Data Visualization

This coding session was done as part of the Carpentries workshop at Helmholtz Institute (HIDA)

#Install and Load the tidyverse package

library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#Import the SAFI_clean_one.csv file and name it as interviews
interviews <- read.csv("data/SAFI_clean_one.csv", na = "NULL")
#View the imported file
View(interviews)

head(interviews)
##   key_ID village       interview_date no_membrs years_liv respondent_wall_type
## 1      1     God 2016-11-17T00:00:00Z         3         4              muddaub
## 2      2     God 2016-11-17T00:00:00Z         7         9              muddaub
## 3      3     God 2016-11-17T00:00:00Z        10        15          burntbricks
## 4      4     God 2016-11-17T00:00:00Z         7         6          burntbricks
## 5      5     God 2016-11-17T00:00:00Z         7        40          burntbricks
## 6      6     God 2016-11-17T00:00:00Z         3         3              muddaub
##   rooms memb_assoc affect_conflicts liv_count
## 1     1       <NA>             <NA>         1
## 2     1        yes             once         3
## 3     1       <NA>             <NA>         1
## 4     1       <NA>             <NA>         2
## 5     1       <NA>             <NA>         4
## 6     1       <NA>             <NA>         1
##                                                                    items_owned
## 1                                         bicycle;television;solar_panel;table
## 2 cow_cart;bicycle;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone
## 3                                                                  solar_torch
## 4                            bicycle;radio;cow_plough;solar_panel;mobile_phone
## 5                                      motorcyle;radio;cow_plough;mobile_phone
## 6                                                                         <NA>
##   no_meals        months_lack_food                                instanceID
## 1        2                     Jan uuid:ec241f2c-0609-46ed-b5e8-fe575f6cefef
## 2        2    Jan;Sept;Oct;Nov;Dec uuid:099de9c9-3e5e-427b-8452-26250e840d6e
## 3        2 Jan;Feb;Mar;Oct;Nov;Dec uuid:193d7daf-9582-409b-bf09-027dd36f9007
## 4        2        Sept;Oct;Nov;Dec uuid:148d1105-778a-4755-aa71-281eadd4a973
## 5        2        Aug;Sept;Oct;Nov uuid:2c867811-9696-4966-9866-f35c3e97d02d
## 6        2            Aug;Sept;Oct uuid:daa56c91-c8e3-44c3-a663-af6a49a2ca70
dim(interviews)
## [1] 131  14
#Create a vector from the dataframe column "memb_assoc"
memb_assoc <- interviews$memb_assoc
#Convert memb_assoc into a Fcator/Categorical Variable
memb_assoc <- as.factor(memb_assoc)
#Let's see what it looks like
memb_assoc <- interviews$memb_assoc

#Replace the missing data with "undetermined"
memb_assoc[is.na(memb_assoc)] <- "undetermined"

#Convert it into a Factor/Categorical Variable
memb_assoc <- as.factor(memb_assoc)



## Rename levels.
memb_assoc <- fct_recode(memb_assoc, No = "no",
                         Undetermined = "undetermined", Yes = "yes")
## Reorder levels. Note we need to use the new level names.
memb_assoc <- factor(memb_assoc, levels = c("No", "Yes", "Undetermined"))


