Speed Dating dataset (Kaggle) “What influences love at first sight?” About the experiment. https://www.kaggle.com/annavictoria/speed-dating-experiment

dating <-read.csv("03 Speed Dating Data.csv")
names(dating)
##   [1] "iid"      "id"       "gender"   "idg"      "condtn"   "wave"    
##   [7] "round"    "position" "positin1" "order"    "partner"  "pid"     
##  [13] "match"    "int_corr" "samerace" "age_o"    "race_o"   "pf_o_att"
##  [19] "pf_o_sin" "pf_o_int" "pf_o_fun" "pf_o_amb" "pf_o_sha" "dec_o"   
##  [25] "attr_o"   "sinc_o"   "intel_o"  "fun_o"    "amb_o"    "shar_o"  
##  [31] "like_o"   "prob_o"   "met_o"    "age"      "field"    "field_cd"
##  [37] "undergra" "mn_sat"   "tuition"  "race"     "imprace"  "imprelig"
##  [43] "from"     "zipcode"  "income"   "goal"     "date"     "go_out"  
##  [49] "career"   "career_c" "sports"   "tvsports" "exercise" "dining"  
##  [55] "museums"  "art"      "hiking"   "gaming"   "clubbing" "reading" 
##  [61] "tv"       "theater"  "movies"   "concerts" "music"    "shopping"
##  [67] "yoga"     "exphappy" "expnum"   "attr1_1"  "sinc1_1"  "intel1_1"
##  [73] "fun1_1"   "amb1_1"   "shar1_1"  "attr4_1"  "sinc4_1"  "intel4_1"
##  [79] "fun4_1"   "amb4_1"   "shar4_1"  "attr2_1"  "sinc2_1"  "intel2_1"
##  [85] "fun2_1"   "amb2_1"   "shar2_1"  "attr3_1"  "sinc3_1"  "fun3_1"  
##  [91] "intel3_1" "amb3_1"   "attr5_1"  "sinc5_1"  "intel5_1" "fun5_1"  
##  [97] "amb5_1"   "dec"      "attr"     "sinc"     "intel"    "fun"     
## [103] "amb"      "shar"     "like"     "prob"     "met"      "match_es"
## [109] "attr1_s"  "sinc1_s"  "intel1_s" "fun1_s"   "amb1_s"   "shar1_s" 
## [115] "attr3_s"  "sinc3_s"  "intel3_s" "fun3_s"   "amb3_s"   "satis_2" 
## [121] "length"   "numdat_2" "attr7_2"  "sinc7_2"  "intel7_2" "fun7_2"  
## [127] "amb7_2"   "shar7_2"  "attr1_2"  "sinc1_2"  "intel1_2" "fun1_2"  
## [133] "amb1_2"   "shar1_2"  "attr4_2"  "sinc4_2"  "intel4_2" "fun4_2"  
## [139] "amb4_2"   "shar4_2"  "attr2_2"  "sinc2_2"  "intel2_2" "fun2_2"  
## [145] "amb2_2"   "shar2_2"  "attr3_2"  "sinc3_2"  "intel3_2" "fun3_2"  
## [151] "amb3_2"   "attr5_2"  "sinc5_2"  "intel5_2" "fun5_2"   "amb5_2"  
## [157] "you_call" "them_cal" "date_3"   "numdat_3" "num_in_3" "attr1_3" 
## [163] "sinc1_3"  "intel1_3" "fun1_3"   "amb1_3"   "shar1_3"  "attr7_3" 
## [169] "sinc7_3"  "intel7_3" "fun7_3"   "amb7_3"   "shar7_3"  "attr4_3" 
## [175] "sinc4_3"  "intel4_3" "fun4_3"   "amb4_3"   "shar4_3"  "attr2_3" 
## [181] "sinc2_3"  "intel2_3" "fun2_3"   "amb2_3"   "shar2_3"  "attr3_3" 
## [187] "sinc3_3"  "intel3_3" "fun3_3"   "amb3_3"   "attr5_3"  "sinc5_3" 
## [193] "intel5_3" "fun5_3"   "amb5_3"

Choose the variables we think belong to factors.

dating1<- dating[c("imprace","imprelig", "date", "go_out", "sports", 
                   "tvsports", "exercise",  "dining" , "museums",  "art",  
                   "hiking", "gaming",  "clubbing",  
                   "reading", "tv",  "theater", "movies",  "concerts",   
                   "music",   "shopping",   "yoga", "exphappy" , "attr1_1",
                   "sinc1_1",   "intel1_1", "fun1_1",   "amb1_1",   
                   "shar1_1", "attr2_1", "sinc2_1",   "intel2_1",   
                   "fun2_1",   "amb2_1",   "shar2_1",   "attr3_1",   "sinc3_1",
                   "intel3_1",   "fun3_1",   "amb3_1")]
dating1 <- as.data.frame(dating1)
dim(dating1)                
## [1] 8378   39
summary(dating1)
##     imprace          imprelig           date           go_out     
##  Min.   : 0.000   Min.   : 1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.: 1.000   1st Qu.: 1.000   1st Qu.:4.000   1st Qu.:1.000  
##  Median : 3.000   Median : 3.000   Median :5.000   Median :2.000  
##  Mean   : 3.785   Mean   : 3.652   Mean   :5.007   Mean   :2.158  
##  3rd Qu.: 6.000   3rd Qu.: 6.000   3rd Qu.:6.000   3rd Qu.:3.000  
##  Max.   :10.000   Max.   :10.000   Max.   :7.000   Max.   :7.000  
##  NA's   :79       NA's   :79       NA's   :97      NA's   :79     
##      sports          tvsports         exercise          dining      
##  Min.   : 1.000   Min.   : 1.000   Min.   : 1.000   Min.   : 1.000  
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.: 5.000   1st Qu.: 7.000  
##  Median : 7.000   Median : 4.000   Median : 6.000   Median : 8.000  
##  Mean   : 6.425   Mean   : 4.575   Mean   : 6.246   Mean   : 7.784  
##  3rd Qu.: 9.000   3rd Qu.: 7.000   3rd Qu.: 8.000   3rd Qu.: 9.000  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##  NA's   :79       NA's   :79       NA's   :79       NA's   :79      
##     museums            art             hiking           gaming      
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 6.000   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.: 2.000  
##  Median : 7.000   Median : 7.000   Median : 6.000   Median : 3.000  
##  Mean   : 6.986   Mean   : 6.715   Mean   : 5.737   Mean   : 3.881  
##  3rd Qu.: 9.000   3rd Qu.: 8.000   3rd Qu.: 8.000   3rd Qu.: 6.000  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :14.000  
##  NA's   :79       NA's   :79       NA's   :79       NA's   :79      
##     clubbing         reading             tv            theater      
##  Min.   : 0.000   Min.   : 1.000   Min.   : 1.000   Min.   : 0.000  
##  1st Qu.: 4.000   1st Qu.: 7.000   1st Qu.: 3.000   1st Qu.: 5.000  
##  Median : 6.000   Median : 8.000   Median : 6.000   Median : 7.000  
##  Mean   : 5.746   Mean   : 7.679   Mean   : 5.304   Mean   : 6.776  
##  3rd Qu.: 8.000   3rd Qu.: 9.000   3rd Qu.: 7.000   3rd Qu.: 9.000  
##  Max.   :10.000   Max.   :13.000   Max.   :10.000   Max.   :10.000  
##  NA's   :79       NA's   :79       NA's   :79       NA's   :79      
##      movies         concerts          music           shopping     
##  Min.   : 0.00   Min.   : 0.000   Min.   : 1.000   Min.   : 1.000  
##  1st Qu.: 7.00   1st Qu.: 5.000   1st Qu.: 7.000   1st Qu.: 4.000  
##  Median : 8.00   Median : 7.000   Median : 8.000   Median : 6.000  
##  Mean   : 7.92   Mean   : 6.825   Mean   : 7.851   Mean   : 5.631  
##  3rd Qu.: 9.00   3rd Qu.: 8.000   3rd Qu.: 9.000   3rd Qu.: 8.000  
##  Max.   :10.00   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##  NA's   :79      NA's   :79       NA's   :79       NA's   :79      
##       yoga           exphappy         attr1_1          sinc1_1     
##  Min.   : 0.000   Min.   : 1.000   Min.   :  0.00   Min.   : 0.00  
##  1st Qu.: 2.000   1st Qu.: 5.000   1st Qu.: 15.00   1st Qu.:15.00  
##  Median : 4.000   Median : 6.000   Median : 20.00   Median :18.18  
##  Mean   : 4.339   Mean   : 5.534   Mean   : 22.51   Mean   :17.40  
##  3rd Qu.: 7.000   3rd Qu.: 7.000   3rd Qu.: 25.00   3rd Qu.:20.00  
##  Max.   :10.000   Max.   :10.000   Max.   :100.00   Max.   :60.00  
##  NA's   :79       NA's   :101      NA's   :79       NA's   :79     
##     intel1_1         fun1_1          amb1_1         shar1_1     
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:17.39   1st Qu.:15.00   1st Qu.: 5.00   1st Qu.: 9.52  
##  Median :20.00   Median :18.00   Median :10.00   Median :10.64  
##  Mean   :20.27   Mean   :17.46   Mean   :10.68   Mean   :11.85  
##  3rd Qu.:23.81   3rd Qu.:20.00   3rd Qu.:15.00   3rd Qu.:16.00  
##  Max.   :50.00   Max.   :50.00   Max.   :53.00   Max.   :30.00  
##  NA's   :79      NA's   :89      NA's   :99      NA's   :121    
##     attr2_1          sinc2_1         intel2_1         fun2_1     
##  Min.   :  0.00   Min.   : 0.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.: 20.00   1st Qu.:10.00   1st Qu.:10.00   1st Qu.:15.00  
##  Median : 25.00   Median :15.00   Median :15.00   Median :20.00  
##  Mean   : 30.36   Mean   :13.27   Mean   :14.42   Mean   :18.42  
##  3rd Qu.: 40.00   3rd Qu.:18.75   3rd Qu.:20.00   3rd Qu.:20.00  
##  Max.   :100.00   Max.   :50.00   Max.   :40.00   Max.   :50.00  
##  NA's   :79       NA's   :79      NA's   :79      NA's   :79     
##      amb2_1         shar2_1         attr3_1          sinc3_1      
##  Min.   : 0.00   Min.   : 0.00   Min.   : 2.000   Min.   : 2.000  
##  1st Qu.: 6.00   1st Qu.:10.00   1st Qu.: 6.000   1st Qu.: 8.000  
##  Median :10.00   Median :10.00   Median : 7.000   Median : 8.000  
##  Mean   :11.74   Mean   :11.85   Mean   : 7.085   Mean   : 8.295  
##  3rd Qu.:15.00   3rd Qu.:15.63   3rd Qu.: 8.000   3rd Qu.: 9.000  
##  Max.   :50.00   Max.   :30.00   Max.   :10.000   Max.   :10.000  
##  NA's   :89      NA's   :89      NA's   :105      NA's   :105     
##     intel3_1          fun3_1           amb3_1      
##  Min.   : 3.000   Min.   : 2.000   Min.   : 2.000  
##  1st Qu.: 8.000   1st Qu.: 7.000   1st Qu.: 7.000  
##  Median : 8.000   Median : 8.000   Median : 8.000  
##  Mean   : 8.404   Mean   : 7.704   Mean   : 7.578  
##  3rd Qu.: 9.000   3rd Qu.: 9.000   3rd Qu.: 9.000  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000  
##  NA's   :105      NA's   :105      NA's   :105

