setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data")
datos<-read.table("todos_phys.csv", header=T, sep=',')
datos$curva <- factor(datos$curva, levels = c("1", "2", "3"), 
                      labels = c("T3", "T1", "T2"))
datos$gen<-as.factor(datos$gen)
datos$curva<-as.factor(datos$curva)
datos$id<-as.factor(datos$id)
datos$muestra<-as.factor(datos$muestra)
datos$diam2<-as.factor(datos$diam2)
library(ggplot2)
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ tibble  3.2.1     ✔ purrr   1.0.1
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.1     ✔ forcats 1.0.0
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'stringr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::arrange()   masks plyr::arrange()
## ✖ purrr::compact()   masks plyr::compact()
## ✖ dplyr::count()     masks plyr::count()
## ✖ dplyr::desc()      masks plyr::desc()
## ✖ dplyr::failwith()  masks plyr::failwith()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::id()        masks plyr::id()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::mutate()    masks plyr::mutate()
## ✖ dplyr::rename()    masks plyr::rename()
## ✖ dplyr::summarise() masks plyr::summarise()
## ✖ dplyr::summarize() masks plyr::summarize()
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
library(emmeans)
##Summary statistics
summ<-datos %>%
  group_by(curva, gen, diam2) %>%
  get_summary_stats(ph.grano, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 7
##    curva diam2 gen   variable     n  mean    sd
##    <fct> <fct> <fct> <chr>    <dbl> <dbl> <dbl>
##  1 T3    0     CCN51 ph.grano     3  5.6  0.027
##  2 T3    1     CCN51 ph.grano     3  5.53 0.068
##  3 T3    2     CCN51 ph.grano     3  5.45 0.092
##  4 T3    3     CCN51 ph.grano     3  4.70 0.141
##  5 T3    4     CCN51 ph.grano     3  4.30 0.116
##  6 T3    5     CCN51 ph.grano     3  4.37 0.167
##  7 T3    6     CCN51 ph.grano     3  5.05 0.766
##  8 T3    0     ICS95 ph.grano     3  5.60 0.052
##  9 T3    1     ICS95 ph.grano     3  5.50 0.064
## 10 T3    2     ICS95 ph.grano     3  4.93 0.366
## 11 T3    3     ICS95 ph.grano     3  3.62 0.39 
## 12 T3    4     ICS95 ph.grano     3  3.97 0.36 
## 13 T3    5     ICS95 ph.grano     3  4.66 0.914
## 14 T3    6     ICS95 ph.grano     3  4.78 0.394
## 15 T3    0     TCS01 ph.grano     3  5.69 0.019
## 16 T3    1     TCS01 ph.grano     3  5.23 0.396
## 17 T3    2     TCS01 ph.grano     3  4.76 0.367
## 18 T3    3     TCS01 ph.grano     3  3.65 0.11 
## 19 T3    4     TCS01 ph.grano     3  3.67 0.133
## 20 T3    5     TCS01 ph.grano     3  2.82 0.181
## 21 T3    6     TCS01 ph.grano     3  4.05 0.191
## 22 T1    0     CCN51 ph.grano     3  5.41 0.069
## 23 T1    1     CCN51 ph.grano     3  5.57 0.148
## 24 T1    2     CCN51 ph.grano     3  4.31 0.137
## 25 T1    3     CCN51 ph.grano     3  4.59 0.476
## 26 T1    4     CCN51 ph.grano     3  4.17 0.678
## 27 T1    5     CCN51 ph.grano     3  5.04 0.502
## 28 T1    6     CCN51 ph.grano     3  5.01 0.586
## 29 T1    0     ICS95 ph.grano     3  5.04 0.108
## 30 T1    1     ICS95 ph.grano     3  5.36 0.033
## 31 T1    2     ICS95 ph.grano     3  4.20 0.153
## 32 T1    3     ICS95 ph.grano     3  4.65 0.26 
## 33 T1    4     ICS95 ph.grano     3  4.19 0.148
## 34 T1    5     ICS95 ph.grano     3  5.4  0.058
## 35 T1    6     ICS95 ph.grano     3  5.50 0.37 
## 36 T1    0     TCS01 ph.grano     3  5.54 0.141
## 37 T1    1     TCS01 ph.grano     3  5.28 0.323
## 38 T1    2     TCS01 ph.grano     3  4.99 0.101
## 39 T1    3     TCS01 ph.grano     3  4.83 0.053
## 40 T1    4     TCS01 ph.grano     3  4.45 1.15 
## 41 T1    5     TCS01 ph.grano     3  5.08 0.37 
## 42 T1    6     TCS01 ph.grano     3  5.80 0.083
## 43 T2    0     CCN51 ph.grano     3  5.33 0.036
## 44 T2    1     CCN51 ph.grano     3  6.35 0.289
## 45 T2    2     CCN51 ph.grano     3  5.41 0.272
## 46 T2    3     CCN51 ph.grano     3  4.51 0.117
## 47 T2    4     CCN51 ph.grano     3  4.44 0.04 
## 48 T2    5     CCN51 ph.grano     3  4.82 0.184
## 49 T2    6     CCN51 ph.grano     3  5.22 0.201
## 50 T2    0     ICS95 ph.grano     3  6.12 0.647
## 51 T2    1     ICS95 ph.grano     3  6.74 0.14 
## 52 T2    2     ICS95 ph.grano     3  6.05 0.066
## 53 T2    3     ICS95 ph.grano     3  5.78 0.717
## 54 T2    4     ICS95 ph.grano     3  5.34 0.634
## 55 T2    5     ICS95 ph.grano     3  5.52 0.451
## 56 T2    6     ICS95 ph.grano     3  5.87 0.434
## 57 T2    0     TCS01 ph.grano     3  5.8  0.354
## 58 T2    1     TCS01 ph.grano     3  6.32 0.308
## 59 T2    2     TCS01 ph.grano     3  5.45 0.933
## 60 T2    3     TCS01 ph.grano     3  5.79 0.208
## 61 T2    4     TCS01 ph.grano     3  4.95 0.446
## 62 T2    5     TCS01 ph.grano     3  5.18 0.472
## 63 T2    6     TCS01 ph.grano     3  5.62 0.685
##Visualization
bxp <- ggboxplot(
  datos, x = "curva", y = "ph.grano",
  color = "diam2", palette = "jco",
  facet.by =  "gen"
)
bxp

##Check assumptions
##Outliers

datos %>%
  group_by(curva, gen, diam2) %>%
  identify_outliers(ph.grano)
##  [1] curva        diam2        gen          time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm<-datos %>%
  group_by(curva, gen, diam2) %>%
  shapiro_test(ph.grano)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 6
