R Markdown

library(TukeyC)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(readxl)


E_H_A <- read_excel("C:/Users/LENOVO/Desktop/Datos_Repro.xlsx", 
    sheet = "R(E_H_A)");E_H_A=data.frame(E_H_A)
E_H_A$L_P_R= round(E_H_A$L_P_R, 2);E_H_A
##    Cultivo     Tratamiento Repeticion  L_P_R N_R Peso.callo..mg.
## 1   Romero Apice - Auxinas          1  71.50   2             0.0
## 2   Romero Apice - Auxinas          2  77.00   8             0.0
## 3   Romero Apice - Auxinas          3   0.00   0             0.0
## 4   Romero Apice - Auxinas          4   0.00   0             0.0
## 5   Romero Apice - Auxinas          5  77.00  12             0.0
## 6   Romero  Base - Auxinas          1  84.80   5             0.0
## 7   Romero  Base - Auxinas          2 101.83   6             0.0
## 8   Romero  Base - Auxinas          3 105.00   5             0.0
## 9   Romero  Base - Auxinas          4  73.67   6             0.0
## 10  Romero  Base - Auxinas          5  89.67   6             0.0
## 11  Romero Apice + Auxinas          1   0.00   0             0.0
## 12  Romero Apice + Auxinas          2   0.00   0            37.4
## 13  Romero Apice + Auxinas          3 165.00   1             0.0
## 14  Romero Apice + Auxinas          4  67.00   2             0.0
## 15  Romero Apice + Auxinas          5   0.00   0             0.0
## 16  Romero  Base + Auxinas          1  81.00  13             0.0
## 17  Romero  Base + Auxinas          2  40.00   9             0.0
## 18  Romero  Base + Auxinas          3   0.00   0            43.0
## 19  Romero  Base + Auxinas          4  68.60  21             0.0
## 20  Romero  Base + Auxinas          5   0.00   0            29.7
## 21 Lavanda Apice - Auxinas          1  31.00   3             0.0
## 22 Lavanda Apice - Auxinas          2  98.50   6             0.0
## 23 Lavanda Apice - Auxinas          3  85.86   7             0.0
## 24 Lavanda Apice - Auxinas          4 104.50   6             0.0
## 25 Lavanda Apice - Auxinas          5  88.33   6             0.0
## 26 Lavanda  Base - Auxinas          1  40.00   7             0.0
## 27 Lavanda  Base - Auxinas          2  74.00  12             0.0
## 28 Lavanda  Base - Auxinas          3  74.90  10             0.0
## 29 Lavanda  Base - Auxinas          4  87.00   6             0.0
## 30 Lavanda  Base - Auxinas          5   0.00   0           260.0
## 31 Lavanda Apice + Auxinas          1  85.00   8             0.0
## 32 Lavanda Apice + Auxinas          2  89.30   8             0.0
## 33 Lavanda Apice + Auxinas          3  82.50   9             0.0
## 34 Lavanda Apice + Auxinas          4  78.10  13             0.0
## 35 Lavanda Apice + Auxinas          5  76.20  10             0.0
## 36 Lavanda  Base + Auxinas          1  12.00   1             0.0
## 37 Lavanda  Base + Auxinas          2  79.60   9             0.0
## 38 Lavanda  Base + Auxinas          3  78.90   8             0.0
## 39 Lavanda  Base + Auxinas          4  39.50   4             0.0
## 40 Lavanda  Base + Auxinas          5  72.00   5             0.0
##    Peso.raices..mg.
## 1             240.0
## 2             310.0
## 3               0.0
## 4               0.0
## 5             700.0
## 6             500.0
## 7             880.0
## 8             550.0
## 9             210.0
## 10            460.0
## 11              0.0
## 12              0.0
## 13            220.0
## 14             90.0
## 15              0.0
## 16            583.0
## 17            202.0
## 18              0.0
## 19            362.0
## 20              0.0
## 21            110.0
## 22           1090.0
## 23           1100.0
## 24           1260.0
## 25            570.0
## 26            220.0
## 27           1180.0
## 28            500.0
## 29           1440.0
## 30              0.0
## 31            920.0
## 32           1120.0
## 33           1040.0
## 34           1420.0
## 35           1100.0
## 36              2.7
## 37            880.0
## 38            890.0
## 39            400.0
## 40            260.0
E_H_S<- read_excel("C:/Users/LENOVO/Desktop/Datos_Repro.xlsx", 
    sheet = "R (E_H_S)");E_H_S=data.frame(E_H_S);E_H_S
##    Tipo.de.esqueje Tratamiento Repeticion L_P_R N_R Peso.callo..mg.
## 1          De hoja (- Auxinas)          1   0.0   0             0.0
## 2          De hoja (- Auxinas)          2   0.0   0            23.8
## 3          De hoja (- Auxinas)          3   2.0   6             0.0
## 4          De hoja (- Auxinas)          4   5.0   1             0.0
## 5          De hoja (+ Auxinas)          1   2.0   9             0.0
## 6          De hoja (+ Auxinas)          2   6.0   1             0.0
## 7          De hoja (+ Auxinas)          3   0.0   0             0.0
## 8          De hoja (+ Auxinas)          4   1.0   7             0.0
## 9         De tallo (- Auxinas)          1  74.0   6             0.0
## 10        De tallo (- Auxinas)          2  94.2   6             0.0
## 11        De tallo (- Auxinas)          3  89.0   9             0.0
## 12        De tallo (- Auxinas)          4 119.3   8             0.0
## 13        De tallo (+ Auxinas)          1  31.5   8             0.0
## 14        De tallo (+ Auxinas)          2  25.0  12             0.0
## 15        De tallo (+ Auxinas)          3  64.6  11             0.0
## 16        De tallo (+ Auxinas)          4  27.5  13             0.0
##    Peso.raices..mg.
## 1               0.0
## 2               0.0
## 3              16.9
## 4               9.4
## 5              49.7
## 6              21.7
## 7               0.0
## 8               9.1
## 9             738.5
## 10           1314.7
## 11            768.7
## 12           1220.0
## 13            788.6
## 14            245.5
## 15            616.0
## 16            304.0
E_L <- read_excel("C:/Users/LENOVO/Desktop/Datos_Repro.xlsx", 
    sheet = "R(E_L)"); E_L=data.frame(E_L);E_L
##   Tratamiento Repeticion L_P_R N_R Peso.callo..mg. Peso.raices..mg.
## 1     Aplical          1     0   0               0             0.00
## 2     Aplical          2     0   0               0             0.00
## 3     Aplical          3     0   0               0             0.00
## 4     Aplical          4     0   0               0             0.00
## 5       Tallo          1    17   9               0            98.80
## 6       Tallo          2    53   9               0            76.35
## 7       Tallo          3    52  10               0          1011.70
## 8       Tallo          4    24   5               0            56.60
L_P_R= aov(L_P_R~Tratamiento+Tipo.de.esqueje, E_H_S)
anova(L_P_R)
## Analysis of Variance Table
## 
## Response: L_P_R
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## Tratamiento      1  3189.4  3189.4  7.6329   0.01614 *  
## Tipo.de.esqueje  1 16198.9 16198.9 38.7669 3.086e-05 ***
## Residuals       13  5432.1   417.9                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(L_P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = L_P_R ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                             diff       lwr       upr     p adj
## (+ Auxinas)-(- Auxinas) -28.2375 -50.31809 -6.156914 0.0161394
## 
## $Tipo.de.esqueje
##                     diff      lwr      upr    p adj
## De tallo-De hoja 63.6375 41.55691 85.71809 3.09e-05
tc=TukeyC(L_P_R,'Tratamiento')
plot(tc, title ="L_P_R")