Are there latent factors which explain correlations of the observed variables?

Part 1

How many factors should be extracted?

# fa does not work with NA
dating12 <- na.omit(dating1)
library(psych)
# How many factors should be extracted?
fa.parallel(dating12, fa="both", n.iter=100) 

## Parallel analysis suggests that the number of factors =  15  and the number of components =  13
ev <- eigen(cor(dating12)) # get eigenvalues
ev$values # should be above 1
##  [1] 4.240805334 3.225700726 3.001311052 2.075174070 2.006394000 1.753167212
##  [7] 1.541976071 1.403448949 1.366740253 1.229150383 1.116849931 1.087840739
## [13] 1.070198555 1.023434932 0.953842841 0.910671530 0.860457948 0.802899771
## [19] 0.754484520 0.735743309 0.704943845 0.692297120 0.629971899 0.601912397
## [25] 0.572104868 0.553155599 0.533458896 0.499442939 0.466896390 0.418553029
## [31] 0.407736154 0.392303528 0.363466985 0.307868448 0.281192832 0.266506679
## [37] 0.127837805 0.013417701 0.006640759
nS <- nScree(x=ev$values) # get data for scree plot
plotnScree(nS) # most tests say we should extract 3 factors

Rotation 1

Let’s try to use the maximum number of factors.

