 41 Italy 94.23 Europe
## 42 42 New Caledonia 93.92 Oceania
## 43 43 Vanuatu 93.92 Oceania
## 44 44 Spain 93.90 Europe
## 45 45 Bermuda 93.48 North America
## 46 46 Cyprus 93.39 Europe
## 47 47 Portugal 92.77 Europe
## 48 48 Israel 92.43 Asia
## 49 49 Barbados 91.60 Central America
## 50 50 Malta 91.27 Europe
## 51 51 Myanmar 91.18 Asia
## 52 52 Mongolia 91.03 Asia
## 53 53 Bulgaria 90.99 Europe
## 54 54 Greece 90.77 Europe
## 55 55 Suriname 90.29 South America
## 56 56 Ukraine 90.07 Europe
## 57 57 Moldavia 89.98 Europe
## 58 58 Serbia 89.60 Europe
## 59 59 Vietnam 89.53 Asia
## 60 60 Iraq 89.28 Asia
## 61 61 Uzbekistan 89.01 Asia
## 62 62 Kazakhstan 88.89 Asia
## 63 63 Thailand 88.87 Asia
## 64 64 Armenia 88.82 Asia
## 65 65 Bosnia and Herzegovina 88.54 Europe
## 66 66 Costa Rica 88.34 Central America
## 67 67 Bhutan 87.94 Asia
## 68 68 Chile 87.89 South America
## 69 69 Mexico 87.73 North America
## 70 70 Tajikistan 87.71 Asia
## 71 71 Uruguay 87.59 South America
## 72 72 Brunei 87.58 Asia
## 73 73 Malaysia 87.58 Asia
## 74 74 Bahamas 86.99 Central America
## 75 75 Romania 86.88 Europe
## 76 76 Türkiye 86.80 Europe/Asia
## 77 77 Argentina 86.63 South America
## 78 78 Sri Lanka 86.62 Asia
## 79 79 Mauritius 86.56 Africa
## 80 80 Turkmenistan 85.86 Asia
## 81 81 Montenegro 85.78 Europe
## 82 82 Trinidad and Tobago 85.63 Central America
## 83 83 Azerbaijan 84.81 Asia
## 84 84 Georgia 84.50 Europe/Asia
## 85 85 Turks and Caicos Islands 84.29 Central America
## 86 86 Paraguay 84.04 South America
## 87 87 Federated States of Micronesia 83.96 Oceania
## 88 88 Fiji 83.96 Oceania
## 89 89 Marshall Islands 83.96 Oceania
## 90 90 Solomon Islands 83.96 Oceania
## 91 91 Cuba 83.90 Central America
## 92 92 Bahrain 83.60 Asia
## 93 93 Brazil 83.38 South America
## 94 94 Guyana 83.23 South America
## 95 95 Colombia 83.13 South America
## 96 96 Venezuela 82.99 South America
## 97 97 Cayman Islands 82.24 Central America
## 98 98 Afghanistan 82.12 Asia
## 99 99 Haiti 82.10 Central America
## 100 100 Dominican Republic 82.05 Central America
## 101 101 United Arab Emirates 82.05 Asia
## 102 102 Puerto Rico 81.99 Central America
## 103 103 North Macedonia 81.91 Europe
## 104 104 Albania 81.75 Europe
## 105 105 Lebanon 81.70 Asia
## 106 106 Philippines 81.64 Asia
## 107 107 Peru 81.44 South America
## 108 108 Northern Mariana Islands 81.36 Oceania
## 109 109 Laos 80.99 Asia
## 110 110 Libya 80.92 Africa
## 111 111 Qatar 80.78 Asia
## 112 112 Jordan 80.70 Asia
## 113 113 Maldives 80.54 Asia
## 114 114 Iran 80.01 Asia
## 115 115 Pakistan 80.00 Asia
## 116 116 Grenade 79.34 Central