##    curva diam2 gen   variable statistic      p
##    <fct> <fct> <fct> <chr>        <dbl>  <dbl>
##  1 T3    0     CCN51 ph.grano     0.839 0.210 
##  2 T3    1     CCN51 ph.grano     0.993 0.845 
##  3 T3    2     CCN51 ph.grano     0.994 0.850 
##  4 T3    3     CCN51 ph.grano     0.998 0.922 
##  5 T3    4     CCN51 ph.grano     0.904 0.397 
##  6 T3    5     CCN51 ph.grano     0.805 0.126 
##  7 T3    6     CCN51 ph.grano     0.774 0.0549
##  8 T3    0     ICS95 ph.grano     1.00  0.979 
##  9 T3    1     ICS95 ph.grano     0.945 0.546 
## 10 T3    2     ICS95 ph.grano     0.785 0.0783
## 11 T3    3     ICS95 ph.grano     0.887 0.345 
## 12 T3    4     ICS95 ph.grano     0.770 0.0452
## 13 T3    5     ICS95 ph.grano     0.872 0.301 
## 14 T3    6     ICS95 ph.grano     0.992 0.828 
## 15 T3    0     TCS01 ph.grano     0.795 0.103 
## 16 T3    1     TCS01 ph.grano     0.921 0.455 
## 17 T3    2     TCS01 ph.grano     0.947 0.554 
## 18 T3    3     TCS01 ph.grano     0.934 0.502 
## 19 T3    4     TCS01 ph.grano     0.975 0.697 
## 20 T3    5     TCS01 ph.grano     0.958 0.605 
## 21 T3    6     TCS01 ph.grano     0.981 0.739 
## 22 T1    0     CCN51 ph.grano     0.869 0.293 
## 23 T1    1     CCN51 ph.grano     0.976 0.705 
## 24 T1    2     CCN51 ph.grano     0.907 0.407 
## 25 T1    3     CCN51 ph.grano     0.972 0.681 
## 26 T1    4     CCN51 ph.grano     0.790 0.0916
## 27 T1    5     CCN51 ph.grano     0.977 0.711 
## 28 T1    6     CCN51 ph.grano     0.995 0.860 
## 29 T1    0     ICS95 ph.grano     0.998 0.908 
## 30 T1    1     ICS95 ph.grano     0.991 0.814 
## 31 T1    2     ICS95 ph.grano     0.999 0.942 
## 32 T1    3     ICS95 ph.grano     0.916 0.438 
## 33 T1    4     ICS95 ph.grano     0.891 0.356 
## 34 T1    5     ICS95 ph.grano     0.882 0.331 
## 35 T1    6     ICS95 ph.grano     0.917 0.443 
## 36 T1    0     TCS01 ph.grano     0.971 0.673 
## 37 T1    1     TCS01 ph.grano     0.944 0.545 
## 38 T1    2     TCS01 ph.grano     0.940 0.529 
## 39 T1    3     TCS01 ph.grano     0.904 0.398 
## 40 T1    4     TCS01 ph.grano     0.894 0.367 
## 41 T1    5     TCS01 ph.grano     0.922 0.461 
## 42 T1    6     TCS01 ph.grano     0.927 0.476 
## 43 T2    0     CCN51 ph.grano     0.808 0.134 
## 44 T2    1     CCN51 ph.grano     0.851 0.242 
## 45 T2    2     CCN51 ph.grano     0.915 0.436 
## 46 T2    3     CCN51 ph.grano     0.990 0.811 
## 47 T2    4     CCN51 ph.grano     0.866 0.286 
## 48 T2    5     CCN51 ph.grano     0.811 0.140 
## 49 T2    6     CCN51 ph.grano     0.952 0.578 
## 50 T2    0     ICS95 ph.grano     0.795 0.103 
## 51 T2    1     ICS95 ph.grano     1.00  0.961 
## 52 T2    2     ICS95 ph.grano     0.966 0.648 
## 53 T2    3     ICS95 ph.grano     0.946 0.553 
## 54 T2    4     ICS95 ph.grano     1.00  0.960 
## 55 T2    5     ICS95 ph.grano     0.922 0.460 
## 56 T2    6     ICS95 ph.grano     1.00  0.985 
## 57 T2    0     TCS01 ph.grano     0.978 0.719 
## 58 T2    1     TCS01 ph.grano     0.937 0.515 
## 59 T2    2     TCS01 ph.grano     0.891 0.357 
## 60 T2    3     TCS01 ph.grano     0.989 0.798 
## 61 T2    4     TCS01 ph.grano     0.939 0.523 
## 62 T2    5     TCS01 ph.grano     0.796 0.105 
## 63 T2    6     TCS01 ph.grano     0.856 0.256
##Create QQ plot for each cell of design:

ggqqplot(datos, "ph.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev<-datos %>%
  group_by(diam2) %>%
  levene_test(ph.grano ~ curva*gen)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         8    18     0.995 0.472
## 2 1         8    18     0.737 0.659
## 3 2         8    18     0.976 0.485
## 4 3         8    18     1.04  0.443
## 5 4         8    18     0.866 0.561
## 6 5         8    18     0.645 0.731
## 7 6         8    18     0.431 0.887
##Computation

res.aov <- anova_test(
  data = datos, dv = ph.grano, wid = id,
  within = diam2, between = c(curva, gen)
)
res.aov
## ANOVA Table (type II tests)
## 
## $ANOVA
##            Effect DFn DFd      F        p p<.05   ges
## 1           curva   2  18 33.079 9.37e-07     * 0.570
## 2             gen   2  18  1.740 2.04e-01       0.065
## 3           diam2   6 108 57.323 2.43e-31     * 0.671
## 4       curva:gen   4  18  7.321 1.00e-03     * 0.369
## 5     curva:diam2  12 108 10.094 5.16e-13     * 0.418
## 6       gen:diam2  12 108  2.226 1.50e-02     * 0.137
## 7 curva:gen:diam2  24 108  2.317 2.00e-03     * 0.248
## 
## $`Mauchly's Test for Sphericity`
##            Effect     W     p p<.05
## 1           diam2 0.135 0.052      
## 2     curva:diam2 0.135 0.052      
## 3       gen:diam2 0.135 0.052      
## 4 curva:gen:diam2 0.135 0.052      
## 
## $`Sphericity Corrections`
##            Effect   GGe       DF[GG]    p[GG] p[GG]<.05  HFe       DF[HF]
## 1           diam2 0.631  3.79, 68.14 1.30e-20         * 0.82  4.92, 88.55
## 2     curva:diam2 0.631  7.57, 68.14 6.32e-09         * 0.82  9.84, 88.55
## 3       gen:diam2 0.631  7.57, 68.14 3.90e-02         * 0.82  9.84, 88.55
## 4 curva:gen:diam2 0.631 15.14, 68.14 1.00e-02         * 0.82 19.68, 88.55
##      p[HF] p[HF]<.05
## 1 4.14e-26         *
## 2 5.05e-11         *
## 3 2.40e-02         *
## 4 4.00e-03         *
get_anova_table(res.aov)
## ANOVA Table (type II tests)
## 
##            Effect DFn DFd      F        p p<.05   ges
## 1           curva   2  18 33.079 9.37e-07     * 0.570
## 2             gen   2  18  1.740 2.04e-01       0.065
## 3           diam2   6 108 57.323 2.43e-31     * 0.671
## 4       curva:gen   4  18  7.321 1.00e-03     * 0.369
## 5     curva:diam2  12 108 10.094 5.16e-13     * 0.418
## 6       gen:diam2  12 108  2.226 1.50e-02     * 0.137
## 7 curva:gen:diam2  24 108  2.317 2.00e-03     * 0.248
#Table by error
res.aov.error <- aov(ph.grano ~ diam2*curva*gen + Error(id/diam2), datos)
res.aov.error
## 
## Call:
## aov(formula = ph.grano ~ diam2 * curva * gen + Error(id/diam2), 
##     data = datos)
## 
## Grand Mean: 5.063228
## 
## Stratum 1: id
## 
## Terms:
##                     curva       gen curva:gen Residuals
## Sum of Squares  25.626444  1.348209 11.342945  6.972298
## Deg. of Freedom         2         2         4        18
## 
## Residual standard error: 0.6223744
## 48 out of 56 effects not estimable
## Estimated effects may be unbalanced
## 
## Stratum 2: id:diam2
## 
## Terms:
##                    diam2 diam2:curva diam2:gen diam2:curva:gen Residuals
## Sum of Squares  39.43986    13.88929   3.06248         6.37718  12.38450
## Deg. of Freedom        6          12        12              24       108
## 
## Residual standard error: 0.3386315
## Estimated effects may be unbalanced
## Emmeans
emmip(res.aov.error, gen ~ diam2 | curva)
## Note: re-fitting model with sum-to-zero contrasts

emm_curva <- emmeans(res.aov.error, pairwise ~ curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_curva