TukeyHSD(L_P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = L_P_R ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                             diff       lwr       upr     p adj
## (+ Auxinas)-(- Auxinas) -28.2375 -50.31809 -6.156914 0.0161394
## 
## $Tipo.de.esqueje
##                     diff      lwr      upr    p adj
## De tallo-De hoja 63.6375 41.55691 85.71809 3.09e-05
tc=TukeyC(L_P_R,'Tipo.de.esqueje')
plot(tc, title ="L_P_R")

datos_resumen= E_H_S |> 
  group_by(Tratamiento, Tipo.de.esqueje) |> 
  summarise(media= mean(L_P_R), 
            desviacion=sd(L_P_R), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Longitud promedio de raíces (mm).")+
  facet_grid(~Tipo.de.esqueje)+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

##Numero raices
N_R= aov(N_R~Tratamiento+Tipo.de.esqueje, E_H_S)
anova(N_R)
## Analysis of Variance Table
## 
## Response: N_R
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## Tratamiento      1  39.062  39.062  4.7992 0.0472980 *  
## Tipo.de.esqueje  1 150.062 150.062 18.4365 0.0008733 ***
## Residuals       13 105.812   8.139                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(N_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = N_R ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                          diff        lwr      upr    p adj
## (+ Auxinas)-(- Auxinas) 3.125 0.04326934 6.206731 0.047298
## 
## $Tipo.de.esqueje
##                   diff      lwr      upr     p adj
## De tallo-De hoja 6.125 3.043269 9.206731 0.0008733
tc=TukeyC(N_R,'Tratamiento')
plot(tc, title ="N_R")