America
## 117 117 Tunisia 79.22 Africa
## 118 118 Kyrgyzstan 79.09 Asia
## 119 119 Panama 79.00 Central America
## 120 120 Chad 78.87 Africa
## 121 121 Sudan 78.87 Africa
## 122 122 Seychelles 78.76 Africa
## 123 123 Oman 78.70 Asia
## 124 124 Kuwait 78.64 Asia
## 125 125 East Timor 78.49 Asia
## 126 126 Indonesia 78.49 Asia
## 127 127 Papua New Guinea 78.49 Oceania
## 128 128 Ecuador 78.26 South America
## 129 129 Palestine 77.69 Asia
## 130 130 Senegal 77.37 Africa
## 131 131 Comoros 77.07 Africa
## 132 132 Madagascar 76.79 Africa
## 133 133 British Virgin Islands 76.69 Central America
## 134 134 Bolivia 76.53 South America
## 135 135 Uganda 76.42 Africa
## 136 136 Saudi Arabia 76.36 Asia
## 137 137 Egypt 76.32 Africa
## 138 138 India 76.24 Asia
## 139 139 Algeria 76.00 Africa
## 140 140 Kenya 75.20 Africa
## 141 141 Angola 75.10 Africa
## 142 142 Jamaica 75.08 Central America
## 143 143 Tanzania 74.95 Africa
## 144 144 Syria 74.41 Asia
## 145 145 Bangladesh 74.33 Asia
## 146 146 Zimbabwe 74.01 Africa
## 147 147 Burkina Faso 73.80 Africa
## 148 148 Saint Lucia 73.68 Central America
## 149 149 Mozambique 72.50 Africa
## 150 150 Burundi 72.09 Africa
## 151 151 Niger 70.82 Africa
## 152 152 Antigua and Barbuda 70.48 Central America
## 153 153 Rwanda 69.95 Africa
## 154 154 Benin 69.71 Africa
## 155 155 Malawi 69.70 Africa
## 156 156 El Salvador 69.63 Central America
## 157 157 Botswana 69.45 Africa
## 158 158 Lesotho 68.87 Africa
## 159 159 South Africa 68.87 Africa
## 160 160 Eswatini 68.87 Africa
## 161 161 Eritrea 68.77 Africa
## 162 162 Saint Helena 68.74 Africa
## 163 163 Zambia 68.43 Africa
## 164 164 Ethiopia 68.42 Africa
## 165 165 Djibouti 68.41 Africa
## 166 166 Cameroon 67.76 Africa
## 167 167 Nigeria 67.76 Africa
## 168 168 Somalia 67.67 Africa
## 169 169 Morocco 67.03 Africa
## 170 170 Namibia 66.19 Africa
## 171 171 Dominica 66.03 Central America
## 172 172 Sao Tome and Principe 65.22 Africa
## 173 173 Congo 64.92 Africa
## 174 174 Saint Vincent and the Grenadines 63.42 Central America
## 175 175 Gabon 62.97 Africa
## 176 176 Congo Republic 62.97 Africa
## 177 177 Yemen 62.86 Asia
## 178 178 Belize 62.55 Central America
## 179 179 Central African Republic 62.55 Africa
## 180 180 Honduras 62.16 Central America
## 181 181 Togo 59.83 Africa
## 182 182 Mali 59.76 Africa
## 183 183 Mauritania 59.76 Africa
## 184 184 South Sudan 58.61 Africa
## 185 185 Ghana 58.16 Africa
## 186 186 Costa do Marfim 58.16 Africa
## 187 187 Guinea 53.48 Africa
## 188 188 Nicaragua 52.69 Central America
## 189 189 Gambia 52.68 Africa
## 190 190 Guatemala 47.72 Central