#Selecting a few variables from the interviews dataset
interviews %>% 
  select(key_ID, village, interview_date, instanceID)
##     key_ID  village       interview_date
## 1        1      God 2016-11-17T00:00:00Z
## 2        2      God 2016-11-17T00:00:00Z
## 3        3      God 2016-11-17T00:00:00Z
## 4        4      God 2016-11-17T00:00:00Z
## 5        5      God 2016-11-17T00:00:00Z
## 6        6      God 2016-11-17T00:00:00Z
## 7        7      God 2016-11-17T00:00:00Z
## 8        8 Chirodzo 2016-11-16T00:00:00Z
## 9        9 Chirodzo 2016-11-16T00:00:00Z
## 10      10 Chirodzo 2016-12-16T00:00:00Z
## 11      11      God 2016-11-21T00:00:00Z
## 12      12      God 2016-11-21T00:00:00Z
## 13      13      God 2016-11-21T00:00:00Z
## 14      14      God 2016-11-21T00:00:00Z
## 15      15      God 2016-11-21T00:00:00Z
## 16      16      God 2016-11-24T00:00:00Z
## 17      17      God 2016-11-21T00:00:00Z
## 18      18      God 2016-11-21T00:00:00Z
## 19      19      God 2016-11-21T00:00:00Z
## 20      20      God 2016-11-21T00:00:00Z
## 21      21      God 2016-11-21T00:00:00Z
## 22      22      God 2016-11-21T00:00:00Z
## 23      23    Ruaca 2016-11-21T00:00:00Z
## 24      24    Ruaca 2016-11-21T00:00:00Z
## 25      25    Ruaca 2016-11-21T00:00:00Z
## 26      26    Ruaca 2016-11-21T00:00:00Z
## 27      27    Ruaca 2016-11-21T00:00:00Z
## 28      28    Ruaca 2016-11-21T00:00:00Z
## 29      29    Ruaca 2016-11-21T00:00:00Z
## 30      30    Ruaca 2016-11-21T00:00:00Z
## 31      31    Ruaca 2016-11-21T00:00:00Z
## 32      32    Ruaca 2016-11-21T00:00:00Z
## 33      33    Ruaca 2016-11-21T00:00:00Z
## 34      34 Chirodzo 2016-11-17T00:00:00Z
## 35      35 Chirodzo 2016-11-17T00:00:00Z
## 36      36 Chirodzo 2016-11-17T00:00:00Z
## 37      37 Chirodzo 2016-11-17T00:00:00Z
## 38      38      God 2016-11-17T00:00:00Z
## 39      39      God 2016-11-17T00:00:00Z
## 40      40      God 2016-11-17T00:00:00Z
## 41      41      God 2016-11-17T00:00:00Z
## 42      42      God 2016-11-17T00:00:00Z
## 43      43 Chirodzo 2016-11-17T00:00:00Z
## 44      44 Chirodzo 2016-11-17T00:00:00Z
## 45      45 Chirodzo 2016-11-17T00:00:00Z
## 46      46 Chirodzo 2016-11-17T00:00:00Z
## 47      47 Chirodzo 2016-11-17T00:00:00Z
## 48      48 Chirodzo 2016-11-16T00:00:00Z
## 49      49 Chirodzo 2016-11-16T00:00:00Z
## 50      50 Chirodzo 2016-11-16T00:00:00Z
## 51      51 Chirodzo 2016-11-16T00:00:00Z
## 52      52 Chirodzo 2016-11-16T00:00:00Z
## 53      53 Chirodzo 2016-11-16T00:00:00Z
## 54      54 Chirodzo 2016-11-16T00:00:00Z
## 55      55 Chirodzo 2016-11-16T00:00:00Z
## 56      56 Chirodzo 2016-11-16T00:00:00Z
## 57      57 Chirodzo 2016-11-16T00:00:00Z
## 58      58 Chirodzo 2016-11-16T00:00:00Z
## 59      59 Chirodzo 2016-11-16T00:00:00Z
## 60      60 Chirodzo 2016-11-16T00:00:00Z
## 61      61 Chirodzo 2016-11-16T00:00:00Z
## 62      62 Chirodzo 2016-11-16T00:00:00Z
## 63      63 Chirodzo 2016-11-16T00:00:00Z
## 64      64 Chirodzo 2016-11-16T00:00:00Z
## 65      65 Chirodzo 2016-11-16T00:00:00Z
## 66      66 Chirodzo 2016-11-16T00:00:00Z
## 67      67 Chirodzo 2016-11-16T00:00:00Z
