Cuadros 28 de abril

Van los cuadros que serna usados para el articulo

load("~/Dropbox/especialidad_nutricion/datos/BHU/bhu_2011_2013.RData")
tabla1 <- table(bhu_2011_csv$FUMA, bhu_2011_csv$SEXO)
round(prop.table(tabla1, 2) * 100, 1)
##     
##         F    M
##   no 83.6 84.1
##   si 16.4 15.9
fisher.test(tabla1)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla1 
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.3483 2.6774 
## sample estimates:
## odds ratio 
##     0.9658
chisq.test(tabla1)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla1 
## X-squared = 0, df = 1, p-value = 1
tabla2 <- table(bhu_2011_csv$PASAFUM, bhu_2011_csv$SEXO)
round(prop.table(tabla2, 2) * 100, 1)
##     
##         F    M
##   no 50.9 56.7
##   si 49.1 43.3
fisher.test(tabla2)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla2 
## p-value = 0.5805
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.3588 1.7470 
## sample estimates:
## odds ratio 
##     0.7936
chisq.test(tabla2)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla2 
## X-squared = 0.1957, df = 1, p-value = 0.6582
tabla3 <- table(bhu_2011_csv$BEBIDA, bhu_2011_csv$SEXO)
round(prop.table(tabla3, 2) * 100, 1)
##                                                               
##                                                                   F    M
##                                                                50.7 24.6
##   cerveza                                                      20.9 20.3
##   martini                                                       1.5  0.0
##   vino                                                         14.9 27.5
##   vodka                                                         3.0  0.0
##   whisky                                                        9.0 27.5
chisq.test(tabla3)
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  tabla3 
## X-squared = 18.19, df = 5, p-value = 0.002713
library(car)
## Loading required package: MASS
## Loading required package: nnet
bhu_2011_csv$FRECCONS.rec <- recode(bhu_2011_csv$FRECCONS, "0=0;4:5=1;3=2;1=3;2=3;")
table(bhu_2011_csv$FRECCONS, bhu_2011_csv$FRECCONS.rec)
##    
##      0  1  2  3
##   0 11  0  0  0
##   1  0  0  0  3
##   2  0  0  0  5
##   3  0  0 53  0
##   4  0 28  0  0
##   5  0 36  0  0
tabla4 <- table(bhu_2011_csv$FRECCONS.rec, bhu_2011_csv$SEXO)
round(prop.table(tabla4, 2) * 100, 1)
##    
##        F    M
##   0  6.0 10.1
##   1 62.7 31.9
##   2 28.4 49.3
##   3  3.0  8.7
chisq.test(tabla4)
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  tabla4 
## X-squared = 13.29, df = 3, p-value = 0.004055
tabla5 <- table(bhu_2011_csv$IND_FRU_VER, bhu_2011_csv$SEXO)
round(prop.table(tabla5, 2) * 100, 1)
##             
##                 F    M
##   Con Riesgo 85.1 85.5
##   Sin Riesgo 14.9 14.5
chisq.test(tabla5)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla5 
## X-squared = 0, df = 1, p-value = 1
fisher.test(tabla5)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla5 
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.3329 2.8051 
## sample estimates:
## odds ratio 
##     0.9663
tabla6 <- table(bhu_2011_csv$COMNOPRE, bhu_2011_csv$SEXO)
round(prop.table(tabla6, 2) * 100, 1)
##    
##        F    M
##   0 22.4 20.3
##   1 29.9 36.2
##   2 31.3 20.3
##   3 10.4  2.9
##   4  1.5  4.3
##   5  0.0  8.7
##   6  1.5  1.4
##   7  3.0  5.8
chisq.test(tabla6)
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  tabla6 