America
## 191 191 Liberia 45.07 Africa
## 192 192 Sierra Leone 45.07 Africa
## 193 193 Nepal 42.99 Asia
## Literacy.Rate Nobel.Prices HDI..2021. Mean.years.of.schooling...2021
## 1 0.99 29 0.925 13.4
## 2 0.96 4 NA NA
## 3 0.97 0 0.939 11.9
## 4 0.94 1 0.952 12.2
## 5 0.96 8 0.768 7.6
## 6 0.98 0 0.925 12.5
## 7 1.00 2 0.808 12.1
## 8 1.00 5 0.940 12.9
## 9 1.00 0 0.935 12.5
## 10 0.99 111 0.942 14.1
## 11 0.99 22 0.941 12.6
## 12 1.00 0 0.890 13.5
## 13 1.00 2 0.930 13.0
## 14 0.97 0 NA NA
## 15 0.78 0 0.593 5.1
## 16 0.99 28 0.936 13.8
## 17 0.99 12 0.951 12.7
## 18 0.99 13 0.846 12.2
## 19 0.99 27 0.962 13.9
## 20 0.99 137 0.929 13.4
## 21 1.00 0 NA NA
## 22 1.00 1 0.918 12.8
## 23 0.99 3 0.937 12.9
## 24 0.98 22 0.916 12.3
## 25 0.99 1 0.959 13.8
## 26 0.99 13 0.948 13.0
## 27 0.99 11 0.937 12.4
## 28 0.99 400 0.921 13.7
## 29 1.00 13 0.961 13.0
## 30 0.99 32 0.947 12.6
## 31 0.99 71 0.903 11.6
## 32 1.00 19 0.876 13.2
## 33 1.00 0 0.848 12.9
## 34 1.00 0 0.822 12.8
## 35 1.00 3 0.875 13.5
## 36 0.99 2 0.858 12.2
## 37 1.00 0 0.858 10.6
## 38 0.99 11 0.945 11.6
## 39 0.99 6 0.889 12.9
## 40 1.00 1 0.863 13.3
## 41 0.99 21 0.895 10.7
## 42 0.97 0 NA NA
## 43 0.85 0 0.607 7.1
## 44 0.98 8 0.905 10.6
## 45 0.98 0 NA NA
## 46 0.99 1 0.896 12.4
## 47 0.95 2 0.866 9.6
## 48 0.97 13 0.919 13.3
## 49 1.00 0 0.790 9.9
## 50 0.94 0 0.918 12.2
## 51 0.93 1 0.585 6.4
## 52 0.98 0 0.739 9.4
## 53 0.98 1 0.795 11.4
## 54 0.95 2 0.887 11.4
## 55 0.96 0 0.730 9.8
## 56 1.00 6 0.773 11.1
## 57 0.99 0 0.767 11.8
## 58 0.98 0 0.802 11.4
## 59 0.95 1 0.703 8.4
## 60 0.80 1 0.686 7.9
## 61 1.00 0 0.727 11.9
## 62 1.00 0 0.811 12.3
## 63 0.94 0 0.800 8.7
## 64 1.00 0 0.759 11.3
## 65 0.98 2 0.780 10.5
## 66 0.98 1 0.809 8.8
## 67 0.64 0 0.666 5.2
## 68 0.97 2 0.855 10.9
## 69 0.95 3 0.758 9.2
## 70 1.00 0 0.685 11.3
## 71 0.98 0 0.809 9.0
## 72 0.97 0 0.829 9.2
## 73 0.95 0 0.803 10.6
## 74 0.96 0 0.812 12.6
## 75 0.99 5 0.821 11.3
## 76 0.96 2 0.838 8.6
## 77 0.98 5 0.842 11.1
## 78 0.93 0 0.782 10.8
## 79 0.91 0 0.802 10.4
## 80 1.00 0 0.745 11.3
## 81 0.99 0 0.832 12.2
## 82 0.99 1 0.810 11.6
## 83 1.00 1 0.745 10.5
## 84 1.00 0 0.802 12.8
## 85 0.98 0 NA NA
## 86 0.96 0 0.717 8.9
## 87 0.89 0 0.628 7.8
## 88 0.94 0 0.730 10.9
## 89 0.98 0 0.639 10.9
## 90 0.84 0 0.564 5.7
## 91 1.00 0 0.764 12.5
## 92 0.96 0 0.875 11.0
## 93 0.93 0 0.754 8.1
## 94 0.88 0 0.714 8.6
## 95 0.95 2 0.752 8.9
## 96 0.95 1 0.691 11.1
## 97 0.99 0 NA NA
## 98 0.38 0 0.478 3.0
## 99 0.61 0 0.535 5.6
## 100 0.92 0 0.767 9.3
## 101 0.93 0 0.911 12.7
## 102 0.93 0 NA NA
## 103 0.98 0 0.770 10.2
## 104 