## $emmeans
##  curva emmean     SE df lower.CL upper.CL
##  T3      4.66 0.0784 18     4.50     4.83
##  T1      4.97 0.0784 18     4.81     5.14
##  T2      5.55 0.0784 18     5.39     5.72
## 
## Results are averaged over the levels of: diam2, gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE df t.ratio p.value
##  T3 - T1    -0.308 0.111 18  -2.779  0.0317
##  T3 - T2    -0.888 0.111 18  -8.010  <.0001
##  T1 - T2    -0.580 0.111 18  -5.231  0.0002
## 
## Results are averaged over the levels of: diam2, gen 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_curva <- emmeans(res.aov.error, pairwise ~ gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_gen_curva
## $emmeans
## curva = T3:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   5.00 0.136 18     4.71     5.28
##  ICS95   4.72 0.136 18     4.44     5.01
##  TCS01   4.27 0.136 18     3.98     4.56
## 
## curva = T1:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   4.87 0.136 18     4.59     5.16
##  ICS95   4.91 0.136 18     4.62     5.19
##  TCS01   5.14 0.136 18     4.85     5.42
## 
## curva = T2:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   5.16 0.136 18     4.87     5.44
##  ICS95   5.92 0.136 18     5.63     6.20
##  TCS01   5.59 0.136 18     5.30     5.87
## 
## Results are averaged over the levels of: diam2 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95    0.274 0.192 18   1.427  0.3487
##  CCN51 - TCS01    0.729 0.192 18   3.796  0.0036
##  ICS95 - TCS01    0.455 0.192 18   2.369  0.0714
## 
## curva = T1:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95   -0.035 0.192 18  -0.182  0.9819
##  CCN51 - TCS01   -0.267 0.192 18  -1.391  0.3663
##  ICS95 - TCS01   -0.232 0.192 18  -1.209  0.4634
## 
## curva = T2:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95   -0.760 0.192 18  -3.959  0.0025
##  CCN51 - TCS01   -0.431 0.192 18  -2.245  0.0904
##  ICS95 - TCS01    0.329 0.192 18   1.714  0.2271
## 
## Results are averaged over the levels of: diam2 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_diam2 <- emmeans(res.aov.error, pairwise ~ diam2 | curva*gen)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2
## $emmeans
## curva = T3, gen = CCN51:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.60 0.226 90.9     5.15     6.05
##  1       5.53 0.226 90.9     5.08     5.98
##  2       5.45 0.226 90.9     5.00     5.90
##  3       4.69 0.226 90.9     4.25     5.14
##  4       4.30 0.226 90.9     3.86     4.75
##  5       4.37 0.226 90.9     3.92     4.82
##  6       5.05 0.226 90.9     4.60     5.50
## 
## curva = T1, gen = CCN51:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.41 0.226 90.9     4.96     5.86
##  1       5.57 0.226 90.9     5.12     6.02
##  2       4.31 0.226 90.9     3.86     4.76
##  3       4.59 0.226 90.9     4.14     5.04
##  4       4.17 0.226 90.9     3.72     4.62
##  5       5.04 0.226 90.9     4.59     5.49
##  6       5.01 0.226 90.9     4.56     5.46
## 
## curva = T2, gen = CCN51:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.33 0.226 90.9     4.88     5.78
##  1       6.35 0.226 90.9     5.90     6.80
##  2       5.41 0.226 90.9     4.96     5.86
##  3       4.51 0.226 90.9     4.06     4.96
##  4       4.44 0.226 90.9     3.99     4.89
##  5       4.82 0.226 90.9     4.37     5.27
##  6       5.22 0.226 90.9     4.77     5.67
## 
## curva = T3, gen = ICS95:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.60 0.226 90.9     5.15     6.05
##  1       5.50 0.226 90.9     5.05     5.95
##  2       4.93 0.226 90.9     4.48     5.38
##  3       3.62 0.226 90.9     3.17     4.07
##  4       3.97 0.226 90.9     3.52     4.42
##  5       4.66 0.226 90.9     4.21     5.11
##  6       4.78 0.226 90.9     4.33     5.22
## 
## curva = T1, gen = ICS95:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.04 0.226 90.9     4.59     5.49
##  1       5.35 0.226 90.9     4.91     5.80
##  2       4.20 0.226 90.9     3.75     4.65
##  3       4.65 0.226 90.9     4.20     5.10
##  4       4.19 0.226 90.9     3.74     4.64
##  5       5.40 0.226 90.9     4.95     5.85
##  6       5.50 0.226 90.9     5.05     5.95
## 
## curva = T2, gen = ICS95:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       6.12 0.226 90.9     5.67     6.56
##  1       6.74 0.226 90.9     6.29     7.19
##  2       6.05 0.226 90.9     5.60     6.50
##  3       5.78 0.226 90.9     5.33     6.23
##  4       5.34 0.226 90.9     4.89     5.78
##  5       5.52 0.226 90.9     5.07     5.97
##  6       5.87 0.226 90.9     5.42     6.32
## 
## curva = T3, gen = TCS01:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.69 0.226 90.9     5.24     6.14
##  1       5.23 0.226 90.9     4.78     5.68
##  2       4.76 0.226 90.9     4.31     5.21
##  3       3.65 0.226 90.9     3.20     4.10
##  4       3.67 0.226 90.9     3.22     4.12
##  5       2.83 0.226 90.9     2.38     3.27
##  6       4.05 0.226 90.9     3.60     4.50
## 
## curva = T1, gen = TCS01:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.54 0.226 90.9     5.09     5.99
##  1       5.28 0.226 90.9     4.83     5.73
##  2       4.99 0.226 90.9     4.54     5.44
##  3       4.83 0.226 90.9     4.38     5.28
##  4       4.45 0.226 90.9     4.00     4.90
##  5       5.08 0.226 90.9     4.63     5.53
##  6       5.80 0.226 90.9     5.35     6.25
## 
## curva = T2, gen = TCS01:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.80 0.226 90.9     5.35     6.25
##  1       6.31 0.226 90.9     5.87     6.76
##  2       5.45 0.226 90.9     5.00     5.90
##  3       5.79 0.226 90.9     5.34     6.24
##  4       4.95 0.226 90.9     4.50     5.40
##  5       5.18 0.226 90.9     4.73     5.63
##  6       5.62 0.226 90.9     5.17     6.07
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.07233 0.276 108   0.262  1.0000
