Library

library(Lahman)
## Warning: package 'Lahman' was built under R version 4.3.2

Import Data & Data

Automobile Sale data dan pengecilan data hingga 30 observasi juga mengecilkan dan memisahkan data menjadi data dengan 5 peubah numerik dan data dengan 4 peubah karakter

data <- read.csv("C:/Users/acer/Downloads/AutoSalesData.csv", sep=",")
numdata <- data[1:30,1:5]
numdata
##    ORDERNUMBER QUANTITYORDERED PRICEEACH ORDERLINENUMBER    SALES
## 1        10107              30     95.70               2  2871.00
## 2        10121              34     81.35               5  2765.90
## 3        10134              41     94.74               2  3884.34
## 4        10145              45     83.26               6  3746.70
## 5        10168              36     96.66               1  3479.76
## 6        10180              29     86.13               9  2497.77
## 7        10188              48    114.84               1  5512.32
## 8        10211              41    114.84              14  4708.44
## 9        10223              37    107.18               1  3965.66
## 10       10237              23    101.44               7  2333.12
## 11       10251              28    113.88               2  3188.64
## 12       10263              34    108.14               2  3676.76
## 13       10275              45     92.83               1  4177.35
## 14       10285              36    113.88               6  4099.68
## 15       10299              23    112.93               9  2597.39
## 16       10309              41    107.18               5  4394.38
## 17       10318              46     94.74               1  4358.04
## 18       10329              42    104.67               1  4396.14
## 19       10341              41    188.73               9  7737.93
## 20       10361              20     72.55              13  1451.00
## 21       10375              21     34.91              12   733.11
## 22       10388              42     76.36               4  3207.12
## 23       10403              24    101.44               7  2434.56
## 24       10417              66    113.88               2  7516.08
## 25       10103              26    207.87              11  5404.62
## 26       10112              29    248.59               1  7209.11
## 27       10126              38    192.87              11  7329.06
## 28       10140              37    199.30              11  7374.10
## 29       10150              45    244.30               8 10993.50
## 30       10163              21    231.44               1  4860.24
chdata <-data[1:30,c("ORDERDATE","STATUS","PRODUCTLINE","PRODUCTCODE")]
chdata
##     ORDERDATE   STATUS  PRODUCTLINE PRODUCTCODE
## 1  24/02/2018  Shipped  Motorcycles    S10_1678
## 2  07/05/2018  Shipped  Motorcycles    S10_1678
## 3  01/07/2018  Shipped  Motorcycles    S10_1678
## 4  25/08/2018  Shipped  Motorcycles    S10_1678
## 5  28/10/2018  Shipped  Motorcycles    S10_1678
## 6  11/11/2018  Shipped  Motorcycles    S10_1678
## 7  18/11/2018  Shipped  Motorcycles    S10_1678
## 8  15/01/2019  Shipped  Motorcycles    S10_1678
## 9  20/02/2019  Shipped  Motorcycles    S10_1678
## 10 05/04/2019  Shipped  Motorcycles    S10_1678
## 11 18/05/2019  Shipped  Motorcycles    S10_1678
## 12 28/06/2019  Shipped  Motorcycles    S10_1678
## 13 23/07/2019  Shipped  Motorcycles    S10_1678
## 14 27/08/2019  Shipped  Motorcycles    S10_1678
## 15 30/09/2019  Shipped  Motorcycles    S10_1678
## 16 15/10/2019  Shipped  Motorcycles    S10_1678
## 17 02/11/2019  Shipped  Motorcycles    S10_1678
## 18 15/11/2019  Shipped  Motorcycles    S10_1678
## 19 24/11/2019  Shipped  Motorcycles    S10_1678
## 20 17/12/2019  Shipped  Motorcycles    S10_1678
## 21 03/02/2020  Shipped  Motorcycles    S10_1678
## 22 03/03/2020  Shipped  Motorcycles    S10_1678
## 23 08/04/2020  Shipped  Motorcycles    S10_1678
## 24 13/05/2020 Disputed  Motorcycles    S10_1678
## 25 29/01/2018  Shipped Classic Cars    S10_1949
## 26 24/03/2018  Shipped Classic Cars    S10_1949
## 27 28/05/2018  Shipped Classic Cars    S10_1949
## 28 24/07/2018  Shipped Classic Cars    S10_1949
## 29 19/09/2018  Shipped Classic Cars    S10_1949
## 30 20/10/2018  Shipped Classic Cars    S10_1949