0.98 0 0.796 11.3
## 105 0.94 0 0.706 8.7
## 106 0.97 1 0.699 9.0
## 107 0.94 1 0.762 9.9
## 108 0.97 0 NA NA
## 109 0.80 0 0.607 5.4
## 110 0.91 0 0.718 7.6
## 111 0.98 0 0.855 10.0
## 112 0.98 0 0.720 10.4
## 113 0.99 0 0.747 7.3
## 114 0.87 1 0.774 10.6
## 115 0.56 2 0.544 4.5
## 116 0.96 0 0.795 9.0
## 117 0.81 1 0.731 7.4
## 118 0.99 0 0.692 11.4
## 119 0.95 0 0.805 10.5
## 120 0.40 0 0.394 2.6
## 121 0.59 0 0.508 3.8
## 122 0.95 0 0.785 10.3
## 123 0.94 0 0.816 11.7
## 124 0.96 0 0.831 7.3
## 125 0.64 0 NA NA
## 126 0.95 0 0.705 8.6
## 127 0.63 0 0.558 4.7
## 128 0.95 0 0.740 8.8
## 129 0.97 1 0.715 9.9
## 130 0.56 0 0.511 2.9
## 131 0.78 0 0.558 5.1
## 132 0.65 0 0.501 5.1
## 133 0.98 0 NA NA
## 134 0.95 0 0.692 9.8
## 135 0.74 0 0.525 5.7
## 136 0.95 0 0.875 11.3
## 137 0.76 4 0.731 9.6
## 138 0.72 12 0.633 6.7
## 139 0.80 2 0.745 8.1
## 140 0.78 1 0.575 6.7
## 141 0.71 0 0.586 5.4
## 142 0.89 0 0.709 9.2
## 143 0.80 1 0.549 6.4
## 144 0.86 0 0.577 5.1
## 145 0.61 2 0.661 7.4
## 146 0.87 0 0.593 8.7
## 147 0.38 0 0.449 2.1
## 148 0.90 2 0.715 8.5
## 149 0.59 0 0.446 3.2
## 150 0.85 0 0.426 3.1
## 151 0.19 0 0.400 2.1
## 152 0.99 0 0.788 9.3
## 153 0.71 0 0.534 4.4
## 154 0.38 0 0.525 4.3
## 155 0.66 0 0.512 4.5
## 156 0.88 0 0.675 7.2
## 157 0.88 0 0.693 10.3
## 158 0.79 0 0.514 6.0
## 159 0.95 11 0.713 11.4
## 160 0.87 0 0.597 5.6
## 161 0.74 0 0.492 4.9
## 162 0.97 0 NA NA
## 163 0.85 0 0.565 7.2
## 164 0.49 1 0.498 3.2
## 165 0.68 0 0.509 4.1
## 166 0.75 0 0.576 6.2
## 167 0.60 1 0.535 7.2
## 168 0.38 0 NA NA
## 169 0.72 1 0.683 5.9
## 170 0.91 0 0.615 7.2
## 171 0.94 0 0.720 8.1
## 172 0.92 0 0.618 6.2
## 173 0.77 0 0.571 6.2
## 174 0.96 0 0.751 10.8
## 175 0.83 0 0.706 9.4
## 176 0.79 0 0.479 7.0
## 177 0.70 1 0.455 3.2
## 178 0.83 0 0.683 8.8
## 179 0.37 0 0.404 4.3
## 180 0.88 0 0.621 7.1
## 181 0.67 0 0.539 5.0
## 182 0.33 0 0.428 2.3
## 183 0.52 0 0.556 4.9
## 184 0.32 0 0.385 5.7
## 185 0.77 1 0.632 8.3
## 186 0.43 0 NA NA
## 187 0.30 0 0.465 2.2
## 188 0.82 0 0.667 7.1
## 189 0.58 0 0.500 4.6
## 190 0.79 2 0.627 5.7
## 191 0.48 2 0.481 5.1
## 192 0.48 0 0.477 4.6
## 193 0.65 0 0.602 5.1
## GNI...2021 Population...2023
## 1 42274 123294513
## 2 NA 10143543
## 3 90919 6014723
## 4 62607 7491609
## 5 17504 1425671352
## 6 44501 51784059
## 7 18849 9498238
## 8 49452 5545475
## 9 146830 \t39315
## 10 54534 83294633
## 11 55979 17618299
## 12 38048 1322766
## 13 84649 654.768
## 14 NA 704.15
## 15 4079 16944826
## 16 46808 38781292
## 17 49238 26439112
## 18 32789 10156239
## 19 66933 8796669
## 20 45225 67736802
## 21 NA 26160822
## 22 39746 2119675