##  0 - 2     0.14700 0.276 108   0.532  0.9983
##  0 - 3     0.90500 0.276 108   3.273  0.0234
##  0 - 4     1.29500 0.276 108   4.684  0.0002
##  0 - 5     1.23367 0.276 108   4.462  0.0004
##  0 - 6     0.55267 0.276 108   1.999  0.4215
##  1 - 2     0.07467 0.276 108   0.270  1.0000
##  1 - 3     0.83267 0.276 108   3.012  0.0491
##  1 - 4     1.22267 0.276 108   4.422  0.0005
##  1 - 5     1.16133 0.276 108   4.200  0.0011
##  1 - 6     0.48033 0.276 108   1.737  0.5928
##  2 - 3     0.75800 0.276 108   2.741  0.0980
##  2 - 4     1.14800 0.276 108   4.152  0.0013
##  2 - 5     1.08667 0.276 108   3.930  0.0028
##  2 - 6     0.40567 0.276 108   1.467  0.7634
##  3 - 4     0.39000 0.276 108   1.411  0.7951
##  3 - 5     0.32867 0.276 108   1.189  0.8970
##  3 - 6    -0.35233 0.276 108  -1.274  0.8622
##  4 - 5    -0.06133 0.276 108  -0.222  1.0000
##  4 - 6    -0.74233 0.276 108  -2.685  0.1121
##  5 - 6    -0.68100 0.276 108  -2.463  0.1835
## 
## curva = T1, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -0.16067 0.276 108  -0.581  0.9972
##  0 - 2     1.10500 0.276 108   3.997  0.0022
##  0 - 3     0.82100 0.276 108   2.969  0.0550
##  0 - 4     1.24433 0.276 108   4.500  0.0003
##  0 - 5     0.37500 0.276 108   1.356  0.8234
##  0 - 6     0.40100 0.276 108   1.450  0.7731
##  1 - 2     1.26567 0.276 108   4.578  0.0002
##  1 - 3     0.98167 0.276 108   3.550  0.0100
##  1 - 4     1.40500 0.276 108   5.082  <.0001
##  1 - 5     0.53567 0.276 108   1.937  0.4605
##  1 - 6     0.56167 0.276 108   2.031  0.4013
##  2 - 3    -0.28400 0.276 108  -1.027  0.9466
##  2 - 4     0.13933 0.276 108   0.504  0.9988
##  2 - 5    -0.73000 0.276 108  -2.640  0.1244
##  2 - 6    -0.70400 0.276 108  -2.546  0.1536
##  3 - 4     0.42333 0.276 108   1.531  0.7256
##  3 - 5    -0.44600 0.276 108  -1.613  0.6743
##  3 - 6    -0.42000 0.276 108  -1.519  0.7329
##  4 - 5    -0.86933 0.276 108  -3.144  0.0340
##  4 - 6    -0.84333 0.276 108  -3.050  0.0442
##  5 - 6     0.02600 0.276 108   0.094  1.0000
## 
## curva = T2, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -1.01300 0.276 108  -3.664  0.0069
##  0 - 2    -0.07733 0.276 108  -0.280  1.0000
##  0 - 3     0.81867 0.276 108   2.961  0.0562
##  0 - 4     0.89100 0.276 108   3.223  0.0272
##  0 - 5     0.51367 0.276 108   1.858  0.5126
##  0 - 6     0.11000 0.276 108   0.398  0.9997
##  1 - 2     0.93567 0.276 108   3.384  0.0168
##  1 - 3     1.83167 0.276 108   6.625  <.0001
##  1 - 4     1.90400 0.276 108   6.886  <.0001
##  1 - 5     1.52667 0.276 108   5.522  <.0001
##  1 - 6     1.12300 0.276 108   4.062  0.0017
##  2 - 3     0.89600 0.276 108   3.241  0.0258
##  2 - 4     0.96833 0.276 108   3.502  0.0116
##  2 - 5     0.59100 0.276 108   2.137  0.3386
##  2 - 6     0.18733 0.276 108   0.678  0.9936
##  3 - 4     0.07233 0.276 108   0.262  1.0000
##  3 - 5    -0.30500 0.276 108  -1.103  0.9259
##  3 - 6    -0.70867 0.276 108  -2.563  0.1480
##  4 - 5    -0.37733 0.276 108  -1.365  0.8191
##  4 - 6    -0.78100 0.276 108  -2.825  0.0798
##  5 - 6    -0.40367 0.276 108  -1.460  0.7676
## 
## curva = T3, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.10200 0.276 108   0.369  0.9998
##  0 - 2     0.67033 0.276 108   2.424  0.1987
##  0 - 3     1.98167 0.276 108   7.167  <.0001
##  0 - 4     1.63033 0.276 108   5.897  <.0001
##  0 - 5     0.94300 0.276 108   3.411  0.0155
##  0 - 6     0.82933 0.276 108   2.999  0.0507
##  1 - 2     0.56833 0.276 108   2.056  0.3866
##  1 - 3     1.87967 0.276 108   6.798  <.0001
##  1 - 4     1.52833 0.276 108   5.528  <.0001
##  1 - 5     0.84100 0.276 108   3.042  0.0452
##  1 - 6     0.72733 0.276 108   2.631  0.1271
##  2 - 3     1.31133 0.276 108   4.743  0.0001
##  2 - 4     0.96000 0.276 108   3.472  0.0128
##  2 - 5     0.27267 0.276 108   0.986  0.9560
##  2 - 6     0.15900 0.276 108   0.575  0.9974
##  3 - 4    -0.35133 0.276 108  -1.271  0.8637
##  3 - 5    -1.03867 0.276 108  -3.757  0.0051
##  3 - 6    -1.15233 0.276 108  -4.168  0.0012
##  4 - 5    -0.68733 0.276 108  -2.486  0.1748
##  4 - 6    -0.80100 0.276 108  -2.897  0.0664
##  5 - 6    -0.11367 0.276 108  -0.411  0.9996
## 
## curva = T1, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -0.31367 0.276 108  -1.134  0.9160
##  0 - 2     0.83833 0.276 108   3.032  0.0464
##  0 - 3     0.38700 0.276 108   1.400  0.8009
##  0 - 4     0.84933 0.276 108   3.072  0.0416
##  0 - 5    -0.35900 0.276 108  -1.298  0.8513
##  0 - 6    -0.46300 0.276 108  -1.675  0.6343
##  1 - 2     1.15200 0.276 108   4.166  0.0012
##  1 - 3     0.70067 0.276 108   2.534  0.1577
##  1 - 4     1.16300 0.276 108   4.206  0.0010
##  1 - 5    -0.04533 0.276 108  -0.164  1.0000
##  1 - 6    -0.14933 0.276 108  -0.540  0.9982
##  2 - 3    -0.45133 0.276 108  -1.632  0.6618
##  2 - 4     0.01100 0.276 108   0.040  1.0000
##  2 - 5    -1.19733 0.276 108  -4.330  0.0006
##  2 - 6    -1.30133 0.276 108  -4.707  0.0001
##  3 - 4     0.46233 0.276 108   1.672  0.6359
##  3 - 5    -0.74600 0.276 108  -2.698  0.1087
##  3 - 6    -0.85000 0.276 108  -3.074  0.0414
##  4 - 5    -1.20833 0.276 108  -4.370  0.0006
##  4 - 6    -1.31233 0.276 108  -4.746  0.0001
##  5 - 6    -0.10400 0.276 108  -0.376  0.9998
## 
## curva = T2, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -0.62333 0.276 108  -2.254  0.2760
##  0 - 2     0.06600 0.276 108   0.239  1.0000
##  0 - 3     0.33400 0.276 108   1.208  0.8897
##  0 - 4     0.77967 0.276 108   2.820  0.0808
##  0 - 5     0.59533 0.276 108   2.153  0.3298
##  0 - 6     0.24200 0.276 108   0.875  0.9755
##  1 - 2     0.68933 0.276 108   2.493  0.1722
##  1 - 3     0.95733 0.276 108   3.462  0.0132
##  1 - 4     1.40300 0.276 108   5.074  <.0001
##  1 - 5     1.21867 0.276 108   4.408  0.0005
##  1 - 6     0.86533 0.276 108   3.130  0.0354
##  2 - 3     0.26800 0.276 108   0.969  0.9595
##  2 - 4     0.71367 0.276 108   2.581  0.1422
##  2 - 5     0.52933 0.276 108   1.914  0.4754
##  2 - 6     0.17600 0.276 108   0.637  0.9954
##  3 - 4     0.44567 0.276 108   1.612  0.6750
##  3 - 5     0.26133 0.276 108   0.945  