## X-squared = 12.41, df = 7, p-value = 0.08792
tabla7 <- table(bhu_2011_csv$IND_BEB, bhu_2011_csv$SEXO)
round(prop.table(tabla7, 2) * 100, 1)
##    
##        F    M
##   0 80.6 63.8
##   1 19.4 36.2
chisq.test(tabla7)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla7 
## X-squared = 3.982, df = 1, p-value = 0.04598
fisher.test(tabla7)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla7 
## p-value = 0.03581
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  1.017 5.619 
## sample estimates:
## odds ratio 
##      2.345
tabla8 <- table(bhu_2011_csv$AGREGASA, bhu_2011_csv$SEXO)
round(prop.table(tabla8, 2) * 100, 1)
##     
##         F    M
##   no 97.0 89.9
##   si  3.0 10.1
chisq.test(tabla8)
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla8 
## X-squared = 1.78, df = 1, p-value = 0.1821
fisher.test(tabla8)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla8 
## p-value = 0.1654
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##   0.6586 37.2384 
## sample estimates:
## odds ratio 
##      3.638
bhu_2011_csv$Act_Fis_Total.rec <- Act_Fis_Total.sem
tabla9 <- table(bhu_2011_csv$Act_Fis_Total.rec, bhu_2011_csv$SEXO)
round(prop.table(tabla9, 2) * 100, 1)
##    
##        F    M
##   0 49.3 43.5
##   1 20.9 10.1
##   2 29.9 46.4
chisq.test(tabla9)
## 
##  Pearson's Chi-squared test
## 
## data:  tabla9 
## X-squared = 5.217, df = 2, p-value = 0.07364
tabla10 <- table(bhu_2011_csv$ICC.rec, bhu_2011_csv$SEXO)
round(prop.table(tabla10, 2) * 100, 1)
##     
##         F    M
##   CR 47.8 39.1
##   SR 52.2 60.9
chisq.test(tabla10)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla10 
## X-squared = 0.7095, df = 1, p-value = 0.3996
fisher.test(tabla10)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla10 
## p-value = 0.3871
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.6814 2.9729 
## sample estimates:
## odds ratio 
##      1.418
tabla11 <- table(bhu_2011_csv$PREART, bhu_2011_csv$SEXO)
round(prop.table(tabla11, 2) * 100, 1)
##     
##         F    M
##   no 74.6 65.2
##   si 25.4 34.8
chisq.test(tabla11)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla11 
## X-squared = 1.017, df = 1, p-value = 0.3132
fisher.test(tabla11)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla11 
## p-value = 0.2651
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.7031 3.5358 
## sample estimates:
## odds ratio 
##      1.563
tabla12 <- table(bhu_2011_csv$COLES, bhu_2011_csv$SEXO)
round(prop.table(tabla12, 2) * 100, 1)
##     
##         F    M
##   no 73.1 60.9
##   si 26.9 39.1
chisq.test(tabla12)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla12 
## X-squared = 1.789, df = 1, p-value = 0.1811
fisher.test(tabla12)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla12 
## p-value = 0.1474
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.7989 3.8704 
## sample estimates:
## odds ratio 
##      1.743
tabla13 <- table(bhu_2011_csv$GLICEMIA, bhu_2011_csv$SEXO)
round(prop.table(tabla13, 2) * 100, 1)
##     
##         F    M
##   no 86.6 89.9
##   si 13.4 10.1
chisq.test(tabla13)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla13 
## X-squared = 0.1081, df = 1, p-value = 0.7423
fisher.test(tabla13)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla13 
## p-value = 0.6029
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.2156 2.3640 
## sample estimates:
## odds ratio 
##     0.7293
levels(bhu_2011_csv$IMC.rec)
## [1] "NP" "Ob" "SP"
bhu_2011_csv$IMC.rec <- recode(bhu_2011_csv$IMC.rec, "'NP'='1-NP';'Ob'='3-Ob';'1-SP'='2-SP'")
