NIM : 230605110077
DOSEN PENGAMPU : Prof. Dr. SUHARTONO, M.Kom
LEMBAGA : UIN MAULANA MALIK IBRAHIM MALANG
library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
## (status 2 uses the sf package in place of rgdal)
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
h <- rfun(~ x, seed=7293)
argM(h(x) ~ x, bounds(x=-5:5))
## # A tibble: 2 × 3
## x .output. concavity
## <dbl> <dbl> <dbl>
## 1 -1.68 1.93 1
## 2 0.173 8.25 -1
## # A tibble: 2 × 3
## x .output. concavity
## <dbl> <dbl> <dbl>
## 1 -1.68 1.93 1
## 2 0.173 8.25 -1
better <- makeFun((guess + x/guess)/2 ~ guess)
better(1, x=55)
## [1] 28
## [1] 28
better(28, x=55)
## [1] 14.98214
## [1] 14.98214
better(14.98214, x=55)
## [1] 9.326589
## [1] 9.326589
better(9.326589, x=55)
## [1] 7.611854
## [1] 7.611854
better(7.611854, x=55)
## [1] 7.418713
## [1] 7.418713
better(7.418713, x=55)
## [1] 7.416199
## [1] 7.416199
better(7.416199, x=55)
## [1] 7.416198
## [1] 7.416198
7.416198^2
## [1] 54.99999
## [1] 54.99999
# Install dan memuat paket ggplot2 jika belum terinstal
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
library(ggplot2)
# Membuat data frame untuk menyimpan hasil iterasi
results <- data.frame(
Iteration = 1:8,
Guess = c(1, 28, 14.98214, 9.326589, 7.611854, 7.418713, 7.416199, 7.416198),
Squared = c(1^2, 28^2, 14.98214^2, 9.326589^2, 7.611854^2, 7.418713^2, 7.416199^2, 7.416198^2)
)
# Membuat grafik dengan ggplot2
ggplot(results, aes(x = Iteration, y = Guess)) +
geom_line() +
geom_point() +
labs(title = "Iterative Square Root Approximation",
x = "Iteration",
y = "Guess") +
theme_minimal()