Mengurutkan Data

Mengurutkan data numdata berdasarkan SALES dari yang terbesar ke terkecil

numdata[order(numdata$SALES,decreasing=T),]
##    ORDERNUMBER QUANTITYORDERED PRICEEACH ORDERLINENUMBER    SALES
## 29       10150              45    244.30               8 10993.50
## 19       10341              41    188.73               9  7737.93
## 24       10417              66    113.88               2  7516.08
## 28       10140              37    199.30              11  7374.10
## 27       10126              38    192.87              11  7329.06
## 26       10112              29    248.59               1  7209.11
## 7        10188              48    114.84               1  5512.32
## 25       10103              26    207.87              11  5404.62
## 30       10163              21    231.44               1  4860.24
## 8        10211              41    114.84              14  4708.44
## 18       10329              42    104.67               1  4396.14
## 16       10309              41    107.18               5  4394.38
## 17       10318              46     94.74               1  4358.04
## 13       10275              45     92.83               1  4177.35
## 14       10285              36    113.88               6  4099.68
## 9        10223              37    107.18               1  3965.66
## 3        10134              41     94.74               2  3884.34
## 4        10145              45     83.26               6  3746.70
## 12       10263              34    108.14               2  3676.76
## 5        10168              36     96.66               1  3479.76
## 22       10388              42     76.36               4  3207.12
## 11       10251              28    113.88               2  3188.64
## 1        10107              30     95.70               2  2871.00
## 2        10121              34     81.35               5  2765.90
## 15       10299              23    112.93               9  2597.39
## 6        10180              29     86.13               9  2497.77
## 23       10403              24    101.44               7  2434.56
## 10       10237              23    101.44               7  2333.12
## 20       10361              20     72.55              13  1451.00
## 21       10375              21     34.91              12   733.11

Agregasi Data

Menghitung rata-rata dari data frame numdata dengan peubah yaitu QUANTITYORDER

mean(numdata$QUANTITYORDERED)
## [1] 35.63333

Agregasi data dari data frame chdata dengan peubah STATUS

aggregate(chdata$STATUS,list(status=chdata$STATUS),FUN=length)
##     status  x
## 1 Disputed  1
## 2  Shipped 29

Summary & Struktur data

Summary dari data yang sudah dimanipulasi

summary(numdata)
##   ORDERNUMBER    QUANTITYORDERED   PRICEEACH      ORDERLINENUMBER
##  Min.   :10103   Min.   :20.00   Min.   : 34.91   Min.   : 1.00  
##  1st Qu.:10146   1st Qu.:28.25   1st Qu.: 94.74   1st Qu.: 1.25  
##  Median :10230   Median :36.50   Median :107.18   Median : 5.00  
##  Mean   :10237   Mean   :35.63   Mean   :124.55   Mean   : 5.50  
##  3rd Qu.:10316   3rd Qu.:41.75   3rd Qu.:114.84   3rd Qu.: 9.00  
##  Max.   :10417   Max.   :66.00   Max.   :248.59   Max.   :14.00  
##      SALES        
##  Min.   :  733.1  
##  1st Qu.: 2950.4  
##  Median : 4032.7  
##  Mean   : 4430.1  
##  3rd Qu.: 5268.5  
##  Max.   :10993.5
str(numdata)
## 'data.frame':    30 obs. of  5 variables:
##  $ ORDERNUMBER    : int  10107 10121 10134 10145 10168 10180 10188 10211 10223 10237 ...
##  $ QUANTITYORDERED: int  30 34 41 45 36 29 48 41 37 23 ...
##  $ PRICEEACH      : num  95.7 81.3 94.7 83.3 96.7 ...
##  $ ORDERLINENUMBER: int  2 5 2 6 1 9 1 14 1 7 ...
##  $ SALES          : num  2871 2766 3884 3747 3480 ...
summary(chdata)
##   ORDERDATE            STATUS          PRODUCTLINE        PRODUCTCODE       
##  Length:30          Length:30          Length:30          Length:30         
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character
str(chdata)
## 'data.frame':    30 obs. of  4 variables:
##  $ ORDERDATE  : chr  "24/02/2018" "07/05/2018" "01/07/2018" "25/08/2018" ...
##  $ STATUS     : chr  "Shipped" "Shipped" "Shipped" "Shipped" ...
##  $ PRODUCTLINE: chr  "Motorcycles" "Motorcycles" "Motorcycles" "Motorcycles" ...
##  $ PRODUCTCODE: chr  "S10_1678" "S10_1678" "S10_1678" "S10_1678" ...

Boxplot and Histogram

Berikut adalah boxplot dari beberapa peubah numdata dan peubah SALES yang dibuat menjadi per seratus agar boxplot lebih mudah terlihat yang dibuat menjadi data frame baru bernama bpdata

SALESper100 <-numdata[,c("SALES")]/100
bpdata<-cbind(numdata[,2:3],SALESper100)
boxplot(bpdata, main="Boxplot", col="blue")

Histogram dari peubah QUANTITYORDERED

hist(numdata$QUANTITYORDERED,main="Histogram",col="Maroon")

Korelasi

Berikut adalah korelasi dari beberapa peubah numdata dan peubah SALES yang dibuat menjadi per seratus agar lebih mudah terlihat yang dibuat menjadi data frame baru bernama bpdata

cor(bpdata)
##                 QUANTITYORDERED   PRICEEACH SALESper100
## QUANTITYORDERED      1.00000000 -0.01493036   0.5380826
## PRICEEACH           -0.01493036  1.00000000   0.8029814
## SALESper100          0.53808255  0.80298145   1.0000000