[1] No rotation

fa(dating12, nfactors=15, rotate="none", fm="ml") 
## Factor Analysis using method =  ml
## Call: fa(r = dating12, nfactors = 15, rotate = "none", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML1  ML11   ML2  ML10  ML12  ML13   ML3   ML4  ML14   ML8  ML15
## imprace  -0.06 -0.01  0.00  0.14  0.18 -0.10  0.01  0.08  0.26  0.01 -0.08
## imprelig -0.01 -0.09  0.17  0.04  0.11 -0.02  0.09  0.11  0.19 -0.02  0.02
## date      0.02 -0.09  0.23 -0.03 -0.05 -0.13  0.04 -0.06 -0.07  0.05 -0.20
## go_out    0.05  0.03  0.12 -0.01 -0.07 -0.18  0.05 -0.15 -0.04 -0.08 -0.20
## sports    0.05 -0.04 -0.23 -0.03  0.17  0.72 -0.01 -0.07  0.22  0.08 -0.27
## tvsports  0.08 -0.01 -0.16  0.05  0.36  0.29  0.10 -0.14  0.29  0.13 -0.27
## exercise -0.11 -0.04 -0.06  0.12  0.11  0.37 -0.03  0.04  0.24  0.04 -0.07
## dining   -0.08  0.29  0.07  0.28  0.14  0.02 -0.02  0.10  0.11 -0.04  0.24
## museums  -0.06  0.83  0.16  0.33 -0.16  0.00  0.04  0.07  0.10 -0.12 -0.04
## art      -0.07  0.77  0.12  0.34 -0.12  0.00  0.05  0.07  0.02 -0.06 -0.01
## hiking    0.07  0.21  0.07  0.08 -0.05  0.27 -0.05 -0.04 -0.11  0.07 -0.09
## gaming    0.14  0.01 -0.14  0.06  0.28  0.01 -0.01 -0.03  0.06  0.00 -0.07
## clubbing -0.05  0.08 -0.06  0.19  0.11  0.08 -0.05 -0.02 -0.01  0.05  0.07
## reading   0.00  0.24  0.14  0.04 -0.09 -0.03  0.00  0.07  0.03 -0.13  0.11
## tv        0.04  0.01  0.11  0.15  0.58 -0.42  0.05 -0.03  0.44  0.08 -0.12
## theater  -0.06  0.44  0.26  0.32  0.17 -0.20  0.00  0.05 -0.03 -0.05  0.01
## movies    0.01  0.30  0.15  0.17  0.37 -0.22  0.01 -0.02 -0.04 -0.03 -0.02
## concerts -0.03  0.46  0.10  0.20  0.49  0.09  0.09  0.01 -0.52  0.02 -0.05
## music    -0.02  0.33  0.05  0.18  0.45  0.11  0.04  0.02 -0.38  0.08  0.10
## shopping -0.16  0.14  0.08  0.34  0.38 -0.20 -0.02  0.02  0.21  0.07  0.10
## yoga     -0.02  0.23  0.11  0.17  0.08  0.08  0.05  0.05 -0.07  0.07  0.11
## exphappy  0.13  0.13 -0.16 -0.01  0.15  0.20 -0.07 -0.02  0.01  0.04  0.02
## attr1_1  -0.58  0.03 -0.65 -0.04  0.00 -0.01 -0.03 -0.15  0.00 -0.04  0.00
## sinc1_1   0.36  0.02  0.53 -0.04  0.00  0.00 -0.07 -0.68  0.00  0.01  0.00
## intel1_1 -0.03  0.06  0.12 -0.31  0.03  0.01 -0.07  0.18  0.01 -0.61  0.01
## fun1_1    0.08  0.11 -0.08 -0.24  0.00  0.00 -0.39  0.19  0.00  0.73  0.00
## amb1_1    0.23 -0.30  0.22  0.77 -0.05  0.01  0.02  0.21 -0.03  0.02 -0.02
## shar1_1   0.43  0.02  0.40 -0.04  0.00  0.00  0.56  0.47  0.00  0.01  0.00
## attr2_1  -0.91  0.01  0.22  0.02  0.00  0.00  0.24 -0.11  0.00  0.02  0.00
## sinc2_1   0.69  0.01 -0.10  0.01  0.00  0.00  0.01 -0.33  0.00 -0.05  0.00
## intel2_1  0.56  0.00 -0.45  0.02  0.00  0.00 -0.18  0.05  0.00  0.04  0.00
## fun2_1    0.03  0.01  0.32  0.01  0.00  0.00 -0.83  0.34  0.00 -0.08  0.00
## amb2_1    0.50  0.02 -0.51  0.00  0.00  0.00  0.20  0.05  0.00 -0.05  0.00
## shar2_1   0.43 -0.02  0.22 -0.09  0.01 -0.01  0.20  0.16  0.00  0.11 -0.01
## attr3_1  -0.07  0.05 -0.21  0.20  0.10  0.25 -0.05  0.04  0.20  0.00  0.46
## sinc3_1   0.09  0.10  0.22  0.08  0.15  0.15  0.02 -0.20  0.12  0.02  0.25
## intel3_1  0.06  0.04 -0.13  0.00  0.08  0.23  0.07  0.11  0.23 -0.11  0.42
## fun3_1   -0.06  0.12 -0.17  0.22  0.23  0.24  0.02  0.00  0.16  0.31  0.46
## amb3_1   -0.03 -0.07 -0.18  0.40  0.19  0.20  0.05  0.09  0.12  0.00  0.29
##            ML5   ML7   ML9   ML6    h2     u2 com
## imprace   0.03  0.03  0.03  0.02 0.151 0.8487 3.6
## imprelig  0.13  0.05  0.03  0.00 0.128 0.8722 5.7
## date      0.00  0.02  0.01 -0.08 0.145 0.8554 4.1
## go_out    0.01 -0.08 -0.05 -0.04 0.138 0.8621 5.6
## sports   -0.11 -0.12  0.01  0.01 0.768 0.2325 2.1
## tvsports -0.10 -0.01 -0.06  0.03 0.466 0.5338 5.8
## exercise -0.03 -0.03  0.03 -0.01 0.248 0.7522 2.8
## dining    0.06  0.03  0.09  0.09 0.297 0.7032 5.1
## museums   0.10  0.11  0.14  0.02 0.933 0.0667 1.7
## art       0.05  0.10  0.14  0.07 0.793 0.2069 1.7
## hiking   -0.03 -0.03  0.04  0.00 0.164 0.8357 3.8
## gaming   -0.10 -0.05 -0.06  0.06 0.153 0.8467 3.1
## clubbing -0.05  0.06 -0.03  0.04 0.086 0.9141 4.7
## reading   0.14  0.04  0.10 -0.01 0.155 0.8445 5.0
## tv       -0.01  0.02 -0.01  0.01 0.778 0.2222 3.2
## theater   0.11  0.06  0.15  0.08 0.482 0.5184 4.3
## movies    0.08  0.07  0.08  0.03 0.350 0.6501 3.9
## concerts  0.06 -0.07  0.05  0.07 0.817 0.1826 3.7
## music     0.05 -0.07  0.08  0.01 0.533 0.4674 3.8
## shopping  0.03  0.09  0.05  0.03 0.416 0.5840 4.6
## yoga      0.05  0.03  0.09  0.05 0.146 0.8536 5.2
## exphappy -0.08  0.00  0.00  0.07 0.142 0.8582 6.0
## attr1_1  -0.32 -0.33  0.02  0.05 0.995 0.0050 3.2
## sinc1_1   0.17 -0.24 -0.02 -0.16 0.995 0.0050 3.1
## intel1_1  0.46  0.46  0.04  0.18 0.979 0.0209 4.0
## fun1_1   -0.02  0.39 -0.08 -0.10 0.979 0.0207 2.9
## amb1_1    0.13  0.26  0.11 -0.10 0.942 0.0581 2.4
## shar1_1  -0.17 -0.26 -0.10  0.09 0.995 0.0050 4.6
## attr2_1   0.12  0.06 -0.17  0.05 0.995 0.0050 1.4
## sinc2_1  -0.52  0.22 -0.10  0.27 0.995 0.0050 3.1
## intel2_1  0.49 -0.17 -0.08  0.40 0.995 0.0050 4.4
## fun2_1   -0.20 -0.14 -0.08 -0.14 0.995 0.0052 2.0
## amb2_1    0.08  0.03 -0.08 -0.66 0.995 0.0053 3.1
## shar2_1  -0.11 -0.12  0.79  0.05 0.972 0.0282 2.2
## attr3_1  -0.09  0.04  0.19  0.05 0.471 0.5291 3.9
## sinc3_1   0.09 -0.11  0.06 -0.04 0.266 0.7342 7.2
## intel3_1  0.03  0.00  0.06 -0.02 0.342 0.6581 3.2
## fun3_1   -0.01  0.10  0.02  0.01 0.545 0.4546 4.7
## amb3_1    0.00  0.09  0.08 -0.01 0.398 0.6021 4.3
## 
##                        ML1 ML11  ML2 ML10 ML12 ML13  ML3  ML4 ML14  ML8 ML15
## SS loadings           2.89 2.34 2.21 1.77 1.64 1.49 1.40 1.25 1.15 1.14 1.13
## Proportion Var        0.07 0.06 0.06 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03
## Cumulative Var        0.07 0.13 0.19 0.24 0.28 0.32 0.35 0.38 0.41 0.44 0.47
## Proportion Explained  0.13 0.11 0.10 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05
## Cumulative Proportion 0.13 0.24 0.34 0.42 0.49 0.56 0.62 0.68 0.73 0.78 0.83
##                        ML5  ML7  ML9  ML6
## SS loadings           1.12 0.90 0.88 0.83
## Proportion Var        0.03 0.02 0.02 0.02
## Cumulative Var        0.50 0.52 0.55 0.57
## Proportion Explained  0.05 0.04 0.04 0.04
## Cumulative Proportion 0.88 0.92 0.96 1.00
## 
## Mean item complexity =  3.8
## Test of the hypothesis that 15 factors are sufficient.
## 
## df null model =  741  with the objective function =  17.61 with Chi Square =  143979.6
## df of  the model are 261  and the objective function was  1.4 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic n.obs is  8191 with the empirical chi square  11699  with prob <  0 
## The total n.obs was  8191  with Likelihood Chi Square =  11448.44  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.778
## RMSEA index =  0.072  and the 90 % confidence intervals are  0.071 0.073
## BIC =  9096.62
## Fit based upon off diagonal values = 0.95
## Measures of factor score adequacy             
##                                                   ML1 ML11  ML2 ML10 ML12 ML13
## Correlation of (regression) scores with factors     1 0.97 1.00 0.98 0.92 0.90
## Multiple R square of scores with factors            1 0.95 1.00 0.96 0.84 0.81
## Minimum correlation of possible factor scores       1 0.90 0.99 0.92 0.68 0.62
##                                                    ML3  ML4 ML14  ML8 ML15  ML5
## Correlation of (regression) scores with factors   1.00 1.00 0.89 0.99 0.83 1.00
## Multiple R square of scores with factors          1.00 0.99 0.79 0.98 0.69 0.99
## Minimum correlation of possible factor scores     0.99 0.99 0.58 0.96 0.38 0.99
##                                                    ML7  ML9  ML6
## Correlation of (regression) scores with factors   0.99 0.99 1.00
## Multiple R square of scores with factors          0.99 0.97 0.99
## Minimum correlation of possible factor scores     0.98 0.95 0.99

Too many factors. It is extremely difficult to interpret such a result.

Let’s try to reduce the number of factors.

[2] No rotation

fa(dating12, nfactors=5, rotate="none", fm="ml") 
## Factor Analysis using method =  ml
## Call: fa(r = dating12, nfactors = 5, rotate = "none", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML3   ML4   ML2   ML1   ML5    h2     u2 com
## imprace   0.06  0.09 -0.04 -0.03  0.24 0.073 0.9269 1.5
## imprelig  0.01 -0.05 -0.04 -0.05  0.30 0.096 0.9041 1.2
## date     -0.06 -0.35 -0.06 -0.01  0.08 0.138 0.8619 1.2
## go_out    0.02 -0.31  0.01 -0.03 -0.03 0.097 0.9033 1.0
## sports   -0.14  0.40  0.14  0.04 -0.12 0.214 0.7857 1.7
## tvsports -0.07  0.29  0.19 -0.07  0.11 0.143 0.8566 2.3
## exercise  0.00  0.31 -0.07 -0.03  0.06 0.105 0.8951 1.2
## dining    0.41  0.25 -0.10 -0.02  0.21 0.292 0.7077 2.4
## museums   0.91 -0.04 -0.09 -0.06 -0.13 0.853 0.1467 1.1
## art       0.90  0.01 -0.08 -0.07 -0.15 0.843 0.1574 1.1
## hiking    0.21  0.03  0.01  0.07 -0.09 0.060 0.9401 1.7
## gaming   -0.02  0.21  0.14  0.09  0.11 0.085 0.9146 2.8
## clubbing  0.12  0.26 -0.04 -0.01  0.08 0.091 0.9089 1.7
## reading   0.30 -0.13 -0.06  0.01 -0.01 0.108 0.8917 1.5
## tv        0.09  0.06  0.00 -0.02  0.50 0.262 0.7383 1.1
## theater   0.61 -0.09 -0.14 -0.04  0.29 0.482 0.5176 1.6
## movies    0.38 -0.04 -0.04 -0.02  0.32 0.252 0.7481 2.0
## concerts  0.45  0.06 -0.02 -0.08  0.16 0.233 0.7671 1.4
## music     0.32  0.18 -0.02 -0.03  0.19 0.171 0.8292 2.3
## shopping  0.28  0.26 -0.16 -0.09  0.42 0.353 0.6467 3.0
## yoga      0.32  0.08 -0.03 -0.05  0.12 0.127 0.8726 1.5
## exphappy  0.07  0.26  0.13  0.12 -0.05 0.109 0.8912 2.2
## attr1_1  -0.21  0.47 -0.14 -0.31 -0.42 0.555 0.4454 3.4
## sinc1_1   0.02 -0.37  0.09  0.12  0.19 0.196 0.8040 1.9
## intel1_1  0.12 -0.26 -0.08 -0.04 -0.02 0.089 0.9106 1.7
## fun1_1   -0.05  0.15 -0.10  0.28 -0.04 0.114 0.8858 2.0
## amb1_1    0.18 -0.04  0.05  0.16  0.42 0.239 0.7606 1.7
## shar1_1   0.10 -0.31  0.26  0.09  0.24 0.245 0.7552 3.3
## attr2_1  -0.01  0.00 -0.61 -0.79  0.00 0.995 0.0049 1.9
## sinc2_1  -0.02 -0.02  0.57  0.36 -0.01 0.452 0.5481 1.7
## intel2_1 -0.01  0.10  0.52  0.32 -0.07 0.391 0.6086 1.8
## fun2_1    0.00  0.00 -0.63  0.77  0.00 0.995 0.0050 1.9
## amb2_1   -0.07  0.10  0.59  0.21 -0.11 0.419 0.5811 1.4
## shar2_1   0.15 -0.19  0.41  0.26  0.21 0.342 0.6576 3.1
## attr3_1   0.12  0.53  0.04  0.01  0.06 0.302 0.6978 1.2
## sinc3_1   0.14  0.03  0.02  0.00  0.25 0.087 0.9133 1.6
## intel3_1  0.06  0.31  0.12  0.02  0.07 0.117 0.8835 1.5
## fun3_1    0.16  0.58  0.06 -0.09  0.21 0.411 0.5893 1.5
## amb3_1    0.11  0.46  0.08 -0.05  0.25 0.296 0.7040 1.8
## 
##                        ML3  ML4  ML2  ML1  ML5
## SS loadings           3.20 2.48 2.21 1.86 1.68
## Proportion Var        0.08 0.06 0.06 0.05 0.04
## Cumulative Var        0.08 0.15 0.20 0.25 0.29
## Proportion Explained  0.28 0.22 0.19 0.16 0.15
## Cumulative Proportion 0.28 0.50 0.69 0.85 1.00
## 
## Mean item complexity =  1.8
## Test of the hypothesis that 5 factors are sufficient.
## 
## df null model =  741  with the objective function =  17.61 with Chi Square =  143979.6
## df of  the model are 556  and the objective function was  9.91 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.08 
## 
## The harmonic n.obs is  8191 with the empirical chi square  56272.09  with prob <  0 
## The total n.obs was  8191  with Likelihood Chi Square =  80980.15  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.251
## RMSEA index =  0.133  and the 90 % confidence intervals are  0.132 0.134
## BIC =  75970.16
## Fit based upon off diagonal values = 0.77
## Measures of factor score adequacy             
##                                                    ML3  ML4  ML2  ML1  ML5
## Correlation of (regression) scores with factors   0.96 0.88 1.00 1.00 0.85
## Multiple R square of scores with factors          0.93 0.78 0.99 1.00 0.73
## Minimum correlation of possible factor scores     0.86 0.56 0.99 0.99 0.45
factor.plot(fa(dating12, nfactors=5, rotate="none", fm="ml"))