TukeyHSD(N_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = N_R ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                          diff        lwr      upr    p adj
## (+ Auxinas)-(- Auxinas) 3.125 0.04326934 6.206731 0.047298
## 
## $Tipo.de.esqueje
##                   diff      lwr      upr     p adj
## De tallo-De hoja 6.125 3.043269 9.206731 0.0008733
tc=TukeyC(N_R,'Tipo.de.esqueje')
plot(tc, title ="N_R")

datos_resumen= E_H_S |> 
  group_by(Tratamiento, Tipo.de.esqueje) |> 
  summarise(media= mean(N_R), 
            desviacion=sd(N_R), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Numero de raices")+
  facet_grid(~Tipo.de.esqueje)+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

##Peso.raices..mg.
P_R= aov(Peso.raices..mg.~Tratamiento+Tipo.de.esqueje, E_H_S)
anova(P_R)
## Analysis of Variance Table
## 
## Response: Peso.raices..mg.
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## Tratamiento      1  258471  258471  4.4408   0.05508 .  
## Tipo.de.esqueje  1 2167667 2167667 37.2427 3.764e-05 ***
## Residuals       13  756650   58204                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.raices..mg. ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                           diff       lwr     upr    p adj
## (+ Auxinas)-(- Auxinas) -254.2 -514.7995 6.39952 0.055076
## 
## $Tipo.de.esqueje
##                    diff      lwr      upr    p adj
## De tallo-De hoja 736.15 475.5505 996.7495 3.76e-05
tc=TukeyC(P_R,'Tratamiento')
plot(tc, title ="P_R")

TukeyHSD(P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.raices..mg. ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                           diff       lwr     upr    p adj
## (+ Auxinas)-(- Auxinas) -254.2 -514.7995 6.39952 0.055076
## 
## $Tipo.de.esqueje
##                    diff      lwr      upr    p adj
## De tallo-De hoja 736.15 475.5505 996.7495 3.76e-05
tc=TukeyC(P_R,'Tipo.de.esqueje')
plot(tc, title ="P_R")

datos_resumen= E_H_S |> 
  group_by(Tratamiento, Tipo.de.esqueje) |> 
  summarise(media= mean(Peso.raices..mg.), 
            desviacion=sd(Peso.raices..mg.), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Peso callo mg")+
  facet_grid(~Tipo.de.esqueje)+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

##Peso.callo..mg.
P_C= aov(Peso.callo..mg.~Tratamiento+Tipo.de.esqueje, E_H_S)
anova(P_C)
## Analysis of Variance Table
## 
## Response: Peso.callo..mg.
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Tratamiento      1  35.40  35.402       1 0.3356
## Tipo.de.esqueje  1  35.40  35.402       1 0.3356
## Residuals       13 460.23  35.402
TukeyHSD(P_C)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.callo..mg. ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                           diff       lwr      upr     p adj
## (+ Auxinas)-(- Auxinas) -2.975 -9.402097 3.452097 0.3355613
## 
## $Tipo.de.esqueje
##                    diff       lwr      upr     p adj
## De tallo-De hoja -2.975 -9.402097 3.452097 0.3355613
tc=TukeyC(P_C,'Tratamiento')
plot(tc, title ="P_C")

TukeyHSD(P_C)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.callo..mg. ~ Tratamiento + Tipo.de.esqueje, data = E_H_S)
## 
## $Tratamiento
##                           diff       lwr      upr     p adj
## (+ Auxinas)-(- Auxinas) -2.975 -9.402097 3.452097 0.3355613
## 
## $Tipo.de.esqueje
##                    diff       lwr      upr     p adj
## De tallo-De hoja -2.975 -9.402097 3.452097 0.3355613
tc=TukeyC(P_R,'Tipo.de.esqueje')
plot(tc, title ="P_C")

datos_resumen= E_H_S |> 
  group_by(Tratamiento, Tipo.de.esqueje) |> 
  summarise(media= mean(Peso.callo..mg.), 
            desviacion=sd(Peso.callo..mg.), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Peso callo mg")+
  facet_grid(~Tipo.de.esqueje)+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