tabla14 <- table(bhu_2011_csv$IMC.rec, bhu_2011_csv$SEXO)
round(prop.table(tabla14, 2) * 100, 1)
##       
##           F    M
##   1-NP 44.8 29.0
##   3-Ob 16.4 18.8
##   SP   38.8 52.2
chisq.test(tabla14)
## 
##  Pearson's Chi-squared test
## 
## data:  tabla14 
## X-squared = 3.751, df = 2, p-value = 0.1533
tabla15 <- table(bhu_2011_csv$IMC.rec, bhu_2011_csv$PREART)
round(prop.table(tabla15, 2) * 100, 1)
##       
##          no   si
##   1-NP 42.1 24.4
##   3-Ob 13.7 26.8
##   SP   44.2 48.8
round(prop.table(tabla15, 1) * 100, 1)
##       
##          no   si
##   1-NP 80.0 20.0
##   3-Ob 54.2 45.8
##   SP   67.7 32.3
chisq.test(tabla15)
## 
##  Pearson's Chi-squared test
## 
## data:  tabla15 
## X-squared = 5.38, df = 2, p-value = 0.06788
tabla16 <- table(bhu_2011_csv$IMC.rec, bhu_2011_csv$COLES)
round(prop.table(tabla16, 2) * 100, 1)
##       
##          no   si
##   1-NP 36.3 37.8
##   3-Ob 16.5 20.0
##   SP   47.3 42.2
round(prop.table(tabla16, 1) * 100, 1)
##       
##          no   si
##   1-NP 66.0 34.0
##   3-Ob 62.5 37.5
##   SP   69.4 30.6
chisq.test(tabla16)
## 
##  Pearson's Chi-squared test
## 
## data:  tabla16 
## X-squared = 0.3969, df = 2, p-value = 0.82
tabla17 <- table(bhu_2011_csv$IMC.rec, bhu_2011_csv$GLICEMIA)
round(prop.table(tabla17, 2) * 100, 1)
##       
##          no   si
##   1-NP 40.0 12.5
##   3-Ob 15.8 31.2
##   SP   44.2 56.2
round(prop.table(tabla17, 1) * 100, 1)
##       
##          no   si
##   1-NP 96.0  4.0
##   3-Ob 79.2 20.8
##   SP   85.5 14.5
chisq.test(tabla17)
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  tabla17 
## X-squared = 5.258, df = 2, p-value = 0.07217
tabla18 <- table(bhu_2011_csv$ICC.rec, bhu_2011_csv$PREART)
round(prop.table(tabla18, 2) * 100, 1)
##     
##        no   si
##   CR 36.8 58.5
##   SR 63.2 41.5
round(prop.table(tabla18, 1) * 100, 1)
##     
##        no   si
##   CR 59.3 40.7
##   SR 77.9 22.1
chisq.test(tabla18)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla18 
## X-squared = 4.64, df = 1, p-value = 0.03123
fisher.test(tabla18)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla18 
## p-value = 0.02396
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.1820 0.9315 
## sample estimates:
## odds ratio 
##      0.416
tabla19 <- table(bhu_2011_csv$ICC.rec, bhu_2011_csv$COLES)
round(prop.table(tabla19, 2) * 100, 1)
##     
##        no   si
##   CR 40.7 48.9
##   SR 59.3 51.1
round(prop.table(tabla19, 1) * 100, 1)
##     
##        no   si
##   CR 62.7 37.3
##   SR 70.1 29.9
chisq.test(tabla19)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla19 
## X-squared = 0.529, df = 1, p-value = 0.467
fisher.test(tabla19)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla19 
## p-value = 0.4623
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.3284 1.5674 
## sample estimates:
## odds ratio 
##     0.7181
tabla20 <- table(bhu_2011_csv$ICC.rec, bhu_2011_csv$GLICEMIA)
round(prop.table(tabla20, 2) * 100, 1)
##     
##        no   si
##   CR 38.3 81.2
##   SR 61.7 18.8
round(prop.table(tabla20, 1) * 100, 1)
##     
##        no   si
##   CR 78.0 22.0
##   SR 96.1  3.9
chisq.test(tabla18)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla18 
## X-squared = 4.64, df = 1, p-value = 0.03123
fisher.test(tabla18)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla18 
## p-value = 0.02396
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.1820 0.9315 
## sample estimates:
## odds ratio 
##      0.416