fa.diagram(fa(dating12, nfactors=5, rotate="none", fm="ml"))

Low Cumulative Var = 0.29. We have RMSR = 0.07. (should be closer to 0) RMSEA index = 0.133 (<.08 acceptable, <.05 excellent) Tucker Lewis Index= 0.215 (>.90 acceptable, >.95 excellent) The sad result of fa.

Try to use a rotation. Compare the results.

[3] rotation varimax

fa(dating12, nfactors=5, rotate="varimax", fm="ml") 
## Factor Analysis using method =  ml
## Call: fa(r = dating12, nfactors = 5, rotate = "varimax", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML3   ML2   ML4   ML5   ML1    h2     u2 com
## imprace   0.03 -0.05  0.09  0.25  0.00 0.073 0.9269 1.4
## imprelig -0.03 -0.05 -0.04  0.30 -0.04 0.096 0.9041 1.2
## date     -0.07 -0.03 -0.35  0.09 -0.02 0.138 0.8619 1.2
## go_out    0.02  0.02 -0.30 -0.01 -0.06 0.097 0.9033 1.1
## sports   -0.13  0.09  0.41 -0.16  0.01 0.214 0.7857 1.6
## tvsports -0.10  0.09  0.32  0.08 -0.13 0.143 0.8566 1.8
## exercise  0.00 -0.10  0.30  0.05  0.04 0.105 0.8951 1.3
## dining    0.39 -0.08  0.25  0.26  0.04 0.292 0.7077 2.7
## museums   0.92 -0.04 -0.04  0.00 -0.04 0.853 0.1467 1.0
## art       0.92 -0.04  0.01 -0.03 -0.05 0.843 0.1574 1.0
## hiking    0.22  0.06  0.03 -0.07  0.06 0.060 0.9401 1.5
## gaming   -0.05  0.15  0.23  0.09  0.02 0.085 0.9146 2.2
## clubbing  0.12 -0.05  0.26  0.09  0.03 0.091 0.9089 1.8
## reading   0.30 -0.01 -0.14  0.04  0.02 0.108 0.8917 1.5
## tv        0.02  0.01  0.08  0.50 -0.03 0.262 0.7383 1.1
## theater   0.57 -0.08 -0.09  0.37  0.00 0.482 0.5176 1.8
## movies    0.34  0.00 -0.03  0.37 -0.02 0.252 0.7481 2.0
## concerts  0.42 -0.03  0.07  0.21 -0.07 0.233 0.7671 1.6
## music     0.30 -0.02  0.19  0.22 -0.02 0.171 0.8292 2.6
## shopping  0.24 -0.17  0.26  0.45  0.01 0.353 0.6467 2.5
## yoga      0.30 -0.03  0.09  0.16 -0.03 0.127 0.8726 1.8
## exphappy  0.07  0.16  0.27 -0.05  0.06 0.109 0.8912 1.9
## attr1_1  -0.13 -0.35  0.44 -0.45 -0.12 0.555 0.4454 3.2
## sinc1_1  -0.01  0.18 -0.35  0.20  0.01 0.196 0.8040 2.2
## intel1_1  0.13 -0.06 -0.26  0.01 -0.02 0.089 0.9106 1.6
## fun1_1   -0.04  0.06  0.12 -0.05  0.30 0.114 0.8858 1.5
## amb1_1    0.11  0.16 -0.02  0.44  0.08 0.239 0.7606 1.5
## shar1_1   0.04  0.31 -0.27  0.25 -0.11 0.245 0.7552 3.3
## attr2_1   0.05 -0.94 -0.05  0.02 -0.32 0.995 0.0049 1.2
## sinc2_1  -0.07  0.67  0.04 -0.03 -0.01 0.452 0.5481 1.0
## intel2_1 -0.04  0.60  0.15 -0.10  0.00 0.391 0.6086 1.2
## fun2_1    0.04 -0.10 -0.11  0.04  0.99 0.995 0.0050 1.1
## amb2_1   -0.10  0.59  0.16 -0.15 -0.13 0.419 0.5811 1.5
## shar2_1   0.09  0.52 -0.14  0.22 -0.04 0.342 0.6576 1.6
## attr3_1   0.11  0.01  0.53  0.06  0.04 0.302 0.6978 1.1
## sinc3_1   0.11  0.03  0.05  0.27 -0.02 0.087 0.9133 1.4
## intel3_1  0.04  0.09  0.32  0.06 -0.02 0.117 0.8835 1.3
## fun3_1    0.13 -0.03  0.59  0.20 -0.06 0.411 0.5893 1.4
## amb3_1    0.08  0.02  0.48  0.24 -0.05 0.296 0.7040 1.6
## 
##                        ML3  ML2  ML4  ML5  ML1
## SS loadings           3.01 2.73 2.52 1.90 1.27
## Proportion Var        0.08 0.07 0.06 0.05 0.03
## Cumulative Var        0.08 0.15 0.21 0.26 0.29
## Proportion Explained  0.26 0.24 0.22 0.17 0.11
## Cumulative Proportion 0.26 0.50 0.72 0.89 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 5 factors are sufficient.
## 
## df null model =  741  with the objective function =  17.61 with Chi Square =  143979.6
## df of  the model are 556  and the objective function was  9.91 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.08 
## 
## The harmonic n.obs is  8191 with the empirical chi square  56272.09  with prob <  0 
## The total n.obs was  8191  with Likelihood Chi Square =  80980.15  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.251
## RMSEA index =  0.133  and the 90 % confidence intervals are  0.132 0.134
## BIC =  75970.16
## Fit based upon off diagonal values = 0.77
## Measures of factor score adequacy             
##                                                    ML3  ML2  ML4  ML5  ML1
## Correlation of (regression) scores with factors   0.96 1.00 0.88 0.85 1.00
## Multiple R square of scores with factors          0.93 0.99 0.78 0.73 0.99
## Minimum correlation of possible factor scores     0.85 0.98 0.57 0.46 0.99
factor.plot(fa(dating12, nfactors=5, rotate="varimax", fm="ml"))

fa.diagram(fa(dating12, nfactors=5, rotate="varimax", fm="ml"))

The same result, so the factors are related. Try another rotation - oblique (oblimin)

