Import your data

data("mtcars")
mtcars <- as_tibble(mtcars)

# Apply Data 
choc_data <- read_excel("../01_module4/data/MyData.xlsx")
choc_data
## # A tibble: 2,657 × 10
##      REF Compan…¹ Compa…² Revie…³ Count…⁴ Speci…⁵ Cocoa…⁶ Ingre…⁷ Most.…⁸ Rating
##    <dbl> <chr>    <chr>     <dbl> <chr>   <chr>     <dbl> <chr>   <chr>    <dbl>
##  1  2454 5150     U.S.A.     2019 Tanzan… Kokoa …    0.76 3- B,S… rich c…   3.25
##  2  2458 5150     U.S.A.     2019 Domini… Zorzal…    0.76 3- B,S… cocoa,…   3.5 
##  3  2454 5150     U.S.A.     2019 Madaga… Bejofo…    0.76 3- B,S… cocoa,…   3.75
##  4  2542 5150     U.S.A.     2021 Fiji    Matasa…    0.68 3- B,S… chewy,…   3   
##  5  2546 5150     U.S.A.     2021 Venezu… Sur de…    0.72 3- B,S… fatty,…   3   
##  6  2546 5150     U.S.A.     2021 Uganda  Semuli…    0.8  3- B,S… mildly…   3.25
##  7  2542 5150     U.S.A.     2021 India   Anamal…    0.68 3- B,S… milk b…   3.5 
##  8  2808 20N | 2… France     2022 Venezu… Chuao,…    0.78 2- B,S  sandy,…   2.75
##  9  2808 20N | 2… France     2022 Venezu… Chuao,…    0.78 2- B,S  sl. dr…   3   
## 10   797 A. Morin France     2012 Bolivia Bolivia    0.7  4- B,S… vegeta…   3.5 
## # … with 2,647 more rows, and abbreviated variable names ¹​Company.Manufacturer,
## #   ²​Company.Location, ³​Review.Date, ⁴​Country.of.Bean.Origin,
## #   ⁵​Specific.Bean.Origin.or.Bar.Name, ⁶​Cocoa.Percent, ⁷​Ingredients,
## #   ⁸​Most.Memorable.Characteristics

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = ~ mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# Adding an argument 
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # … with 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # … with 22 more rows

Create your own function

# Double values in columns 
double_by_factor <- function(x, factor) {x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_factor(x = .x, factor = 10))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # … with 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # … with 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

mtcars %>% lm(formula = mpg ~ wt, data = .)
## 
## Call:
## lm(formula = mpg ~ wt, data = .)
## 
## Coefficients:
## (Intercept)           wt  
##      37.285       -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
##     cyl
##   <dbl>
## 1     6
## 2     4
## 3     8
reg_coeff_tbl <- mtcars %>%
    
    # Split it into a list of data frames 
    split(.$cyl) %>% 

    #Repeat regression over each group 
    map(~lm(formula = mpg ~ wt, data = .x)) %>% 
    
    # Extract coefficients from regression results 
    map(broom::tidy, conf.int = TRUE) %>% 

    # Convert to tibble 
    bind_rows(.id = "cyl") %>% 
    
    # Filter for wt coefficients 
    filter(term == "wt")
reg_coeff_tbl %>%
    
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = estimate, y = cyl)) +
    geom_point() + 
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))

Create your own

Choose either one of the two cases above and apply it to your data

choc_data %>% lm(formula = Review.Date ~ Cocoa.Percent, data = .)
## 
## Call:
## lm(formula = Review.Date ~ Cocoa.Percent, data = .)
## 
## Coefficients:
##   (Intercept)  Cocoa.Percent  
##      2014.378          0.519
choc_data %>% distinct(Rating)
## # A tibble: 12 × 1
##    Rating
##     <dbl>
##  1   3.25
##  2   3.5 
##  3   3.75
##  4   3   
##  5   2.75
##  6   4   
##  7   2.5 
##  8   1.75
##  9   2.25
## 10   1.5 
## 11   2   
## 12   1
coeff_tbl <- choc_data %>%
    
        
    # Split it into a list of data frames 
    split(.$Rating) %>% 

    #Repeat regression over each group 
    map(~lm(formula = Review.Date ~ Cocoa.Percent, data = .x)) %>% 
    
    # Extract coefficients from regression results 
    map(broom::tidy, conf.int = TRUE) %>% 

    # Convert to tibble 
    bind_rows(.id = "Rating") %>% 
    
    # Filter for wt coefficients 
    filter(term == "Cocoa.Percent")
coeff_tbl %>%
    
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = estimate, y = Rating)) +
    geom_point() + 
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))