# Load packages
library(tidyverse)
library(tidyquant)
1 Get stock prices and convert to returns
Ra <- c("MSFT", "JPM", "NVDA") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 69 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 MSFT 2022-01-31 -0.0710
## 2 MSFT 2022-02-28 -0.0372
## 3 MSFT 2022-03-31 0.0319
## 4 MSFT 2022-04-29 -0.0999
## 5 MSFT 2022-05-31 -0.0181
## 6 MSFT 2022-06-30 -0.0553
## 7 MSFT 2022-07-29 0.0931
## 8 MSFT 2022-08-31 -0.0667
## 9 MSFT 2022-09-30 -0.109
## 10 MSFT 2022-10-31 -0.00331
## # ℹ 59 more rows
2 Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 23 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 13 more rows
3 Join the two table
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 69 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 MSFT 2022-01-31 -0.0710 -0.101
## 2 MSFT 2022-02-28 -0.0372 -0.0343
## 3 MSFT 2022-03-31 0.0319 0.0341
## 4 MSFT 2022-04-29 -0.0999 -0.133
## 5 MSFT 2022-05-31 -0.0181 -0.0205
## 6 MSFT 2022-06-30 -0.0553 -0.0871
## 7 MSFT 2022-07-29 0.0931 0.123
## 8 MSFT 2022-08-31 -0.0667 -0.0464
## 9 MSFT 2022-09-30 -0.109 -0.105
## 10 MSFT 2022-10-31 -0.00331 0.0390
## # ℹ 59 more rows
4 Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 MSFT 0.135 0.0107 0.136 0.830 0.953 0.528 0.832
## 2 JPM 0.0569 0.0053 0.0653 0.703 1.11 -0.209 0.591
## 3 NVDA 0.326 0.0409 0.618 2.26 3.06 1.52 0.900
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
WHich stock has a postively skewed distribution of return?
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = CoSkewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol CoSkewness.1
## <chr> <dbl>
## 1 MSFT -0.0000347
## 2 JPM -0.000110
## 3 NVDA -0.000162