## 68      68 Chirodzo 2016-11-16T00:00:00Z
## 69      69 Chirodzo 2016-11-16T00:00:00Z
## 70      70 Chirodzo 2016-11-16T00:00:00Z
## 71      71    Ruaca 2016-11-18T00:00:00Z
## 72     127 Chirodzo 2016-11-16T00:00:00Z
## 73     133    Ruaca 2016-11-23T00:00:00Z
## 74     152    Ruaca 2016-11-24T00:00:00Z
## 75     153    Ruaca 2016-11-24T00:00:00Z
## 76     155      God 2016-11-24T00:00:00Z
## 77     178    Ruaca 2016-11-25T00:00:00Z
## 78     177      God 2016-11-25T00:00:00Z
## 79     180    Ruaca 2016-11-25T00:00:00Z
## 80     181      God 2016-11-25T00:00:00Z
## 81     182      God 2016-11-25T00:00:00Z
## 82     186      God 2016-11-28T00:00:00Z
## 83     187      God 2016-11-28T00:00:00Z
## 84     195      God 2016-11-28T00:00:00Z
## 85     196      God 2016-11-28T00:00:00Z
## 86     197      God 2016-11-28T00:00:00Z
## 87     198      God 2016-11-28T00:00:00Z
## 88     201      God 2016-11-21T00:00:00Z
## 89     202      God 2016-11-17T00:00:00Z
## 90      72    Ruaca 2017-04-26T00:00:00Z
## 91      73    Ruaca 2017-04-26T00:00:00Z
## 92      76    Ruaca 2017-04-26T00:00:00Z
## 93      83    Ruaca 2017-04-27T00:00:00Z
## 94      85    Ruaca 2017-04-27T00:00:00Z
## 95      89      God 2017-04-27T00:00:00Z
## 96     101      God 2017-04-27T00:00:00Z
## 97     103    Ruaca 2017-04-27T00:00:00Z
## 98     102    Ruaca 2017-04-28T00:00:00Z
## 99      78    Ruaca 2017-04-28T00:00:00Z
## 100     80    Ruaca 2017-04-28T00:00:00Z
## 101    104    Ruaca 2017-04-28T00:00:00Z
## 102    105    Ruaca 2017-04-28T00:00:00Z
## 103    106      God 2017-04-30T00:00:00Z
## 104    109      God 2017-05-03T00:00:00Z
## 105    110    Ruaca 2017-05-03T00:00:00Z
## 106    113    Ruaca 2017-05-03T00:00:00Z
## 107    118    Ruaca 2017-05-04T00:00:00Z
## 108    125    Ruaca 2017-05-04T00:00:00Z
## 109    119    Ruaca 2017-05-04T00:00:00Z
## 110    115    Ruaca 2017-05-11T00:00:00Z
## 111    108      God 2017-05-11T00:00:00Z
## 112    116    Ruaca 2017-05-11T00:00:00Z
## 113    117    Ruaca 2017-05-11T00:00:00Z
## 114    144    Ruaca 2017-05-18T00:00:00Z
## 115    143    Ruaca 2017-05-18T00:00:00Z
## 116    150    Ruaca 2017-05-18T00:00:00Z
## 117    159      God 2017-05-18T00:00:00Z
## 118    160      God 2017-06-03T00:00:00Z
## 119    165    Ruaca 2017-06-03T00:00:00Z
## 120    166    Ruaca 2017-06-03T00:00:00Z
## 121    167    Ruaca 2017-06-03T00:00:00Z
## 122    174    Ruaca 2017-06-03T00:00:00Z
## 123    175    Ruaca 2017-06-03T00:00:00Z
## 124    189    Ruaca 2017-06-03T00:00:00Z
## 125    191    Ruaca 2017-06-03T00:00:00Z
## 126    192 Chirodzo 2017-06-03T00:00:00Z
## 127    126    Ruaca 2017-05-18T00:00:00Z
## 128    193    Ruaca 2017-06-04T00:00:00Z
## 129    194    Ruaca 2017-06-04T00:00:00Z
## 130    199 Chirodzo 2017-06-04T00:00:00Z
## 131    200 Chirodzo 2017-06-04T00:00:00Z
##                                    instanceID
## 1   uuid:ec241f2c-0609-46ed-b5e8-fe575f6cefef
## 2   uuid:099de9c9-3e5e-427b-8452-26250e840d6e
## 3   uuid:193d7daf-9582-409b-bf09-027dd36f9007
## 4   uuid:148d1105-778a-4755-aa71-281eadd4a973
## 5   uuid:2c867811-9696-4966-9866-f35c3e97d02d