L_P_R= aov(L_P_R~Tratamiento+Cultivo, E_H_A)
anova(L_P_R)
## Analysis of Variance Table
## 
## Response: L_P_R
##             Df Sum Sq Mean Sq F value Pr(>F)
## Tratamiento  3   3504  1167.8  0.7443 0.5329
## Cultivo      1   1892  1892.3  1.2060 0.2796
## Residuals   35  54915  1569.0
TukeyHSD(L_P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = L_P_R ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                    diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas   0.941 -46.83282 48.71482 0.9999451
## Base - Auxinas-Apice - Auxinas    9.718 -38.05582 57.49182 0.9463118
## Base + Auxinas-Apice - Auxinas  -16.209 -63.98282 31.56482 0.7969930
## Base - Auxinas-Apice + Auxinas    8.777 -38.99682 56.55082 0.9595710
## Base + Auxinas-Apice + Auxinas  -17.150 -64.92382 30.62382 0.7682374
## Base + Auxinas-Base - Auxinas   -25.927 -73.70082 21.84682 0.4696722
## 
## $Cultivo
##                   diff       lwr      upr     p adj
## Romero-Lavanda -13.756 -39.18497 11.67297 0.2796137
tc=TukeyC(L_P_R,'Tratamiento')
plot(tc, title ="L_P_R")

TukeyHSD(L_P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = L_P_R ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                    diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas   0.941 -46.83282 48.71482 0.9999451
## Base - Auxinas-Apice - Auxinas    9.718 -38.05582 57.49182 0.9463118
## Base + Auxinas-Apice - Auxinas  -16.209 -63.98282 31.56482 0.7969930
## Base - Auxinas-Apice + Auxinas    8.777 -38.99682 56.55082 0.9595710
## Base + Auxinas-Apice + Auxinas  -17.150 -64.92382 30.62382 0.7682374
## Base + Auxinas-Base - Auxinas   -25.927 -73.70082 21.84682 0.4696722
## 
## $Cultivo
##                   diff       lwr      upr     p adj
## Romero-Lavanda -13.756 -39.18497 11.67297 0.2796137
tc=TukeyC(L_P_R,'Cultivo')
plot(tc, title ="L_P_R")

datos_resumen= E_H_A |> 
  group_by(Tratamiento, Cultivo) |> 
  summarise(media= mean(L_P_R), 
            desviacion=sd(L_P_R), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Longitud promedio de raíces (mm).")+
  facet_grid(~Cultivo)+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

##Numero raices
N_R= aov(N_R~Tratamiento+Cultivo, E_H_A)
anova(N_R)
## Analysis of Variance Table
## 
## Response: N_R
##             Df Sum Sq Mean Sq F value Pr(>F)
## Tratamiento  3   28.1   9.367  0.4177 0.7414
## Cultivo      1   44.1  44.100  1.9665 0.1696
## Residuals   35  784.9  22.426
TukeyHSD(N_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = N_R ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                 diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas  0.1 -5.611543 5.811543 0.9999614
## Base - Auxinas-Apice - Auxinas   1.3 -4.411543 7.011543 0.9269899
## Base + Auxinas-Apice - Auxinas   2.0 -3.711543 7.711543 0.7812761
## Base - Auxinas-Apice + Auxinas   1.2 -4.511543 6.911543 0.9413092
## Base + Auxinas-Apice + Auxinas   1.9 -3.811543 7.611543 0.8063450
## Base + Auxinas-Base - Auxinas    0.7 -5.011543 6.411543 0.9873273
## 
## $Cultivo
##                diff       lwr       upr     p adj
## Romero-Lavanda -2.1 -5.140131 0.9401308 0.1696284
tc=TukeyC(N_R,'Tratamiento')
plot(tc, title ="N_R")

TukeyHSD(N_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = N_R ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                 diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas  0.1 -5.611543 5.811543 0.9999614
## Base - Auxinas-Apice - Auxinas   1.3 -4.411543 7.011543 0.9269899
## Base + Auxinas-Apice - Auxinas   2.0 -3.711543 7.711543 0.7812761
## Base - Auxinas-Apice + Auxinas   1.2 -4.511543 6.911543 0.9413092
## Base + Auxinas-Apice + Auxinas   1.9 -3.811543 7.611543 0.8063450
## Base + Auxinas-Base - Auxinas    0.7 -5.011543 6.411543 0.9873273
## 
## $Cultivo
##                diff       lwr       upr     p adj
## Romero-Lavanda -2.1 -5.140131 0.9401308 0.1696284
tc=TukeyC(N_R,'Cultivo')
plot(tc, title ="N_R")

datos_resumen= E_H_A |> 
  group_by(Tratamiento, Cultivo) |> 
  summarise(media= mean(N_R), 
            desviacion=sd(N_R), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Numero de raices")+
  facet_grid(~Cultivo)+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+