## 23 44057 5228100
## 24 53619 8958961
## 25 55782 375.319
## 26 60365 5910913
## 27 52293 11686140
## 28 64765 339996564
## 29 64660 5474360
## 30 54489 10612086
## 31 45937 64756584
## 32 33034 41026068
## 33 30690 5795199
## 34 27166 144444359
## 35 37931 2718352
## 36 30132 4008617
## 37 51167 76.965
## 38 76169 5056935
## 39 38745 10495295
## 40 32803 1830212
## 41 42840 58870763
## 42 NA 292.991
## 43 3085 334.506
## 44 38354 47519628
## 45 NA 63.837
## 46 38188 1260138
## 47 33155 10247605
## 48 41524 9174520
## 49 12306 281.996
## 50 38884 535.065
## 51 3851 54577997
## 52 10588 3447157
## 53 23079 6687717
## 54 29002 10341277
## 55 12672 623.237
## 56 13256 36744634
## 57 14875 3435931
## 58 19123 7149077
## 59 7867 98858950
## 60 9977 45504560
## 61 7917 35163944
## 62 23943 19606634
## 63 17030 71801279
## 64 13158 2777971
## 65 15242 3210848
## 66 19974 5212173
## 67 9438 787.425
## 68 24563 19629590
## 69 17896 128455567
## 70 4548 10143543
## 71 21269 3423109
## 72 64490 452.524
## 73 26658 34308525
## 74 30486 412.624
## 75 30027 19892812
## 76 31033 85816199
## 77 20925 45773884
## 78 12578 21893579
## 79 22025 1300557
## 80 13021 6516100
## 81 20839 626.485
## 82 23392 1534937
## 83 14257 10412652
## 84 14664 3728282
## 85 NA 44.104
## 86 12349 6861524
## 87 3696 115.224
## 88 9980 936.375
## 89 4620 41.996
## 90 2482 740.425
## 91 7879 11194449
## 92 39497 1485510
## 93 14370 216422446
## 94 22465 813.834
## 95 14384 52085168
## 96 4811 28838499
## 97 NA 69310
## 98 1824 42239854
## 99 2848 11724764
## 100 17990 11332973
## 101 62574 9516871
## 102 NA 3260314
## 103 15918 2085679
## 104 14131 2832439
## 105 9526 5353930
## 106 8920 117337368
## 107 12246 34352719
## 108 NA 49.796
## 109 7700 7633779
## 110 15336 6888388
## 111 87134 2716391
## 112 9924 11337053
## 113 15448 521.022
## 114 13001 89172767
## 115 4624 240485658
## 116 13484 126.184
## 117 10258 12458223
## 118 4566 6735348
## 119 26957 4468087
## 120 1364 18278568
## 121 3575 48109006
## 122 25831 107.66
## 123 27054 4644384
## 124 52920 4310108
## 125 NA 1360596
## 126 11466 277534123
## 127 4009 10329931
## 128 10312 18190484
## 129 6583 5040000
## 130 3344 17763163
## 131 3142 852.075
## 132 1484 30325732
## 133 NA Â 32291
## 134 8111 12388571
## 135 2181 48582334
## 136 46112 36947025
## 137 11732 112716599
## 138 6590 1428627663
## 139 10800 45606481
## 140 4474 55100587
## 141 5466 36684203
## 142 8834 2825544
## 143 2664 67438106
## 144 4192 23227014
## 145 5472 172954319
## 146 3810 16665409
## 147 2118 23251485
## 148 12048 180.251
## 149 1198 33897354
## 150 732 