[4] rotation oblimin

fa(dating12, nfactors=5, rotate="oblimin", fm="ml") 
## Factor Analysis using method =  ml
## Call: fa(r = dating12, nfactors = 5, rotate = "oblimin", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML3   ML2   ML4   ML5   ML1    h2     u2 com
## imprace  -0.05 -0.08  0.21  0.18  0.01 0.073 0.9269 2.4
## imprelig -0.12 -0.12  0.11  0.29 -0.03 0.096 0.9041 2.0
## date     -0.07 -0.11 -0.27  0.23 -0.01 0.138 0.8619 2.5
## go_out    0.05 -0.03 -0.28  0.13 -0.06 0.097 0.9033 1.6
## sports   -0.10  0.18  0.27 -0.31 -0.02 0.214 0.7857 2.9
## tvsports -0.13  0.11  0.31 -0.04 -0.15 0.143 0.8566 2.2
## exercise -0.04 -0.05  0.30 -0.10  0.06 0.105 0.8951 1.4
## dining    0.29 -0.06  0.37  0.11  0.06 0.292 0.7077 2.2
## museums   0.93  0.01 -0.03 -0.01  0.00 0.853 0.1467 1.0
## art       0.93  0.01  0.00 -0.06 -0.02 0.843 0.1574 1.0
## hiking    0.24  0.09  0.00 -0.08  0.05 0.060 0.9401 1.6
## gaming   -0.08  0.17  0.24  0.00 -0.01 0.085 0.9146 2.1
## clubbing  0.07 -0.01  0.28 -0.05  0.04 0.091 0.9089 1.2
## reading   0.29 -0.02 -0.10  0.09  0.03 0.108 0.8917 1.4
## tv       -0.14 -0.08  0.32  0.44 -0.03 0.262 0.7383 2.1
## theater   0.46 -0.13  0.12  0.36  0.04 0.482 0.5176 2.2
## movies    0.23 -0.06  0.16  0.35 -0.01 0.252 0.7481 2.3
## concerts  0.36 -0.04  0.17  0.15 -0.05 0.233 0.7671 1.9
## music     0.22 -0.01  0.28  0.11 -0.01 0.171 0.8292 2.3
## shopping  0.07 -0.19  0.47  0.27  0.05 0.353 0.6467 2.1
## yoga      0.25 -0.03  0.16  0.10 -0.01 0.127 0.8726 2.1
## exphappy  0.07  0.22  0.21 -0.15  0.03 0.109 0.8912 3.0
## attr1_1  -0.04 -0.20  0.17 -0.65 -0.07 0.555 0.4454 1.4
## sinc1_1  -0.04  0.08 -0.22  0.36 -0.02 0.196 0.8040 1.8
## intel1_1  0.14 -0.10 -0.23  0.11 -0.01 0.089 0.9106 2.7
## fun1_1   -0.05  0.13  0.10 -0.11  0.29 0.114 0.8858 2.1
## amb1_1   -0.01  0.08  0.20  0.43  0.06 0.239 0.7606 1.5
## shar1_1   0.01  0.19 -0.13  0.40 -0.16 0.245 0.7552 2.0
## attr2_1   0.00 -0.97 -0.01 -0.07 -0.16 0.995 0.0049 1.1
## sinc2_1  -0.02  0.66 -0.01  0.05 -0.13 0.452 0.5481 1.1
## intel2_1  0.01  0.62  0.06 -0.08 -0.11 0.391 0.6086 1.1
## fun2_1   -0.01  0.02 -0.01 -0.01  1.00 0.995 0.0050 1.0
## amb2_1   -0.03  0.60  0.03 -0.12 -0.23 0.419 0.5811 1.4
## shar2_1   0.06  0.43 -0.04  0.34 -0.12 0.342 0.6576 2.1
## attr3_1   0.06  0.10  0.51 -0.19  0.03 0.302 0.6978 1.4
## sinc3_1   0.03 -0.01  0.17  0.23 -0.02 0.087 0.9133 1.9
## intel3_1  0.01  0.14  0.31 -0.07 -0.04 0.117 0.8835 1.5
## fun3_1    0.03  0.03  0.62 -0.08 -0.06 0.411 0.5893 1.1
## amb3_1   -0.03  0.05  0.54  0.02 -0.05 0.296 0.7040 1.0
## 
##                        ML3  ML2  ML4  ML5  ML1
## SS loadings           2.72 2.69 2.59 2.16 1.28
## Proportion Var        0.07 0.07 0.07 0.06 0.03
## Cumulative Var        0.07 0.14 0.21 0.26 0.29
## Proportion Explained  0.24 0.24 0.23 0.19 0.11
## Cumulative Proportion 0.24 0.47 0.70 0.89 1.00
## 
##  With factor correlations of 
##       ML3   ML2   ML4   ML5   ML1
## ML3  1.00 -0.13  0.18  0.22  0.02
## ML2 -0.13  1.00 -0.06  0.09  0.04
## ML4  0.18 -0.06  1.00 -0.03 -0.06
## ML5  0.22  0.09 -0.03  1.00  0.09
## ML1  0.02  0.04 -0.06  0.09  1.00
## 
## Mean item complexity =  1.8
## Test of the hypothesis that 5 factors are sufficient.
## 
## df null model =  741  with the objective function =  17.61 with Chi Square =  143979.6
## df of  the model are 556  and the objective function was  9.91 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.08 
## 
## The harmonic n.obs is  8191 with the empirical chi square  56272.09  with prob <  0 
## The total n.obs was  8191  with Likelihood Chi Square =  80980.15  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.251
## RMSEA index =  0.133  and the 90 % confidence intervals are  0.132 0.134
## BIC =  75970.16
## Fit based upon off diagonal values = 0.77
## Measures of factor score adequacy             
##                                                    ML3  ML2  ML4  ML5  ML1
## Correlation of (regression) scores with factors   0.96 1.00 0.88 0.88 1.00
## Multiple R square of scores with factors          0.93 0.99 0.78 0.77 0.99
## Minimum correlation of possible factor scores     0.85 0.99 0.56 0.54 0.99
factor.plot(fa(dating12, nfactors=5, rotate="oblimin", fm="ml"))

fa.diagram(fa(dating12, nfactors=5, rotate="oblimin", fm="ml"))

The result is the same, so we need to exclude variables to improve the EFA

Part 2. Improving The Model

Exluding the variables 1.

Communality is the sum of squared factor loadings for the variables, so to exclude variables we are looking at this parameter (if variable do not belong to either of the factors, this factor should not be presented). Factor loadings have to be 0.4 or more to be acceptable. That means that a threshold for communality of the variable should be 0.16