##Peso.raices..mg.
P_R= aov(Peso.raices..mg.~Tratamiento+Cultivo, E_H_A)
anova(P_R)
## Analysis of Variance Table
## 
## Response: Peso.raices..mg.
##             Df  Sum Sq Mean Sq F value    Pr(>F)    
## Tratamiento  3  370945  123648  0.8183 0.4925358    
## Cultivo      1 2598807 2598807 17.1986 0.0002036 ***
## Residuals   35 5288702  151106                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.raices..mg. ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                    diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas   53.00 -415.8358 521.8358 0.9899896
## Base - Auxinas-Apice - Auxinas    56.00 -412.8358 524.8358 0.9882430
## Base + Auxinas-Apice - Auxinas  -180.03 -648.8658 288.8058 0.7299308
## Base - Auxinas-Apice + Auxinas     3.00 -465.8358 471.8358 0.9999981
## Base + Auxinas-Apice + Auxinas  -233.03 -701.8658 235.8058 0.5441306
## Base + Auxinas-Base - Auxinas   -236.03 -704.8658 232.8058 0.5335417
## 
## $Cultivo
##                    diff       lwr       upr     p adj
## Romero-Lavanda -509.785 -759.3362 -260.2338 0.0002036
tc=TukeyC(P_R,'Tratamiento')
plot(tc, title ="P_R")

TukeyHSD(P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.raices..mg. ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                    diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas   53.00 -415.8358 521.8358 0.9899896
## Base - Auxinas-Apice - Auxinas    56.00 -412.8358 524.8358 0.9882430
## Base + Auxinas-Apice - Auxinas  -180.03 -648.8658 288.8058 0.7299308
## Base - Auxinas-Apice + Auxinas     3.00 -465.8358 471.8358 0.9999981
## Base + Auxinas-Apice + Auxinas  -233.03 -701.8658 235.8058 0.5441306
## Base + Auxinas-Base - Auxinas   -236.03 -704.8658 232.8058 0.5335417
## 
## $Cultivo
##                    diff       lwr       upr     p adj
## Romero-Lavanda -509.785 -759.3362 -260.2338 0.0002036
tc=TukeyC(P_R,'Cultivo')
plot(tc, title ="P_R")

datos_resumen= E_H_A |> 
  group_by(Tratamiento, Cultivo) |> 
  summarise(media= mean(Peso.raices..mg.), 
            desviacion=sd(Peso.raices..mg.), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Peso callo mg")+
  facet_grid(~Cultivo)+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+



##Peso.callo..mg.
P_C= aov(Peso.callo..mg.~Tratamiento+Cultivo, E_H_A)
anova(P_C)
## Analysis of Variance Table
## 
## Response: Peso.callo..mg.
##             Df Sum Sq Mean Sq F value Pr(>F)
## Tratamiento  3   4004 1334.68  0.7329 0.5394
## Cultivo      1    562  561.75  0.3085 0.5822
## Residuals   35  63740 1821.13
TukeyHSD(P_C)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.callo..mg. ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                   diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas   3.74 -47.72966 55.20966 0.9972822
## Base - Auxinas-Apice - Auxinas   26.00 -25.46966 77.46966 0.5307125
## Base + Auxinas-Apice - Auxinas    7.27 -44.19966 58.73966 0.9808779
## Base - Auxinas-Apice + Auxinas   22.26 -29.20966 73.72966 0.6515985
## Base + Auxinas-Apice + Auxinas    3.53 -47.93966 54.99966 0.9977109
## Base + Auxinas-Base - Auxinas   -18.73 -70.19966 32.73966 0.7608478
## 
## $Cultivo
##                  diff       lwr      upr     p adj
## Romero-Lavanda -7.495 -34.89119 19.90119 0.5821585
tc=TukeyC(P_C,'Tratamiento')
## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced
## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced
plot(tc, title ="P_C")