0.9642
##  3 - 6    -0.09200 0.276 108  -0.333  0.9999
##  4 - 5    -0.18433 0.276 108  -0.667  0.9941
##  4 - 6    -0.53767 0.276 108  -1.945  0.4559
##  5 - 6    -0.35333 0.276 108  -1.278  0.8606
## 
## curva = T3, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.46000 0.276 108   1.664  0.6414
##  0 - 2     0.92733 0.276 108   3.354  0.0184
##  0 - 3     2.03767 0.276 108   7.370  <.0001
##  0 - 4     2.01867 0.276 108   7.301  <.0001
##  0 - 5     2.86633 0.276 108  10.367  <.0001
##  0 - 6     1.64133 0.276 108   5.936  <.0001
##  1 - 2     0.46733 0.276 108   1.690  0.6240
##  1 - 3     1.57767 0.276 108   5.706  <.0001
##  1 - 4     1.55867 0.276 108   5.637  <.0001
##  1 - 5     2.40633 0.276 108   8.703  <.0001
##  1 - 6     1.18133 0.276 108   4.273  0.0008
##  2 - 3     1.11033 0.276 108   4.016  0.0021
##  2 - 4     1.09133 0.276 108   3.947  0.0026
##  2 - 5     1.93900 0.276 108   7.013  <.0001
##  2 - 6     0.71400 0.276 108   2.582  0.1418
##  3 - 4    -0.01900 0.276 108  -0.069  1.0000
##  3 - 5     0.82867 0.276 108   2.997  0.0510
##  3 - 6    -0.39633 0.276 108  -1.433  0.7825
##  4 - 5     0.84767 0.276 108   3.066  0.0423
##  4 - 6    -0.37733 0.276 108  -1.365  0.8191
##  5 - 6    -1.22500 0.276 108  -4.431  0.0004
## 
## curva = T1, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.26067 0.276 108   0.943  0.9646
##  0 - 2     0.54933 0.276 108   1.987  0.4290
##  0 - 3     0.70767 0.276 108   2.559  0.1492
##  0 - 4     1.09267 0.276 108   3.952  0.0026
##  0 - 5     0.46367 0.276 108   1.677  0.6327
##  0 - 6    -0.25533 0.276 108  -0.923  0.9680
##  1 - 2     0.28867 0.276 108   1.044  0.9424
##  1 - 3     0.44700 0.276 108   1.617  0.6719
##  1 - 4     0.83200 0.276 108   3.009  0.0494
##  1 - 5     0.20300 0.276 108   0.734  0.9901
##  1 - 6    -0.51600 0.276 108  -1.866  0.5070
##  2 - 3     0.15833 0.276 108   0.573  0.9974
##  2 - 4     0.54333 0.276 108   1.965  0.4428
##  2 - 5    -0.08567 0.276 108  -0.310  0.9999
##  2 - 6    -0.80467 0.276 108  -2.910  0.0642
##  3 - 4     0.38500 0.276 108   1.392  0.8047
##  3 - 5    -0.24400 0.276 108  -0.882  0.9745
##  3 - 6    -0.96300 0.276 108  -3.483  0.0123
##  4 - 5    -0.62900 0.276 108  -2.275  0.2658
##  4 - 6    -1.34800 0.276 108  -4.875  0.0001
##  5 - 6    -0.71900 0.276 108  -2.600  0.1361
## 
## curva = T2, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -0.51467 0.276 108  -1.861  0.5102
##  0 - 2     0.34967 0.276 108   1.265  0.8664
##  0 - 3     0.00867 0.276 108   0.031  1.0000
##  0 - 4     0.85367 0.276 108   3.087  0.0399
##  0 - 5     0.61600 0.276 108   2.228  0.2895
##  0 - 6     0.18033 0.276 108   0.652  0.9948
##  1 - 2     0.86433 0.276 108   3.126  0.0358
##  1 - 3     0.52333 0.276 108   1.893  0.4896
##  1 - 4     1.36833 0.276 108   4.949  0.0001
##  1 - 5     1.13067 0.276 108   4.089  0.0016
##  1 - 6     0.69500 0.276 108   2.514  0.1648
##  2 - 3    -0.34100 0.276 108  -1.233  0.8796
##  2 - 4     0.50400 0.276 108   1.823  0.5358
##  2 - 5     0.26633 0.276 108   0.963  0.9607
##  2 - 6    -0.16933 0.276 108  -0.612  0.9963
##  3 - 4     0.84500 0.276 108   3.056  0.0435
##  3 - 5     0.60733 0.276 108   2.197  0.3061
##  3 - 6     0.17167 0.276 108   0.621  0.9960
##  4 - 5    -0.23767 0.276 108  -0.860  0.9776
##  4 - 6    -0.67333 0.276 108  -2.435  0.1943
##  5 - 6    -0.43567 0.276 108  -1.576  0.6980
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
emm_gen_diam2_trend <- emmeans(res.aov.error, pairwise ~ diam2*gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2_trend
## $emmeans
## curva = T3:
##  diam2 gen   emmean    SE   df lower.CL upper.CL
##  0     CCN51   5.60 0.226 90.9     5.15     6.05
##  1     CCN51   5.53 0.226 90.9     5.08     5.98
##  2     CCN51   5.45 0.226 90.9     5.00     5.90
##  3     CCN51   4.69 0.226 90.9     4.25     5.14
##  4     CCN51   4.30 0.226 90.9     3.86     4.75
##  5     CCN51   4.37 0.226 90.9     3.92     4.82
##  6     CCN51   5.05 0.226 90.9     4.60     5.50
##  0     ICS95   5.60 0.226 90.9     5.15     6.05
##  1     ICS95   5.50 0.226 90.9     5.05     5.95
##  2     ICS95   4.93 0.226 90.9     4.48     5.38
##  3     ICS95   3.62 0.226 90.9     3.17     4.07
##  4     ICS95   3.97 0.226 90.9     3.52     4.42
##  5     ICS95   4.66 0.226 90.9     4.21     5.11
##  6     ICS95   4.78 0.226 90.9     4.33     5.22
##  0     TCS01   5.69 0.226 90.9     5.24     6.14
##  1     TCS01   5.23 0.226 90.9     4.78     5.68
##  2     TCS01   4.76 0.226 90.9     4.31     5.21
##  3     TCS01   3.65 0.226 90.9     3.20     4.10
##  4     TCS01   3.67 0.226 90.9     3.22     4.12
##  5     TCS01   2.83 0.226 90.9     2.38     3.27
##  6     TCS01   4.05 0.226 90.9     3.60     4.50
## 
## curva = T1:
##  diam2 gen   emmean    SE   df lower.CL upper.CL
##  0     CCN51   5.41 0.226 90.9     4.96     5.86
##  1     CCN51   5.57 0.226 90.9     5.12     6.02
##  2     CCN51   4.31 0.226 90.9     3.86     4.76
##  3     CCN51   4.59 0.226 90.9     4.14     5.04
##  4     CCN51   4.17 0.226 90.9     3.72     4.62
##  5     CCN51   5.04 0.226 90.9     4.59     5.49
##  6     CCN51   5.01 0.226 90.9     4.56     5.46
##  0     ICS95   5.04 0.226 90.9     4.59     5.49
##  1     ICS95   5.35 0.226 90.9     4.91     5.80
##  2     ICS95   4.20 0.226 90.9     3.75     4.65
##  3     ICS95   4.65 0.226 90.9     4.20     5.10
##  4     ICS95   4.19 0.226 90.9     3.74     4.64
##  5     ICS95   5.40 0.226 90.9     4.95     5.85
##  6     ICS95   5.50 0.226 90.9     5.05     5.95
##  0     TCS01   5.54 0.226 90.9     5.09     5.99
##  1     TCS01   5.28 0.226 90.9     4.83     5.73
##  2     TCS01   4.99 0.226 90.9     4.54     5.44
##  3     TCS01   4.83 0.226 90.9     4.38     5.28
##  4     TCS01   4.45 0.226 90.9     4.00     4.90
##  5     TCS01   5.08 0.226 90.9     4.63     5.53
##  6     TCS01   5.80 0.226 90.9     5.35     6.25
## 
## curva = T2:
##  diam2 gen   emmean    SE   df lower.CL upper.CL
##  0     