## 6   uuid:daa56c91-c8e3-44c3-a663-af6a49a2ca70
## 7   uuid:ae20a58d-56f4-43d7-bafa-e7963d850844
## 8   uuid:d6cee930-7be1-4fd9-88c0-82a08f90fb5a
## 9   uuid:846103d2-b1db-4055-b502-9cd510bb7b37
## 10  uuid:8f4e49bc-da81-4356-ae34-e0d794a23721
## 11  uuid:d29b44e3-3348-4afc-aa4d-9eb34c89d483
## 12  uuid:e6ee6269-b467-4e37-91fc-5e9eaf934557
## 13  uuid:6c00c145-ee3b-409c-8c02-2c8d743b6918
## 14  uuid:9b21467f-1116-4340-a3b1-1ab64f13c87d
## 15  uuid:a837e545-ff86-4a1c-a1a5-6186804b985f
## 16  uuid:d17db52f-4b87-4768-b534-ea8f9704c565
## 17  uuid:4707f3dc-df18-4348-9c2c-eec651e89b6b
## 18  uuid:7ffe7bd1-a15c-420c-a137-e1f006c317a3
## 19  uuid:e32f2dc0-0d05-42fb-8e21-605757ddf07d
## 20  uuid:d1005274-bf52-4e79-8380-3350dd7c2bac
## 21  uuid:6570a7d0-6a0b-452c-aa2e-922500e35749
## 22  uuid:a51c3006-8847-46ff-9d4e-d29919b8ecf9
## 23  uuid:58b37b6d-d6cd-4414-8790-b9c68bca98de
## 24  uuid:661457d3-7e61-45e8-a238-7415e7548f82
## 25  uuid:45ed84c4-114e-4df0-9f5d-c800806c2bee
## 26  uuid:1c54ee24-22c4-4ee9-b1ad-42d483c08e2e
## 27  uuid:3197cded-1fdc-4c0c-9b10-cfcc0bf49c4d
## 28  uuid:1de53318-a8cf-4736-99b1-8239f8822473
## 29  uuid:adcd7463-8943-4c67-b25f-f72311409476
## 30  uuid:59341ead-92be-45a9-8545-6edf9f94fdc6
## 31  uuid:cb06eb49-dd39-4150-8bbe-a599e074afe8
## 32  uuid:25597af3-cd79-449c-a48a-fb9aea6c48bf
## 33  uuid:0fbd2df1-2640-4550-9fbd-7317feaa4758
## 34  uuid:14c78c45-a7cc-4b2a-b765-17c82b43feb4
## 35  uuid:ff7496e7-984a-47d3-a8a1-13618b5683ce
## 36  uuid:c90eade0-1148-4a12-8c0e-6387a36f45b1
## 37  uuid:408c6c93-d723-45ef-8dee-1b1bd3fe20cd
## 38  uuid:81309594-ff58-4dc1-83a7-72af5952ee08
## 39  uuid:c0fb6310-55af-4831-ae3d-2729556c3285
## 40  uuid:c0b34854-eede-4e81-b183-ef58a45bfc34
## 41  uuid:b3ba34d8-eea1-453d-bc73-c141bcbbc5e5
## 42  uuid:e3a1dd8a-1bda-428c-a014-2b527f11ae64
## 43  uuid:b4dff49f-ef27-40e5-a9d1-acf287b47358
## 44  uuid:f9fadf44-d040-4fca-86c1-2835f79c4952
## 45  uuid:e3554d22-35b1-4fb9-b386-dd5866ad5792
## 46  uuid:35f297e0-aa5d-4149-9b7b-4965004cfc37
## 47  uuid:2d0b1936-4f82-4ec3-a3b5-7c3c8cd6cc2b
## 48  uuid:e180899c-7614-49eb-a97c-40ed013a38a2
## 49  uuid:2303ebc1-2b3c-475a-8916-b322ebf18440
## 50  uuid:4267c33c-53a7-46d9-8bd6-b96f58a4f92c
## 51  uuid:18ac8e77-bdaf-47ab-85a2-e4c947c9d3ce
## 52  uuid:6db55cb4-a853-4000-9555-757b7fae2bcf
## 53  uuid:cc7f75c5-d13e-43f3-97e5-4f4c03cb4b12
## 54  uuid:273ab27f-9be3-4f3b-83c9-d3e1592de919
## 55  uuid:883c0433-9891-4121-bc63-744f082c1fa0
## 56  uuid:973c4ac6-f887-48e7-aeaf-4476f2cfab76
## 57  uuid:a7184e55-0615-492d-9835-8f44f3b03a71
## 58  uuid:a7a3451f-cd0d-4027-82d9-8dcd1234fcca
## 59  uuid:1936db62-5732-45dc-98ff-9b3ac7a22518
## 60  uuid:85465caf-23e4-4283-bb72-a0ef30e30176
## 61  uuid:2401cf50-8859-44d9-bd14-1bf9128766f2
## 62  uuid:c6597ecc-cc2a-4c35-a6dc-e62c71b345d6
## 63  uuid:86ed4328-7688-462f-aac7-d6518414526a
## 64  uuid:28cfd718-bf62-4d90-8100-55fafbe45d06
## 65  uuid:143f7478-0126-4fbc-86e0-5d324339206b
## 66  uuid:a457eab8-971b-4417-a971-2e55b8702816
## 67  uuid:6c15d667-2860-47e3-a5e7-7f679271e419
## 68  uuid:ef04b3eb-b47d-412e-9b09-4f5e08fc66f9
## 69  