oblfa = fa(dating12, nfactors=5, rotate="oblimin", fm="ml") 
oblfa
## Factor Analysis using method =  ml
## Call: fa(r = dating12, nfactors = 5, rotate = "oblimin", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML3   ML2   ML4   ML5   ML1    h2     u2 com
## imprace  -0.05 -0.08  0.21  0.18  0.01 0.073 0.9269 2.4
## imprelig -0.12 -0.12  0.11  0.29 -0.03 0.096 0.9041 2.0
## date     -0.07 -0.11 -0.27  0.23 -0.01 0.138 0.8619 2.5
## go_out    0.05 -0.03 -0.28  0.13 -0.06 0.097 0.9033 1.6
## sports   -0.10  0.18  0.27 -0.31 -0.02 0.214 0.7857 2.9
## tvsports -0.13  0.11  0.31 -0.04 -0.15 0.143 0.8566 2.2
## exercise -0.04 -0.05  0.30 -0.10  0.06 0.105 0.8951 1.4
## dining    0.29 -0.06  0.37  0.11  0.06 0.292 0.7077 2.2
## museums   0.93  0.01 -0.03 -0.01  0.00 0.853 0.1467 1.0
## art       0.93  0.01  0.00 -0.06 -0.02 0.843 0.1574 1.0
## hiking    0.24  0.09  0.00 -0.08  0.05 0.060 0.9401 1.6
## gaming   -0.08  0.17  0.24  0.00 -0.01 0.085 0.9146 2.1
## clubbing  0.07 -0.01  0.28 -0.05  0.04 0.091 0.9089 1.2
## reading   0.29 -0.02 -0.10  0.09  0.03 0.108 0.8917 1.4
## tv       -0.14 -0.08  0.32  0.44 -0.03 0.262 0.7383 2.1
## theater   0.46 -0.13  0.12  0.36  0.04 0.482 0.5176 2.2
## movies    0.23 -0.06  0.16  0.35 -0.01 0.252 0.7481 2.3
## concerts  0.36 -0.04  0.17  0.15 -0.05 0.233 0.7671 1.9
## music     0.22 -0.01  0.28  0.11 -0.01 0.171 0.8292 2.3
## shopping  0.07 -0.19  0.47  0.27  0.05 0.353 0.6467 2.1
## yoga      0.25 -0.03  0.16  0.10 -0.01 0.127 0.8726 2.1
## exphappy  0.07  0.22  0.21 -0.15  0.03 0.109 0.8912 3.0
## attr1_1  -0.04 -0.20  0.17 -0.65 -0.07 0.555 0.4454 1.4
## sinc1_1  -0.04  0.08 -0.22  0.36 -0.02 0.196 0.8040 1.8
## intel1_1  0.14 -0.10 -0.23  0.11 -0.01 0.089 0.9106 2.7
## fun1_1   -0.05  0.13  0.10 -0.11  0.29 0.114 0.8858 2.1
## amb1_1   -0.01  0.08  0.20  0.43  0.06 0.239 0.7606 1.5
## shar1_1   0.01  0.19 -0.13  0.40 -0.16 0.245 0.7552 2.0
## attr2_1   0.00 -0.97 -0.01 -0.07 -0.16 0.995 0.0049 1.1
## sinc2_1  -0.02  0.66 -0.01  0.05 -0.13 0.452 0.5481 1.1
## intel2_1  0.01  0.62  0.06 -0.08 -0.11 0.391 0.6086 1.1
## fun2_1   -0.01  0.02 -0.01 -0.01  1.00 0.995 0.0050 1.0
## amb2_1   -0.03  0.60  0.03 -0.12 -0.23 0.419 0.5811 1.4
## shar2_1   0.06  0.43 -0.04  0.34 -0.12 0.342 0.6576 2.1
## attr3_1   0.06  0.10  0.51 -0.19  0.03 0.302 0.6978 1.4
## sinc3_1   0.03 -0.01  0.17  0.23 -0.02 0.087 0.9133 1.9
## intel3_1  0.01  0.14  0.31 -0.07 -0.04 0.117 0.8835 1.5
## fun3_1    0.03  0.03  0.62 -0.08 -0.06 0.411 0.5893 1.1
## amb3_1   -0.03  0.05  0.54  0.02 -0.05 0.296 0.7040 1.0
## 
##                        ML3  ML2  ML4  ML5  ML1
## SS loadings           2.72 2.69 2.59 2.16 1.28
## Proportion Var        0.07 0.07 0.07 0.06 0.03
## Cumulative Var        0.07 0.14 0.21 0.26 0.29
## Proportion Explained  0.24 0.24 0.23 0.19 0.11
## Cumulative Proportion 0.24 0.47 0.70 0.89 1.00
## 
##  With factor correlations of 
##       ML3   ML2   ML4   ML5   ML1
## ML3  1.00 -0.13  0.18  0.22  0.02
## ML2 -0.13  1.00 -0.06  0.09  0.04
## ML4  0.18 -0.06  1.00 -0.03 -0.06
## ML5  0.22  0.09 -0.03  1.00  0.09
## ML1  0.02  0.04 -0.06  0.09  1.00
## 
## Mean item complexity =  1.8
## Test of the hypothesis that 5 factors are sufficient.
## 
## df null model =  741  with the objective function =  17.61 with Chi Square =  143979.6
## df of  the model are 556  and the objective function was  9.91 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.08 
## 
## The harmonic n.obs is  8191 with the empirical chi square  56272.09  with prob <  0 
## The total n.obs was  8191  with Likelihood Chi Square =  80980.15  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.251
## RMSEA index =  0.133  and the 90 % confidence intervals are  0.132 0.134
## BIC =  75970.16
## Fit based upon off diagonal values = 0.77
## Measures of factor score adequacy             
##                                                    ML3  ML2  ML4  ML5  ML1
## Correlation of (regression) scores with factors   0.96 1.00 0.88 0.88 1.00
## Multiple R square of scores with factors          0.93 0.99 0.78 0.77 0.99
## Minimum correlation of possible factor scores     0.85 0.99 0.56 0.54 0.99
com = data.frame(oblfa$communality)
library(dplyr)
arrange(com, oblfa.communality)
##          oblfa.communality
## hiking          0.05986141
## imprace         0.07306658
## gaming          0.08543416
## sinc3_1         0.08671057
## intel1_1        0.08938205
## clubbing        0.09112199
## imprelig        0.09589925
## go_out          0.09666240
## exercise        0.10489908
## reading         0.10834963
## exphappy        0.10880022
## fun1_1          0.11417838
## intel3_1        0.11653218
## yoga            0.12736834
## date            0.13808932
## tvsports        0.14339267
## music           0.17078705
## sinc1_1         0.19599174
## sports          0.21433513
## concerts        0.23294662
## amb1_1          0.23937459
## shar1_1         0.24479176
## movies          0.25190929
## tv              0.26173691
## dining          0.29229984
## amb3_1          0.29599479
## attr3_1         0.30224815
## shar2_1         0.34239198
## shopping        0.35325840
## intel2_1        0.39136364
## fun3_1          0.41071037
## amb2_1          0.41887450
## sinc2_1         0.45187268
## theater         0.48236356
## attr1_1         0.55462689
## art             0.84264249
## museums         0.85330328
## fun2_1          0.99500817
## attr2_1         0.99505267

As it can be seen, many of the variables has really low communality, the acceptable level is 0.16, so filter all that lower it

com1 = com %>% filter(oblfa.communality<=0.16)
varlist = com1 %>%select(-oblfa.communality)
varlist
## таблица данных с 0 колонок и 16 строками

So, we receive 16 variables out of 39 that should be removed. Now we remove inappropriate variables from a dataset.

dating22 = select(dating12, 
                                -imprace, 
                                -imprelig, 
                                -date, 
                                -go_out,
                                -tvsports,
                                -exercise,
                                -hiking,
                                -gaming,
                                -clubbing,
                                -reading,
                                -music,
                                -yoga,
                                -exphappy,
                                -sinc1_1,
                                -intel1_1,
                                -fun1_1,
                                -sinc3_1,
                                -intel3_1)

New number of factors

fa.parallel(dating22, fa="both", n.iter=100) 

## Parallel analysis suggests that the number of factors =  8  and the number of components =  7
ev <- eigen(cor(dating22)) 
ev$values 
##  [1] 3.646080534 2.783487735 2.133889152 1.545371111 1.303104265 1.225666848
##  [7] 1.058307000 0.893124464 0.795302348 0.760055543 0.727792695 0.666873598
## [13] 0.638928949 0.585083906 0.539249256 0.490091480 0.396517630 0.367757791
## [19] 0.300295559 0.136166369 0.006853765

Now, the maximum number of factors is 7. Another option is 3.

Factor Analysis

Again, we try to use the maximum number of factors.

(1) No rotation, 7 factors

fa1=fa(dating22, nfactors=7, rotate="none", fm="ml")
fa1
## Factor Analysis using method =  ml
## Call: fa(r = dating22, nfactors = 7, rotate = "none", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML6   ML1   ML7   ML5   ML2   ML3   ML4    h2     u2 com
## sports   -0.12  0.14 -0.07 -0.05 -0.06  0.00 -0.01 0.045 0.9554 3.2
## dining    0.39 -0.09  0.32  0.09  0.05  0.06  0.08 0.290 0.7095 2.4
## museums   0.91 -0.12 -0.11  0.14  0.02  0.01  0.03 0.880 0.1204 1.1
## art       0.88 -0.11 -0.10  0.13  0.00 -0.01  0.07 0.825 0.1746 1.1
## tv        0.08 -0.01  0.55  0.04 -0.01 -0.07  0.03 0.318 0.6821 1.1
## theater   0.56 -0.14  0.25  0.19  0.07  0.00  0.11 0.450 0.5499 2.0
## movies    0.35 -0.04  0.34  0.09  0.02 -0.02  0.05 0.255 0.7448 2.2
## concerts  0.40 -0.07  0.13  0.10 -0.04  0.02  0.07 0.204 0.7965 1.5
## shopping  0.28 -0.17  0.64  0.02  0.03  0.00  0.06 0.518 0.4821 1.6
## attr1_1  -0.13 -0.26 -0.09 -0.27 -0.18  0.05  0.00 0.200 0.7996 3.5
## amb1_1    0.14  0.10  0.31  0.14  0.09  0.00 -0.10 0.166 0.8340 2.6
## shar1_1   0.02  0.18 -0.02  0.38 -0.06 -0.17 -0.07 0.217 0.7834 2.0
## attr2_1   0.01 -0.95  0.00 -0.16 -0.22  0.01  0.15 0.995 0.0050 1.2
## sinc2_1   0.01  0.73  0.00 -0.14 -0.05 -0.62  0.22 0.995 0.0050 2.3
## intel2_1  0.00  0.70  0.00 -0.06 -0.12  0.61  0.34 0.995 0.0050 2.5
## fun2_1    0.00  0.01  0.00 -0.09  0.99  0.07 -0.05 0.995 0.0050 1.0
## amb2_1    0.02  0.54  0.00 -0.18 -0.28  0.14 -0.76 0.992 0.0079 2.3
## shar2_1  -0.03  0.31  0.01  0.92  0.02 -0.17 -0.07 0.973 0.0269 1.3
## attr3_1   0.10  0.03  0.19  0.06 -0.01  0.01  0.00 0.050 0.9501 1.8
## fun3_1    0.15  0.00  0.33 -0.04 -0.12  0.03  0.01 0.146 0.8544 1.8
## amb3_1    0.10  0.03  0.33 -0.01 -0.10  0.05 -0.05 0.138 0.8617 1.5
## 
##                        ML6  ML1  ML7  ML5  ML2  ML3  ML4
## SS loadings           2.55 2.54 1.40 1.28 1.21 0.85 0.83
## Proportion Var        0.12 0.12 0.07 0.06 0.06 0.04 0.04
## Cumulative Var        0.12 0.24 0.31 0.37 0.43 0.47 0.51
## Proportion Explained  0.24 0.24 0.13 0.12 0.11 0.08 0.08
## Cumulative Proportion 0.24 0.48 0.61 0.73 0.84 0.92 1.00
## 
## Mean item complexity =  1.9
## Test of the hypothesis that 7 factors are sufficient.
## 
## df null model =  210  with the objective function =  9.72 with Chi Square =  79561.25
## df of  the model are 84  and the objective function was  1.51 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.11 
## 
## The harmonic n.obs is  8191 with the empirical chi square  17475.94  with prob <  0 
## The total n.obs was  8191  with Likelihood Chi Square =  12347.83  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.613
## RMSEA index =  0.134  and the 90 % confidence intervals are  0.132 0.136
## BIC =  11590.92
## Fit based upon off diagonal values = 0.87
## Measures of factor score adequacy             
##                                                    ML6 ML1  ML7  ML5  ML2  ML3
## Correlation of (regression) scores with factors   0.96   1 0.84 0.99 1.00 1.00
## Multiple R square of scores with factors          0.93   1 0.70 0.98 1.00 0.99
## Minimum correlation of possible factor scores     0.86   1 0.40 0.96 0.99 0.99
##                                                    ML4
## Correlation of (regression) scores with factors   1.00
## Multiple R square of scores with factors          0.99
## Minimum correlation of possible factor scores     0.98

Higher Cumulative Var = 0.51 We have RMSR = 0.07 - the same - should be closer 0 Almost the same RMSEA index = 0.134 (<.08 acceptable, <.05 excellent) Tucker Lewis Index= 0.613 (>.90 acceptable, >.95 excellent) The result is better but still not good.