CCN51   5.33 0.226 90.9     4.88     5.78
##  1     CCN51   6.35 0.226 90.9     5.90     6.80
##  2     CCN51   5.41 0.226 90.9     4.96     5.86
##  3     CCN51   4.51 0.226 90.9     4.06     4.96
##  4     CCN51   4.44 0.226 90.9     3.99     4.89
##  5     CCN51   4.82 0.226 90.9     4.37     5.27
##  6     CCN51   5.22 0.226 90.9     4.77     5.67
##  0     ICS95   6.12 0.226 90.9     5.67     6.56
##  1     ICS95   6.74 0.226 90.9     6.29     7.19
##  2     ICS95   6.05 0.226 90.9     5.60     6.50
##  3     ICS95   5.78 0.226 90.9     5.33     6.23
##  4     ICS95   5.34 0.226 90.9     4.89     5.78
##  5     ICS95   5.52 0.226 90.9     5.07     5.97
##  6     ICS95   5.87 0.226 90.9     5.42     6.32
##  0     TCS01   5.80 0.226 90.9     5.35     6.25
##  1     TCS01   6.31 0.226 90.9     5.87     6.76
##  2     TCS01   5.45 0.226 90.9     5.00     5.90
##  3     TCS01   5.79 0.226 90.9     5.34     6.24
##  4     TCS01   4.95 0.226 90.9     4.50     5.40
##  5     TCS01   5.18 0.226 90.9     4.73     5.63
##  6     TCS01   5.62 0.226 90.9     5.17     6.07
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast          estimate    SE    df t.ratio p.value
##  0 CCN51 - 1 CCN51  0.07233 0.276 108.0   0.262  1.0000
##  0 CCN51 - 2 CCN51  0.14700 0.276 108.0   0.532  1.0000
##  0 CCN51 - 3 CCN51  0.90500 0.276 108.0   3.273  0.1435
##  0 CCN51 - 4 CCN51  1.29500 0.276 108.0   4.684  0.0015
##  0 CCN51 - 5 CCN51  1.23367 0.276 108.0   4.462  0.0034
##  0 CCN51 - 6 CCN51  0.55267 0.276 108.0   1.999  0.9091
##  0 CCN51 - 0 ICS95 -0.00467 0.320  90.9  -0.015  1.0000
##  0 CCN51 - 1 ICS95  0.09733 0.320  90.9   0.304  1.0000
##  0 CCN51 - 2 ICS95  0.66567 0.320  90.9   2.080  0.8738
##  0 CCN51 - 3 ICS95  1.97700 0.320  90.9   6.178  <.0001
##  0 CCN51 - 4 ICS95  1.62567 0.320  90.9   5.080  0.0004
##  0 CCN51 - 5 ICS95  0.93833 0.320  90.9   2.932  0.3094
##  0 CCN51 - 6 ICS95  0.82467 0.320  90.9   2.577  0.5534
##  0 CCN51 - 0 TCS01 -0.09167 0.320  90.9  -0.286  1.0000
##  0 CCN51 - 1 TCS01  0.36833 0.320  90.9   1.151  0.9999
##  0 CCN51 - 2 TCS01  0.83567 0.320  90.9   2.611  0.5279
##  0 CCN51 - 3 TCS01  1.94600 0.320  90.9   6.081  <.0001
##  0 CCN51 - 4 TCS01  1.92700 0.320  90.9   6.021  <.0001
##  0 CCN51 - 5 TCS01  2.77467 0.320  90.9   8.670  <.0001
##  0 CCN51 - 6 TCS01  1.54967 0.320  90.9   4.842  0.0009
##  1 CCN51 - 2 CCN51  0.07467 0.276 108.0   0.270  1.0000
##  1 CCN51 - 3 CCN51  0.83267 0.276 108.0   3.012  0.2607
##  1 CCN51 - 4 CCN51  1.22267 0.276 108.0   4.422  0.0039
##  1 CCN51 - 5 CCN51  1.16133 0.276 108.0   4.200  0.0087
##  1 CCN51 - 6 CCN51  0.48033 0.276 108.0   1.737  0.9754
##  1 CCN51 - 0 ICS95 -0.07700 0.320  90.9  -0.241  1.0000
##  1 CCN51 - 1 ICS95  0.02500 0.320  90.9   0.078  1.0000
##  1 CCN51 - 2 ICS95  0.59333 0.320  90.9   1.854  0.9521
##  1 CCN51 - 3 ICS95  1.90467 0.320  90.9   5.952  <.0001
##  1 CCN51 - 4 ICS95  1.55333 0.320  90.9   4.854  0.0009
##  1 CCN51 - 5 ICS95  0.86600 0.320  90.9   2.706  0.4589
##  1 CCN51 - 6 ICS95  0.75233 0.320  90.9   2.351  0.7167
##  1 CCN51 - 0 TCS01 -0.16400 0.320  90.9  -0.512  1.0000
##  1 CCN51 - 1 TCS01  0.29600 0.320  90.9   0.925  1.0000
##  1 CCN51 - 2 TCS01  0.76333 0.320  90.9   2.385  0.6930
##  1 CCN51 - 3 TCS01  1.87367 0.320  90.9   5.855  <.0001
##  1 CCN51 - 4 TCS01  1.85467 0.320  90.9   5.795  <.0001
##  1 CCN51 - 5 TCS01  2.70233 0.320  90.9   8.444  <.0001
##  1 CCN51 - 6 TCS01  1.47733 0.320  90.9   4.616  0.0022
##  2 CCN51 - 3 CCN51  0.75800 0.276 108.0   2.741  0.4317
##  2 CCN51 - 4 CCN51  1.14800 0.276 108.0   4.152  0.0103
##  2 CCN51 - 5 CCN51  1.08667 0.276 108.0   3.930  0.0216
##  2 CCN51 - 6 CCN51  0.40567 0.276 108.0   1.467  0.9964
##  2 CCN51 - 0 ICS95 -0.15167 0.320  90.9  -0.474  1.0000
##  2 CCN51 - 1 ICS95 -0.04967 0.320  90.9  -0.155  1.0000
##  2 CCN51 - 2 ICS95  0.51867 0.320  90.9   1.621  0.9879
##  2 CCN51 - 3 ICS95  1.83000 0.320  90.9   5.718  <.0001
##  2 CCN51 - 4 ICS95  1.47867 0.320  90.9   4.620  0.0022
##  2 CCN51 - 5 ICS95  0.79133 0.320  90.9   2.473  0.6303
##  2 CCN51 - 6 ICS95  0.67767 0.320  90.9   2.118  0.8559
##  2 CCN51 - 0 TCS01 -0.23867 0.320  90.9  -0.746  1.0000
##  2 CCN51 - 1 TCS01  0.22133 0.320  90.9   0.692  1.0000
##  2 CCN51 - 2 TCS01  0.68867 0.320  90.9   2.152  0.8383
##  2 CCN51 - 3 TCS01  1.79900 0.320  90.9   5.621  <.0001
##  2 CCN51 - 4 TCS01  1.78000 0.320  90.9   5.562  0.0001
##  2 CCN51 - 5 TCS01  2.62767 0.320  90.9   8.211  <.0001
##  2 CCN51 - 6 TCS01  1.40267 0.320  90.9   4.383  0.0051
##  3 CCN51 - 4 CCN51  0.39000 0.276 108.0   1.411  0.9978
##  3 CCN51 - 5 CCN51  0.32867 0.276 108.0   1.189  0.9998
##  3 CCN51 - 6 CCN51 -0.35233 0.276 108.0  -1.274  0.9995
##  3 CCN51 - 0 ICS95 -0.90967 0.320  90.9  -2.842  0.3653
##  3 CCN51 - 1 ICS95 -0.80767 0.320  90.9  -2.524  0.5927
##  3 CCN51 - 2 ICS95 -0.23933 0.320  90.9  -0.748  1.0000
##  3 CCN51 - 3 ICS95  1.07200 0.320  90.9   3.350  0.1219
##  3 CCN51 - 4 ICS95  0.72067 0.320  90.9   2.252  0.7811
##  3 CCN51 - 5 ICS95  0.03333 0.320  90.9   0.104  1.0000
##  3 CCN51 - 6 ICS95 -0.08033 0.320  90.9  -0.251  1.0000
##  3 CCN51 - 0 TCS01 -0.99667 0.320  90.9  -3.114  0.2124
##  3 CCN51 - 1 TCS01 -0.53667 0.320  90.9  -1.677  0.9825
##  3 CCN51 - 2 TCS01 -0.06933 0.320  90.9  -0.217  1.0000
##  3 CCN51 - 3 TCS01  1.04100 0.320  90.9   3.253  0.1546
##  3 CCN51 - 4 TCS01  1.02200 0.320  90.9   3.193  0.1777
##  3 CCN51 - 5 TCS01  1.86967 0.320  90.9   5.842  <.0001
##  3 CCN51 - 6 TCS01  0.64467 0.320  90.9   2.014  0.9017
##  4 CCN51 - 5 CCN51 -0.06133 0.276 108.0  -0.222  1.0000
##  4 CCN51 - 6 CCN51 -0.74233 0.276 108.0  -2.685  0.4725
##  4 CCN51 - 0 ICS95 -1.29967 0.320  90.9  -4.061  0.0153
##  4 CCN51 - 1 ICS95 -1.19767 0.320  90.9  -3.742  0.0414
##  4 CCN51 - 2 ICS95 -0.62933 0.320  90.9  -1.967  0.9194
##  4 CCN51 - 3 ICS95  0.68200 0.320  90.9   2.131  0.8491
##  4 CCN51 - 4 ICS95  0.33067 0.320  90.9   1.033  1.0000
##  4 CCN51 - 5 ICS95 -0.35667 0.320  90.9  -1.114  0.9999
##  4 CCN51 - 6 ICS95 -0.47033 0.320  90.9  -1.470  0.9962
##  4 CCN51 - 0 TCS01 -1.38667 0.320  90.9  -4.333  0.0061
##  4 CCN51 - 1 TCS01 -0.92667 0.320  90.9  -2.896  0.3316
##  4 CCN51 - 2 TCS01 -0.45933 0.320  90.9  -1.435  0.9972
##  4 CCN51 - 3 TCS01  0.65100 0.320  90.9   2.034  0.8937
##  4 CCN51 - 4 TCS01  0.63200 0.320  90.9   1.975  0.9165
##  4 CCN51 - 5 TCS01  1.47967 0.320  90.9   4.624  0.0021
##  4 CCN51 - 6 TCS01  0.25467 0.320  90.9   0.796  1.0000
##  5 CCN51 - 6 CCN51 -0.68100 0.276 108.0  -2.463  0.6374
##  5 CCN51 - 0 ICS95 -1.23833 0.320  90.9  -3.869  0.0281
##  5 CCN51 - 1 ICS95 -1.13633 0.320  90.9  -3.551  0.0717
##  5 CCN51 - 2 ICS95 -0.56800 0.320  90.9  -1.775  0.9685
##  5 CCN51 - 3 ICS95  0.74333 0.320  90.9   2.323  0.7357
##  5 CCN51 - 4 ICS95  0.39200 0.320  90.9   1.225  0.9997
##  5 CCN51 - 5 ICS95 -0.29533 0.320  90.9  -0.923  1.0000
##  5 CCN51 - 6 ICS95 -0.40900 0.320  90.9  -1.278  0.9994
##  5 CCN51 - 0 TCS01 -1.32533 0.320  90.9  -4.141  0.0117
##  5 CCN51 - 1 TCS01 -0.86533 0.320  90.9  -2.704  0.4604
##  5 CCN51 - 2 TCS01 -0.39800 0.320  90.9  -1.244  0.9996
##  5 CCN51 - 3 TCS01  0.71233 0.320  90.9   2.226  0.7968
##  5 CCN51 - 4 TCS01  0.69333 0.320  90.9   2.166  0.8305
##  5 CCN51 - 5 TCS01  1.54100 0.320  90.9   4.815  0.0010
##  5 CCN51 - 6 TCS01  0.31600 0.320  90.9   0.987  1.0000
##  6 CCN51 - 0 ICS95 -0.55733 0.320  90.9  -1.742  0.9740
##  6 CCN51 - 1 ICS95 -0.45533 0.320  90.9  -1.423  0.9975
##  6 CCN51 - 2 ICS95  0.11300 0.320  90.9   0.353  1.0000
##  6 CCN51 - 3 ICS95  1.42433 0.320  90.9   4.451  0.0040
##  6 CCN51 - 4 ICS95  1.07300 0.320  90.9   3.353  0.1209
##  6 CCN51 - 5 ICS95  0.38567 0.320  90.9   1.205  0.9997
##  6 CCN51 - 6 ICS95  0.27200 0.320  90.9   0.850  1.0000
##  6 CCN51 - 0 TCS01 -0.64433 0.320  90.9  -2.013  0.9021
##  6 CCN51 - 1 TCS01 -0.18433 0.320  90.9  -0.576  1.0000
##  6 CCN51 - 2 TCS01  0.28300 0.320  90.9   0.884  1.0000
##  6 CCN51 - 3 TCS01  1.39333 0.320  90.9   4.354  0.0056
##  6 CCN51 - 4 TCS01  1.37433 0.320  90.9   4.294  0.0069
##  6 CCN51 - 5 TCS01  2.22200 0.320  90.9   6.943  <.0001
##  6 CCN51 - 6 TCS01  0.99700 0.320  90.9   3.115  0.2119
##  0 ICS95 - 1 ICS95  0.10200 0.276 108.0   0.369  1.0000
##  0 ICS95 - 2 ICS95  0.67033 0.276 108.0   2.424  0.6655
##  0 ICS95 - 3 ICS95  1.98167 0.276 108.0   7.167  <.0001
##  0 ICS95 - 4 ICS95  1.63033 0.276 108.0   5.897  <.0001
##  0 ICS95 - 5 ICS95  0.94300 0.276 108.0   3.411  0.1009
##  0 ICS95 - 6 ICS95  0.82933 0.276 108.0   2.999  0.2673
##  0 ICS95 - 0 TCS01 -0.08700 0.320  90.9  -0.272  1.0000
##  0 ICS95 - 1 TCS01  0.37300 0.320  90.9   1.166  0.9998
##  0 ICS95 - 2 TCS01  0.84033 0.320  90.9   2.626  0.5172
##  0 ICS95 - 3 TCS01  1.95067 0.320  90.9   6.095  <.0001
##  0 ICS95 - 4 TCS01  1.93167 0.320  90.9   6.036  <.0001
##  0 ICS95 - 5 TCS01  2.77933 0.320  90.9   8.685  <.0001
##  0 ICS95 - 6 TCS01  1.55433 0.320  90.9   4.857  0.0009
##  1 ICS95 - 2 ICS95  0.56833 0.276 108.0   2.056  0.8862
##  1 ICS95 - 3 ICS95  1.87967 0.276 108.0   6.798  <.0001
##  1 ICS95 - 4 ICS95  1.52833 0.276 108.0   5.528  <.0001
##  1 ICS95 - 5 ICS95  0.84100 0.276 108.0   3.042  0.2447
##  1 ICS95 - 6 ICS95  0.72733 0.276 108.0   2.631  0.5124
##  1 ICS95 - 0 TCS01 -0.18900 0.320  90.9  -0.591  1.0000
##  1 ICS95 - 1 TCS01  0.27100 0.320  90.9   0.847  1.0000
##  1 ICS95 - 2 TCS01  0.73833 0.320  90.9   2.307  0.7460
##  1 ICS95 - 3 TCS01  1.84867 0.320  90.9   5.777  <.0001
##  1 ICS95 - 4 TCS01  1.82967 0.320  90.9   5.717  <.0001
##  1 ICS95 - 5 TCS01  2.67733 0.320  90.9   8.366  <.0001
##  1 ICS95 - 6 TCS01  1.45233 0.320  90.9   4.538  0.0029
##  2 ICS95 - 3 ICS95  1.31133 0.276 108.0   4.743  0.0012
##  2 ICS95 - 4 ICS95  0.96000 0.276 108.0   3.472  0.0855
##  2 ICS95 - 5 ICS95  0.27267 0.276 108.0   0.986  1.0000
##  2 ICS95 - 6 ICS95  0.15900 0.276 108.0   0.575  1.0000
##  2 ICS95 - 0 TCS01 -0.75733 0.320  90.9  -2.366  0.7060
##  2 ICS95 - 1 TCS01 -0.29733 0.320  90.9  -0.929  1.0000
##  2 ICS95 - 2 TCS01  0.17000 0.320  90.9   0.531  1.0000
##  2 ICS95 - 3 TCS01  1.28033 0.320  90.9   4.001  0.0186
##  2 ICS95 - 4 TCS01  1.26133 0.320  90.9   3.941  0.0225
##  2 ICS95 - 5 TCS01  2.10900 0.320  90.9   6.590  <.0001
##  2 ICS95 - 6 TCS01  0.88400 0.320  90.9   2.762  0.4193
##  3 ICS95 - 4 ICS95 -0.35133 0.276 108.0  -1.271  0.9995
##  3 ICS95 - 5 ICS95 -1.03867 0.276 108.0  -3.757  0.0374
##  3 ICS95 - 6 ICS95 -1.15233 0.276 108.0  -4.168  0.0097
##  3 ICS95 - 0 TCS01 -2.06867 0.320  90.9  -6.464  <.0001
##  3 ICS95 - 1 TCS01 -1.60867 0.320  90.9  -5.027  0.0005
##  3 ICS95 - 2 TCS01 -1.14133 0.320  90.9  -3.566  0.0686
##  3 ICS95 - 3 TCS01 -0.03100 0.320  90.9  -0.097  1.0000
##  3 ICS95 - 4 TCS01 -0.05000 0.320  90.9  -0.156  1.0000
##  3 ICS95 - 5 TCS01  0.79767 0.320  90.9   2.493  0.6158
##  3 ICS95 - 6 TCS01 -0.42733 0.320  90.9  -1.335  0.9989
##  4 ICS95 - 5 ICS95 -0.68733 0.276 108.0  -2.486  0.6205
##  4 ICS95 - 6 ICS95 -0.80100 0.276 108.0  -2.897  0.3276
##  4 ICS95 - 0 TCS01 -1.71733 0.320  90.9  -5.366  0.0001
##  4 ICS95 - 1 TCS01 -1.25733 0.320  90.9  -3.929  0.0234
##  4 ICS95 - 2 TCS01 -0.79000 0.320  90.9  -2.469  0.6333
##  4 ICS95 - 3 TCS01  0.32033 0.320  90.9   1.001  1.0000
##  4 ICS95 - 4 TCS01  0.30133 0.320  90.9   0.942  1.0000
##  4 ICS95 - 5 TCS01  1.14900 0.320  90.9   3.590  0.0642
##  4 ICS95 - 6 TCS01 -0.07600 0.320  90.9  -0.237  1.0000
##  5 ICS95 - 6 ICS95 -0.11367 0.276 108.0  -0.411  1.0000
##  5 ICS95 - 0 TCS01 -1.03000 0.320  90.9  -3.218  0.1677
##  5 ICS95 - 1 TCS01 -0.57000 0.320  90.9  -1.781  0.9674
##  5 ICS95 - 2 TCS01 -0.10267 0.320  90.9  -0.321  1.0000
##  5 ICS95 - 3 TCS01  1.00767 0.320  90.9   3.149  0.1968
##  5 ICS95 - 4 TCS01  0.98867 0.320  90.9   3.089  0.2243
##  5 ICS95 - 5 TCS01  1.83633 0.320  90.9   5.738  <.0001
##  5 ICS95 - 6 TCS01  0.61133 0.320  90.9   1.910  0.9372
##  6 ICS95 - 0 TCS01 -0.91633 0.320  90.9  -2.863  