uuid:f86933a5-12b8-4427-b821-43c5b039401d
## 70  uuid:1feb0108-4599-4bf9-8a07-1f5e66a50a0a
## 71  uuid:761f9c49-ec93-4932-ba4c-cc7b78dfcef1
## 72  uuid:f6d04b41-b539-4e00-868a-0f62b427587d
## 73  uuid:429d279a-a519-4dcc-9f64-4673b0fd5d53
## 74  uuid:59738c17-1cda-49ee-a563-acd76f6bc487
## 75  uuid:7e7961ca-fa1c-4567-9bfa-a02f876e4e03
## 76  uuid:77b3021b-a9d6-4276-aaeb-5bfcfd413852
## 77  uuid:2186e2ec-f65a-47cc-9bc1-a0f36dd9591c
## 78  uuid:87998c33-c8d2-49ec-9dae-c123735957ec
## 79  uuid:ece89122-ea99-4378-b67e-a170127ec4e6
## 80  uuid:bf373763-dca5-4906-901b-d1bacb4f0286
## 81  uuid:394033e8-a6e2-4e39-bfac-458753a1ed78
## 82  uuid:268bfd97-991c-473f-bd51-bc80676c65c6
## 83  uuid:0a42c9ee-a840-4dda-8123-15c1bede5dfc
## 84  uuid:2c132929-9c8f-450a-81ff-367360ce2c19
## 85  uuid:44e427d1-a448-4bf2-b529-7d67b2266c06
## 86  uuid:85c99fd2-775f-40c9-8654-68223f59d091
## 87  uuid:28c64954-739c-444c-a6e0-355878e471c8
## 88  uuid:9e79a31c-3ea5-44f0-80f9-a32db49422e3
## 89  uuid:06d39051-38ef-4757-b68b-3327b1f16b9d
## 90  uuid:c4a2c982-244e-45a5-aa4b-71fa53f99e18
## 91  uuid:ac3da862-9e6c-4962-94b6-f4c31624f207
## 92  uuid:4178a296-903a-4a8e-9cfa-0cd6143476e8
## 93  uuid:a1e9df00-c8ae-411c-931c-c7df898c68d0
## 94  uuid:4d0f472b-f8ae-4026-87c9-6b5be14b0a70
## 95  uuid:b3b309c6-f234-4830-8b30-87d26a17ee1d
## 96  uuid:3c174acd-e431-4523-9ad6-eb14cddca805
## 97  uuid:e9d79844-ef14-493b-bbd6-d13691cc660e
## 98  uuid:76206b0b-af74-4344-b24f-81e839f0d7b0
## 99  uuid:da3fa7cc-5ce9-44fd-9a78-b8982b607515
## 100 uuid:a85df6df-0336-46fa-a9f4-522bf6f8b438
## 101 uuid:bb2bb365-7d7d-4fe9-9353-b21269676119
## 102 uuid:af0904ee-4fdb-4090-973f-599c81ddf022
## 103 uuid:468797c1-4a65-4f35-9c83-e28ce46972a2
## 104 uuid:602cd3f6-4a97-49c6-80e3-bcfd5c78dfa4
## 105 uuid:e7c51ac4-24e4-475e-88e7-f85e896945e3
## 106 uuid:01210861-aba1-4268-98d0-0260e05f5155
## 107 uuid:77335b2e-8812-4a35-b1e5-ca9ab626dfea
## 108 uuid:02b05c68-302e-4e7a-b229-81cb1377fd29
## 109 uuid:fa201fce-4e94-44b8-b435-c558c2e1ed55
## 110 uuid:628fe23d-188f-43e4-a203-a4bf3257d461
## 111 uuid:e4f4d6ba-e698-45a5-947f-ba6da88cc22b
## 112 uuid:cfee6297-2c0e-4f8a-94cc-9aaee0bd64cb
## 113 uuid:3fe626b3-c794-48e1-a80f-5bfe440c507b
## 114 uuid:0670cef6-d233-4852-89d8-36955261b0a3
## 115 uuid:9a096a12-b335-468c-b3cc-1191180d62de
## 116 uuid:92613d0d-e7b1-4d62-8ea4-451d7cd0a982
## 117 uuid:37577f91-d665-443e-8d70-b914954cef4b
## 118 uuid:f22831ec-6bc3-4b73-9197-4b01e01abb66
## 119 uuid:62f3f7af-f0f3-4f88-b9e0-acf8baa49ae4
## 120 uuid:40aac732-94df-496c-97ba-5b67f59bcc7a
## 121 uuid:a9d1a013-043b-475d-a71b-77ed80abe970
## 122 uuid:43ec6132-478c-4f87-878d-fb3c0c4d0c74
## 123 uuid:64fc743e-8176-40f6-8ae4-36ae97fac1d9
## 124 uuid:c17e374c-280b-4e78-bf21-74a7c1c73492
## 125 uuid:dad53aff-b520-4015-a9e3-f5fdf9168fe1
## 126 uuid:f94409a6-e461-4e4c-a6fb-0072d3d58b00
## 127 uuid:69caea81-a4e5-4e8d-83cd-9c18d8e8d965
## 128 uuid:5ccc2e5a-ea90-48b5-8542-69400d5334df
## 129 uuid:95c11a30-d44f-40c4-8ea8-ec34fca6bbbf
## 130 uuid:ffc83162-ff24-4a87-8709-eff17abc0b3b
## 131 uuid:aa77a0d7-7142-41c8-b494-483a5b68d8a7
#Select the village Chirodzo and find its details