(2) No rotation, 3 factors

Now we will use 3 factors.

fa2=fa(dating22, nfactors=3, rotate="none", fm="ml")
fa2
## Factor Analysis using method =  ml
## Call: fa(r = dating22, nfactors = 3, rotate = "none", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML3   ML2   ML1     h2     u2 com
## sports   -0.13  0.14  0.04 0.0378 0.9622 2.2
## dining    0.40 -0.10 -0.02 0.1710 0.8290 1.1
## museums   0.91 -0.09 -0.06 0.8390 0.1610 1.0
## art       0.90 -0.07 -0.07 0.8230 0.1770 1.0
## tv        0.08  0.00 -0.02 0.0064 0.9936 1.1
## theater   0.59 -0.14 -0.04 0.3713 0.6287 1.1
## movies    0.37 -0.04 -0.02 0.1360 0.8640 1.0
## concerts  0.42 -0.02 -0.08 0.1865 0.8135 1.1
## shopping  0.26 -0.16 -0.09 0.1026 0.8974 1.9
## attr1_1  -0.18 -0.14 -0.31 0.1494 0.8506 2.1
## amb1_1    0.16  0.05  0.15 0.0526 0.9474 2.2
## shar1_1   0.09  0.26  0.09 0.0859 0.9141 1.5
## attr2_1  -0.01 -0.61 -0.79 0.9951 0.0049 1.9
## sinc2_1  -0.02  0.57  0.36 0.4511 0.5489 1.7
## intel2_1 -0.01  0.52  0.32 0.3752 0.6248 1.7
## fun2_1    0.00 -0.63  0.77 0.9950 0.0050 1.9
## amb2_1   -0.07  0.59  0.21 0.3950 0.6050 1.3
## shar2_1   0.14  0.41  0.26 0.2571 0.7429 2.0
## attr3_1   0.11  0.04  0.01 0.0135 0.9865 1.3
## fun3_1    0.14  0.06 -0.09 0.0311 0.9689 2.1
## amb3_1    0.09  0.08 -0.05 0.0174 0.9826 2.5
## 
##                        ML3  ML2  ML1
## SS loadings           2.69 2.08 1.72
## Proportion Var        0.13 0.10 0.08
## Cumulative Var        0.13 0.23 0.31
## Proportion Explained  0.41 0.32 0.27
## Cumulative Proportion 0.41 0.73 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  210  with the objective function =  9.72 with Chi Square =  79561.25
## df of  the model are 150  and the objective function was  5.22 
## 
## The root mean square of the residuals (RMSR) is  0.11 
## The df corrected root mean square of the residuals is  0.13 
## 
## The harmonic n.obs is  8191 with the empirical chi square  40924.11  with prob <  0 
## The total n.obs was  8191  with Likelihood Chi Square =  42701.67  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.249
## RMSEA index =  0.186  and the 90 % confidence intervals are  0.185 0.188
## BIC =  41350.05
## Fit based upon off diagonal values = 0.69
## Measures of factor score adequacy             
##                                                    ML3  ML2  ML1
## Correlation of (regression) scores with factors   0.96 1.00 1.00
## Multiple R square of scores with factors          0.92 0.99 1.00
## Minimum correlation of possible factor scores     0.84 0.99 0.99

Lower Cumulative Var = 0.31 Worse RMSR = 0.11 (should be closer to 0) Worse RMSEA index = 0.186 (<.08 acceptable, <.05 excellent) Tucker Lewis Index= 0.249 (>.90 acceptable, >.95 excellent) The result is worse, BUT we need to look closer at the factor loadings

Factor Loadings of (1)

print(fa1$loadings,cutoff = 0.4)
## 
## Loadings:
##          ML6    ML1    ML7    ML5    ML2    ML3    ML4   
## sports                                                   
## dining                                                   
## museums   0.913                                          
## art       0.884                                          
## tv                      0.552                            
## theater   0.559                                          
## movies                                                   
## concerts  0.403                                          
## shopping                0.638                            
## attr1_1                                                  
## amb1_1                                                   
## shar1_1                                                  
## attr2_1         -0.948                                   
## sinc2_1          0.731                      -0.623       
## intel2_1         0.703                       0.606       
## fun2_1                                0.990              
## amb2_1           0.538                             -0.759
## shar2_1                        0.918                     
## attr3_1                                                  
## fun3_1                                                   
## amb3_1                                                   
## 
##                  ML6   ML1   ML7   ML5   ML2   ML3   ML4
## SS loadings    2.551 2.538 1.397 1.278 1.206 0.851 0.826
## Proportion Var 0.121 0.121 0.067 0.061 0.057 0.041 0.039
## Cumulative Var 0.121 0.242 0.309 0.370 0.427 0.468 0.507

Factor Loadings of (2)

print(fa2$loadings,cutoff = 0.4)
## 
## Loadings:
##          ML3    ML2    ML1   
## sports                       
## dining                       
## museums   0.910              
## art       0.901              
## tv                           
## theater   0.592              
## movies                       
## concerts  0.423              
## shopping                     
## attr1_1                      
## amb1_1                       
## shar1_1                      
## attr2_1         -0.613 -0.787
## sinc2_1          0.569       
## intel2_1         0.522       
## fun2_1          -0.634  0.770
## amb2_1           0.588       
## shar2_1          0.413       
## attr3_1                      
## fun3_1                       
## amb3_1                       
## 
##                  ML3   ML2   ML1
## SS loadings    2.691 2.080 1.721
## Proportion Var 0.128 0.099 0.082
## Cumulative Var 0.128 0.227 0.309

Firstly, both of them have variables that do not belong to neither of factors. Secondly, in the (1) there are factors to which only one variable belongs (ML5,ML2,ML4) and factors which by SS loadings should not be here (ML3,ML4), this is bad result. In the case (2) the situation with factors is better, but the cumulative variance is lower. So, it is very controversial what to change now.

At first, we will continue working on removing the variables.

Exluding the variables 2.

dating32 = select(dating22, -shopping,
                  -dining,
                  -movies,
                  -attr1_1,
                  -amb1_1,
                  -shar1_1,
                  -attr3_1,
                  -fun3_1,
                  -amb3_1)

Comparison with different number of factors

Now we have more or less consistent set of variables, but the appropriate number of factors is still unknown. We will try different number of factors (from 3 to 7) with different rotation

fac1=fa(dating32, nfactors=3, rotate="none", fm="ml")
fac1o=fa(dating32, nfactors=3, rotate="oblimin", fm="ml")
fac1v=fa(dating32, nfactors=3, rotate="varimax", fm="ml")

fac2=fa(dating32, nfactors=4, rotate="none", fm="ml")
fac2o=fa(dating32, nfactors=4, rotate="oblimin", fm="ml")
fac2v=fa(dating32, nfactors=4, rotate="varimax", fm="ml")

fac3=fa(dating32, nfactors=5, rotate="none", fm="ml")
fac3o=fa(dating32, nfactors=5, rotate="oblimin", fm="ml")
fac3v=fa(dating32, nfactors=5, rotate="varimax", fm="ml")

fac4=fa(dating32, nfactors=6, rotate="none", fm="ml")
fac4o=fa(dating32, nfactors=6, rotate="oblimin", fm="ml")
fac4v=fa(dating32, nfactors=6, rotate="varimax", fm="ml")

fac5=fa(dating32, nfactors=7, rotate="none", fm="ml")
fac5o=fa(dating32, nfactors=7, rotate="oblimin", fm="ml")
fac5v=fa(dating32, nfactors=7, rotate="varimax", fm="ml")

Comparison of main characteristics by number of factors Of course we cannot fully rely only on RMSEA, TLI and Cumulative Variance to tell how good is our factor analysis, but for now we try to meet the criteria as much as possible: RMSEA (<.08 acceptable, <.05 excellent) TLI (>.90 acceptable, >.95 excellent)

rmsea1 = fac1$RMSEA
rmsea2 = fac2$RMSEA 
rmsea3 = fac3$RMSEA
rmsea4 = fac4$RMSEA
rmsea5 = fac5$RMSEA 