13238559
## 151 1240 27202843
## 152 16792 94.298
## 153 2210 14094683
## 154 3409 13712828
## 155 1466 20931751
## 156 8296 6364943
## 157 16198 2675353
## 158 2700 2330318
## 159 12948 60414495
## 160 7679 1210822
## 161 1729 3748902
## 162 NA 6.115
## 163 3218 20569738
## 164 2361 126527060
## 165 5025 1136455
## 166 3621 28647293
## 167 4790 223804632
## 168 NA 18143379
## 169 7303 37840044
## 170 8634 2604172
## 171 11488 73.161
## 172 4021 231.856
## 173 2889 6106869
## 174 11961 103.699
## 175 13367 2436567
## 176 1076 102262809
## 177 1314 34449825
## 178 6309 410.825
## 179 966 5742316
## 180 5298 10593798
## 181 2167 9053799
## 182 2133 23293699
## 183 5075 4862989
## 184 768 11088796
## 185 5745 34121985
## 186 NA 28873034
## 187 2481 14190612
## 188 5625 7046311
## 189 2172 2773168
## 190 8723 18092026
## 191 1289 5418377
## 192 1622 8791092
## 193 3877 30896590
View(csv)
dim(csv)
## [1] 193 10
#Average.IQ
boxplot(csv$Average.IQ, main="Rataan IQ", col = "yellow")
quantile(csv$Average.IQ)
## 0% 25% 50% 75% 100%
## 42.99 74.33 82.24 91.60 106.48
sd(csv$Average.IQ)
## [1] 13.33612
mean(csv$Average.IQ)
## [1] 82.04793
max(csv$Average.IQ)
## [1] 106.48
min(csv$Average.IQ)
## [1] 42.99
median(csv$Average.IQ)
## [1] 82.24
#membuat data banyak benua
summary(csv$Continent)
## Length Class Mode
## 193 character character
continentcount <- c(52,48,23,41,3,4,10,12)
continentname <- c("Africa","Asia", "Central America","Europe","Europe/Asia","North America","Oceania","South America")
datacontinent <- data.frame(continentname,continentcount)
datacontinent
## continentname continentcount
## 1 Africa 52
## 2 Asia 48
## 3 Central America 23
## 4 Europe 41
## 5 Europe/Asia 3
## 6 North America 4
## 7 Oceania 10
## 8 South America 12
hist(datacontinent$continentcount, main="Jumlah Benua", col = "green")
mean(csv$Literacy.Rate)
## [1] 0.8642487
max(csv$Literacy.Rate)
## [1] 1
min(csv$Literacy.Rate)
## [1] 0.19
#korelasi Averaeg.IQ dan Literacy.Rate
cor(csv$Average.IQ,csv$Literacy.Rate)
## [1] 0.6347257
plot(csv$Literacy.Rate, csv$Average.IQ, main = "Hubungan Tingkat Literasi dan IQ",
xlab = "Tingat Literasi", ylab = "Rataan IQ",
pch = 19, frame = FALSE)
#Frekuensi Penerima Nobel
hist(csv$Nobel.Prices, main="Frekuensi Nobel", col = "yellow")
#Hubungan HDI dan GNI
plot(csv$HDI..2021., csv$GNI...2021, main = "Hubungan HDI dan GNI",
xlab = "HDI", ylab = "GNI",
pch = 19, frame = FALSE)
#Hubungan Lama Sekolah dan GNI
plot(csv$Mean.years.of.schooling...2021, csv$HDI...2021, main = "Hubungan Lama Sekolah dan GNI",
xlab = "Schooling Year", ylab = "HDI",
pch = 19, frame = FALSE)