interviews %>% 
  filter(village == "Chirodzo") %>% 
  select(key_ID, village,interview_date, instanceID) %>% 
  sample_n(size = 10)
##    key_ID  village       interview_date
## 1      48 Chirodzo 2016-11-16T00:00:00Z
## 2      45 Chirodzo 2016-11-17T00:00:00Z
## 3      63 Chirodzo 2016-11-16T00:00:00Z
## 4      51 Chirodzo 2016-11-16T00:00:00Z
## 5      36 Chirodzo 2016-11-17T00:00:00Z
## 6      59 Chirodzo 2016-11-16T00:00:00Z
## 7      67 Chirodzo 2016-11-16T00:00:00Z
## 8     127 Chirodzo 2016-11-16T00:00:00Z
## 9      69 Chirodzo 2016-11-16T00:00:00Z
## 10     66 Chirodzo 2016-11-16T00:00:00Z
##                                   instanceID
## 1  uuid:e180899c-7614-49eb-a97c-40ed013a38a2
## 2  uuid:e3554d22-35b1-4fb9-b386-dd5866ad5792
## 3  uuid:86ed4328-7688-462f-aac7-d6518414526a
## 4  uuid:18ac8e77-bdaf-47ab-85a2-e4c947c9d3ce
## 5  uuid:c90eade0-1148-4a12-8c0e-6387a36f45b1
## 6  uuid:1936db62-5732-45dc-98ff-9b3ac7a22518
## 7  uuid:6c15d667-2860-47e3-a5e7-7f679271e419
## 8  uuid:f6d04b41-b539-4e00-868a-0f62b427587d
## 9  uuid:f86933a5-12b8-4427-b821-43c5b039401d
## 10 uuid:a457eab8-971b-4417-a971-2e55b8702816
interviews_plotting <- interviews %>% 
  #pivot wider by items_owned
  separate_longer_delim(items_owned, delim = ";") %>% 
  #If there were no items listed, changing NA to no_listed_items
  replace_na(list(items_owned="no_listed_items")) %>% 
  mutate(items_owned_logical = TRUE) %>% 
  pivot_wider(names_from = items_owned,
              values_from = items_owned_logical,
              values_fill = list(items_owned_logical = FALSE)) %>% 
  #Pivot wider by months_lack_food
  separate_longer_delim(months_lack_food, delim = ";") %>% 
  mutate(months_lack_food_logical = TRUE) %>% 
  pivot_wider(names_from = months_lack_food,
              values_from = months_lack_food_logical,
              values_fill = list(months_lack_food_logical = FALSE)) %>% 
  #add some summary columns
  mutate(number_months_lack_food = rowSums(select(., Jan:May))) %>% 
  mutate(number_items = rowSums(select(.,bicycle:car)))

write.csv(interviews_plotting, file = "data/interviews_plotting.csv")

interviews_plotting <- read.csv("data/interviews_plotting.csv")

##Plots

Here are some of the plots