RMSEA = c(rmsea1[1], rmsea2[1], rmsea3[1], rmsea4[1], rmsea5[1])

TLI = c(fac1$TLI, fac2$TLI, fac3$TLI, fac4$TLI, fac5$TLI)

cumvar1 = fac1$Vaccounted
cumvar1 = cumvar1[3,3]
cumvar2 = fac2$Vaccounted
cumvar2 = cumvar2[3,4]
cumvar3 = fac3$Vaccounted
cumvar3 = cumvar3[3,5]
cumvar4 = fac4$Vaccounted
cumvar4 = cumvar4[3,6]
cumvar5 = fac5$Vaccounted
cumvar5 = cumvar5[3,7]

Cumulative_Var = c(cumvar1, cumvar2, cumvar3, cumvar4, cumvar5)

name = c("FA1 (3 factors)", 
         "FA2 (4 factors)", 
         "FA3 (5 factors)", 
         "FA4 (6 factors)", 
         "FA5 (7 factors)")

fa_comparison = data.frame(name,Cumulative_Var, TLI, RMSEA) 
fa_comparison
##              name Cumulative_Var         TLI      RMSEA
## 1 FA1 (3 factors)      0.4758031  0.13005722 0.29669032
## 2 FA2 (4 factors)      0.5382459 -0.05394687 0.32655000
## 3 FA3 (5 factors)      0.5103276 -0.20815490 0.34961006
## 4 FA4 (6 factors)      0.6859750  0.80214235 0.14147548
## 5 FA5 (7 factors)      0.7522720  0.92288036 0.08832208

So, our choice is obviously FA5 with 7 factors. Choosing the rotation

Rotation 2

No rotation

print(fac5$loadings,cutoff = 0.4) 
## 
## Loadings:
##          ML1    ML2    ML7    ML3    ML6    ML4    ML5   
## sports                                                   
## museums          0.425  0.645                            
## art              0.427  0.795                            
## tv                                                       
## theater          0.746         0.532                     
## concerts                                                 
## attr2_1  -0.957                                          
## sinc2_1   0.686                             -0.537       
## intel2_1  0.638                0.580               -0.439
## fun2_1                                0.969              
## amb2_1    0.610                              0.591       
## shar2_1   0.415  0.666        -0.422                     
## 
##                  ML1   ML2   ML7   ML3   ML6   ML4   ML5
## SS loadings    2.479 1.713 1.109 1.106 1.058 0.796 0.765
## Proportion Var 0.207 0.143 0.092 0.092 0.088 0.066 0.064
## Cumulative Var 0.207 0.349 0.442 0.534 0.622 0.688 0.752
fa.diagram(fac5)

#### Oblimin Rotation

print(fac5o$loadings,cutoff = 0.4)
## 
## Loadings:
##          ML7    ML1    ML2    ML5    ML4    ML3    ML6   
## sports                                                   
## museums   0.827                                          
## art       1.005                                          
## tv                                                       
## theater                 0.993                            
## concerts                                                 
## attr2_1                                                  
## sinc2_1          1.030                                   
## intel2_1                       1.026                     
## fun2_1                                              0.981
## amb2_1                                1.016              
## shar2_1                                      1.019       
## 
##                  ML7   ML1   ML2   ML5   ML4   ML3   ML6
## SS loadings    1.782 1.222 1.208 1.179 1.175 1.146 1.086
## Proportion Var 0.148 0.102 0.101 0.098 0.098 0.095 0.090
## Cumulative Var 0.148 0.250 0.351 0.449 0.547 0.643 0.733
fa.diagram(fac5o)

#### Varimax Rotation

print(fac5v$loadings,cutoff = 0.4)
## 
## Loadings:
##          ML7    ML1    ML3    ML4    ML5    ML6    ML2   
## sports                                                   
## museums   0.858                                          
## art       0.980                                          
## tv                                                       
## theater   0.458                                     0.879
## concerts                                                 
## attr2_1         -0.541 -0.473 -0.459 -0.411              
## sinc2_1          0.984                                   
## intel2_1                0.978                            
## fun2_1                                       0.981       
## amb2_1                         0.969                     
## shar2_1                               0.988              
## 
##                  ML7   ML1   ML3   ML4   ML5   ML6   ML2
## SS loadings    2.068 1.310 1.215 1.184 1.154 1.082 1.014
## Proportion Var 0.172 0.109 0.101 0.099 0.096 0.090 0.084
## Cumulative Var 0.172 0.282 0.383 0.481 0.578 0.668 0.752
fa.diagram(fac5v)

Conclusion

In Oblimin rotation, as well as in the Varimax rotation every latent factor describe something, but there is a big problem: most of the latent factors describe only one variable - so factors are not latent, they just describe the variable, it is not really explanatory. The no rotation option seems to be the best, however it has a problem there are some factors that do not describes anything, and there are some variables that do not belong to any factor. We need to fix it

Final fix

In the final version it has been decided to stay with only 2 factors and 6 variables. It is not much, but it is the most precise option

fac5o_upgrade=fa(dating32[,-c(4,6,10,11,12,1)], nfactors=2, rotate="none", fm="ml")
fa.diagram(fac5o_upgrade)

fac5o_upgrade
## Factor Analysis using method =  ml
## Call: fa(r = dating32[, -c(4, 6, 10, 11, 12, 1)], nfactors = 2, rotate = "none", 
##     fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            ML2   ML1   h2    u2 com
## museums   0.94  0.10 0.89 0.105 1.0
## art       0.90  0.11 0.81 0.187 1.0
## theater   0.55  0.12 0.32 0.683 1.1
## attr2_1  -0.01  1.00 1.00 0.005 1.0
## sinc2_1  -0.02 -0.63 0.40 0.599 1.0
## intel2_1 -0.01 -0.58 0.33 0.668 1.0
## 
##                        ML2  ML1
## SS loadings           1.99 1.76
## Proportion Var        0.33 0.29
## Cumulative Var        0.33 0.63
## Proportion Explained  0.53 0.47
## Cumulative Proportion 0.53 1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 2 factors are sufficient.
## 
## df null model =  15  with the objective function =  2.63 with Chi Square =  21517.49
## df of  the model are 4  and the objective function was  0.06 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.07 
## 
## The harmonic n.obs is  8191 with the empirical chi square  330.42  with prob <  3e-70 
## The total n.obs was  8191  with Likelihood Chi Square =  484.64  with prob <  1.4e-103 
## 
## Tucker Lewis Index of factoring reliability =  0.916
## RMSEA index =  0.121  and the 90 % confidence intervals are  0.112 0.13
## BIC =  448.6
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    ML2  ML1
## Correlation of (regression) scores with factors   0.96 1.00
## Multiple R square of scores with factors          0.93 1.00
## Minimum correlation of possible factor scores     0.86 0.99

Final results: RMSR = 0.04 (closer to 0, improved!) RMSEA = 0.121 (improved, but still not good) TCI = 0.916 (good, improved!) Cumulative Variance = 0.63 (improved!)

Also, we can see almost perfect complexity (min. 1.000118, max. 1.089190) ## Part 3. Description of factors

Variables.

How interested are you in the following activities, on a scale of 1-10? 1. Art - art 2. Museum - museum 3. Theater -theater (related to ML2) All of the relations are positive

What do you think the opposite sex looks for in a date?

  1. Attractive - attr2_1 (positive relation)
  2. Sincere - sinc2_1 (negative relation)
  3. Intelligent - intel2_1 (negative relation) (related to ML1)

Factor names and description

ML1 - “Sexual desirability”

People look for different things in partners, different personality traits can attract a person. However, it is worth taking into account what kind of relationship a person wants: long-term for building a family, living together, or short-term to satisfy sexual needs.Since the goals during the search for a partner are different, the focus of attention will be aimed at different qualities of a person.

The authors (Pamela C. Regan, Lauren Levin,Susan Sprecher,F. Scott Christopher & Rodney Gate) of the research “What Characteristics Do Men and Women Desire In Their Short-Term Sexual and Long-Term Romantic Partners?” (2008) has such a results on this topic: “both men and women focused upon sexual desirability (e.g., attractiveness, health, sex drive, athleticism) when evaluating a short-term sexual partner, and placed more importance on similarity and on socially appealing personality characteristics (e.g., intelligence, honesty, warmth) when considering a long-term romantic relationship.”

So, as I think, the factor can be interpreted as Sexual desirability (or Sexuality) factor

ML2 - “Highbrowness”

ML2 describes the activities, which are strictly related to highbrow culture. In comparison with music or movies which can be highbrow, lowbrow or middlebrow, activities that this factor have a relation with is usually treated as highbrow. So, If a person says that he is fond of theater, art, or likes to go to museums, this signals that the person is fond of highbrow culture.

The terms of high- and lowbrow culture is one of the key concepts in the of Bourdie’s “The Difference: Social Criticism of the Judgment of Taste” (1979). “Taste has as much to do with expressed distaste for the aesthetic preferences attributed to other social groups as with positive adherence to the preferences of one’s own social group” and that is why such a distinction between cultural activites exists.

I would like to name the factor “Highbrowness”.