TukeyHSD(P_C)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.callo..mg. ~ Tratamiento + Cultivo, data = E_H_A)
## 
## $Tratamiento
##                                   diff       lwr      upr     p adj
## Apice + Auxinas-Apice - Auxinas   3.74 -47.72966 55.20966 0.9972822
## Base - Auxinas-Apice - Auxinas   26.00 -25.46966 77.46966 0.5307125
## Base + Auxinas-Apice - Auxinas    7.27 -44.19966 58.73966 0.9808779
## Base - Auxinas-Apice + Auxinas   22.26 -29.20966 73.72966 0.6515985
## Base + Auxinas-Apice + Auxinas    3.53 -47.93966 54.99966 0.9977109
## Base + Auxinas-Base - Auxinas   -18.73 -70.19966 32.73966 0.7608478
## 
## $Cultivo
##                  diff       lwr      upr     p adj
## Romero-Lavanda -7.495 -34.89119 19.90119 0.5821585
tc=TukeyC(P_R,'Cultivo')
plot(tc, title ="P_C")

datos_resumen= E_H_A |> 
  group_by(Tratamiento, Cultivo) |> 
  summarise(media= mean(Peso.callo..mg.), 
            desviacion=sd(Peso.callo..mg.), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))
## `summarise()` has grouped output by 'Tratamiento'. You can override using the
## `.groups` argument.
ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tipo de esqueje", y = "Peso callo mg")+
  facet_grid(~Cultivo)+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)
#Estacas lenosas

L_P_R= aov(L_P_R~Tratamiento, E_L)
anova(L_P_R)
## Analysis of Variance Table
## 
## Response: L_P_R
##             Df Sum Sq Mean Sq F value   Pr(>F)   
## Tratamiento  1 2664.5 2664.50   15.24 0.007948 **
## Residuals    6 1049.0  174.83                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(L_P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = L_P_R ~ Tratamiento, data = E_L)
## 
## $Tratamiento
##               diff      lwr      upr     p adj
## Tallo-Aplical 36.5 13.62214 59.37786 0.0079483
tc=TukeyC(L_P_R,'Tratamiento')
plot(tc, title ="L_P_R")

datos_resumen= E_L |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(L_P_R), 
            desviacion=sd(L_P_R), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tratamiento", y = "Longitud promedio de raíces (mm).")+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

##Numero raices
N_R= aov(N_R~Tratamiento, E_L)
anova(N_R)
## Analysis of Variance Table
## 
## Response: N_R
##             Df Sum Sq Mean Sq F value    Pr(>F)    
## Tratamiento  1 136.12 136.125  55.373 0.0003034 ***
## Residuals    6  14.75   2.458                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(N_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = N_R ~ Tratamiento, data = E_L)
## 
## $Tratamiento
##               diff      lwr      upr     p adj
## Tallo-Aplical 8.25 5.537163 10.96284 0.0003033
tc=TukeyC(N_R,'Tratamiento')
plot(tc, title ="N_R")

datos_resumen= E_L |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(N_R), 
            desviacion=sd(N_R), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tratamiento", y = "Numero de raices")+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

##Peso.raices..mg.
P_R= aov(Peso.raices..mg.~Tratamiento, E_L)
anova(P_R)
## Analysis of Variance Table
## 
## Response: Peso.raices..mg.
##             Df Sum Sq Mean Sq F value Pr(>F)
## Tratamiento  1 193271  193271  1.7683 0.2319
## Residuals    6 655789  109298
TukeyHSD(P_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.raices..mg. ~ Tratamiento, data = E_L)
## 
## $Tratamiento
##                   diff       lwr      upr     p adj
## Tallo-Aplical 310.8625 -261.1557 882.8807 0.2319113
tc=TukeyC(P_R,'Tratamiento')
plot(tc, title ="P_R")

datos_resumen= E_L |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(Peso.raices..mg.), 
            desviacion=sd(Peso.raices..mg.), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tratamiento", y = "Peso callo mg")+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

##Peso.callo..mg.
P_C= aov(Peso.callo..mg.~Tratamiento, E_L)
anova(P_C)
## Analysis of Variance Table
## 
## Response: Peso.callo..mg.
##             Df Sum Sq Mean Sq F value Pr(>F)
## Tratamiento  1      0       0     NaN    NaN
## Residuals    6      0       0
TukeyHSD(P_C)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.callo..mg. ~ Tratamiento, data = E_L)
## 
## $Tratamiento
##               diff lwr upr p adj
## Tallo-Aplical    0   0   0   NaN
tc=TukeyC(P_C,'Tratamiento')
plot(tc, title ="P_C")

datos_resumen= E_L |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(Peso.callo..mg.), 
            desviacion=sd(Peso.callo..mg.), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tratamiento", y = "Peso callo mg")+
  #geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`