0.3519
##  6 ICS95 - 1 TCS01 -0.45633 0.320  90.9  -1.426  0.9974
##  6 ICS95 - 2 TCS01  0.01100 0.320  90.9   0.034  1.0000
##  6 ICS95 - 3 TCS01  1.12133 0.320  90.9   3.504  0.0815
##  6 ICS95 - 4 TCS01  1.10233 0.320  90.9   3.445  0.0955
##  6 ICS95 - 5 TCS01  1.95000 0.320  90.9   6.093  <.0001
##  6 ICS95 - 6 TCS01  0.72500 0.320  90.9   2.265  0.7727
##  0 TCS01 - 1 TCS01  0.46000 0.276 108.0   1.664  0.9844
##  0 TCS01 - 2 TCS01  0.92733 0.276 108.0   3.354  0.1170
##  0 TCS01 - 3 TCS01  2.03767 0.276 108.0   7.370  <.0001
##  0 TCS01 - 4 TCS01  2.01867 0.276 108.0   7.301  <.0001
##  0 TCS01 - 5 TCS01  2.86633 0.276 108.0  10.367  <.0001
##  0 TCS01 - 6 TCS01  1.64133 0.276 108.0   5.936  <.0001
##  1 TCS01 - 2 TCS01  0.46733 0.276 108.0   1.690  0.9815
##  1 TCS01 - 3 TCS01  1.57767 0.276 108.0   5.706  <.0001
##  1 TCS01 - 4 TCS01  1.55867 0.276 108.0   5.637  <.0001
##  1 TCS01 - 5 TCS01  2.40633 0.276 108.0   8.703  <.0001
##  1 TCS01 - 6 TCS01  1.18133 0.276 108.0   4.273  0.0067
##  2 TCS01 - 3 TCS01  1.11033 0.276 108.0   4.016  0.0163
##  2 TCS01 - 4 TCS01  1.09133 0.276 108.0   3.947  0.0205
##  2 TCS01 - 5 TCS01  1.93900 0.276 108.0   7.013  <.0001
##  2 TCS01 - 6 TCS01  0.71400 0.276 108.0   2.582  0.5484
##  3 TCS01 - 4 TCS01 -0.01900 0.276 108.0  -0.069  1.0000
##  3 TCS01 - 5 TCS01  0.82867 0.276 108.0   2.997  0.2687
##  3 TCS01 - 6 TCS01 -0.39633 0.276 108.0  -1.433  0.9974
##  4 TCS01 - 5 TCS01  0.84767 0.276 108.0   3.066  0.2323
##  4 TCS01 - 6 TCS01 -0.37733 0.276 108.0  -1.365  0.9986
##  5 TCS01 - 6 TCS01 -1.22500 0.276 108.0  -4.431  0.0038
## 
## curva = T1:
##  contrast          estimate    SE    df t.ratio p.value
##  0 CCN51 - 1 CCN51 -0.16067 0.276 108.0  -0.581  1.0000
##  0 CCN51 - 2 CCN51  1.10500 0.276 108.0   3.997  0.0174
##  0 CCN51 - 3 CCN51  0.82100 0.276 108.0   2.969  0.2843
##  0 CCN51 - 4 CCN51  1.24433 0.276 108.0   4.500  0.0029
##  0 CCN51 - 5 CCN51  0.37500 0.276 108.0   1.356  0.9987
##  0 CCN51 - 6 CCN51  0.40100 0.276 108.0   1.450  0.9969
##  0 CCN51 - 0 ICS95  0.37167 0.320  90.9   1.161  0.9998
##  0 CCN51 - 1 ICS95  0.05800 0.320  90.9   0.181  1.0000
##  0 CCN51 - 2 ICS95  1.21000 0.320  90.9   3.781  0.0369
##  0 CCN51 - 3 ICS95  0.75867 0.320  90.9   2.371  0.7031
##  0 CCN51 - 4 ICS95  1.22100 0.320  90.9   3.815  0.0332
##  0 CCN51 - 5 ICS95  0.01267 0.320  90.9   0.040  1.0000
##  0 CCN51 - 6 ICS95 -0.09133 0.320  90.9  -0.285  1.0000
##  0 CCN51 - 0 TCS01 -0.12900 0.320  90.9  -0.403  1.0000
##  0 CCN51 - 1 TCS01  0.13167 0.320  90.9   0.411  1.0000
##  0 CCN51 - 2 TCS01  0.42033 0.320  90.9   1.313  0.9991
##  0 CCN51 - 3 TCS01  0.57867 0.320  90.9   1.808  0.9622
##  0 CCN51 - 4 TCS01  0.96367 0.320  90.9   3.011  0.2644
##  0 CCN51 - 5 TCS01  0.33467 0.320  90.9   1.046  1.0000
##  0 CCN51 - 6 TCS01 -0.38433 0.320  90.9  -1.201  0.9998
##  1 CCN51 - 2 CCN51  1.26567 0.276 108.0   4.578  0.0022
##  1 CCN51 - 3 CCN51  0.98167 0.276 108.0   3.550  0.0688
##  1 CCN51 - 4 CCN51  1.40500 0.276 108.0   5.082  0.0003
##  1 CCN51 - 5 CCN51  0.53567 0.276 108.0   1.937  0.9303
##  1 CCN51 - 6 CCN51  0.56167 0.276 108.0   2.031  0.8963
##  1 CCN51 - 0 ICS95  0.53233 0.320  90.9   1.663  0.9839
##  1 CCN51 - 1 ICS95  0.21867 0.320  90.9   0.683  1.0000
##  1 CCN51 - 2 ICS95  1.37067 0.320  90.9   4.283  0.0072
##  1 CCN51 - 3 ICS95  0.91933 0.320  90.9   2.873  0.3459
##  1 CCN51 - 4 ICS95  1.38167 0.320  90.9   4.317  0.0064
##  1 CCN51 - 5 ICS95  0.17333 0.320  90.9   0.542  1.0000
##  1 CCN51 - 6 ICS95  0.06933 0.320  90.9   0.217  1.0000
##  1 CCN51 - 0 TCS01  0.03167 0.320  90.9   0.099  1.0000
##  1 CCN51 - 1 TCS01  0.29233 0.320  90.9   0.913  1.0000
##  1 CCN51 - 2 TCS01  0.58100 0.320  90.9   1.815  0.9607
##  1 CCN51 - 3 TCS01  0.73933 0.320  90.9   2.310  0.7439
##  1 CCN51 - 4 TCS01  1.12433 0.320  90.9   3.513  0.0794
##  1 CCN51 - 5 TCS01  0.49533 0.320  90.9   1.548  0.9929
##  1 CCN51 - 6 TCS01 -0.22367 0.320  90.9  -0.699  1.0000
##  2 CCN51 - 3 CCN51 -0.28400 0.276 108.0  -1.027  1.0000
##  2 CCN51 - 4 CCN51  0.13933 0.276 108.0   0.504  1.0000
##  2 CCN51 - 5 CCN51 -0.73000 0.276 108.0  -2.640  0.5053
##  2 CCN51 - 6 CCN51 -0.70400 0.276 108.0  -2.546  0.5755
##  2 CCN51 - 0 ICS95 -0.73333 0.320  90.9  -2.291  0.7561
##  2 CCN51 - 1 ICS95 -1.04700 0.320  90.9  -3.272  0.1478
##  2 CCN51 - 2 ICS95  0.10500 0.320  90.9   0.328  1.0000
##  2 CCN51 - 3 ICS95 -0.34633 0.320  90.9  -1.082  0.9999
##  2 CCN51 - 4 ICS95  0.11600 0.320  90.9   0.362  1.0000
##  2 CCN51 - 5 ICS95 -1.09233 0.320  90.9  -3.413  0.1036
##  2 CCN51 - 6 ICS95 -1.19633 0.320  90.9  -3.738  0.0419
##  2 CCN51 - 0 TCS01 -1.23400 0.320  90.9  -3.856  0.0293
##  2 CCN51 - 1 TCS01 -0.97333 0.320  90.9  -3.041  0.2484
##  2 CCN51 - 2 TCS01 -0.68467 0.320  90.9  -2.139  0.8448
##  2 CCN51 - 3 TCS01 -0.52633 0.320  90.9  -1.645  0.9858
##  2 CCN51 - 4 TCS01 -0.14133 0.320  90.9  -0.442  1.0000
##  2 CCN51 - 5 TCS01 -0.77033 0.320  90.9  -2.407  0.6776
##  2 CCN51 - 6 TCS01 -1.48933 0.320  90.9  -4.654  0.0019
##  3 CCN51 - 4 CCN51  0.42333 0.276 108.0   1.531  0.9940
##  3 CCN51 - 5 CCN51 -0.44600 0.276 108.0  -1.613  0.9890
##  3 CCN51 - 6 CCN51 -0.42000 0.276 108.0  -1.519  0.9945
##  3 CCN51 - 0 ICS95 -0.44933 0.320  90.9  -1.404  0.9979
##  3 CCN51 - 1 ICS95 -0.76300 0.320  90.9  -2.384  0.6937
##  3 CCN51 - 2 ICS95  0.38900 0.320  90.9   1.216  0.9997
##  3 CCN51 - 3 ICS95 -0.06233 0.320  90.9  -0.195  1.0000
##  3 CCN51 - 4 ICS95  0.40000 0.320  90.9   1.250  0.9996
##  3 CCN51 - 5 ICS95 -0.80833 0.320  90.9  -2.526  0.5912
##  3 CCN51 - 6 ICS95 -0.91233 0.320  90.9  -2.851  0.3599
##  3 CCN51 - 0 TCS01 -0.95000 0.320  90.9  -2.969  0.2881
##  3 CCN51 - 1 TCS01 -0.68933 0.320  90.9  -2.154  0.8372
##  3 CCN51 - 2 TCS01 -0.40067 0.320  90.9  -1.252  0.9995
##  3 CCN51 - 3 TCS01 -0.24233 0.320  90.9  -0.757  1.0000
##  3 CCN51 - 4 TCS01  0.14267 0.320  90.9   0.446  1.0000
##  3 CCN51 - 5 TCS01 -0.48633 0.320  90.9  -1.520  0.9943
##  3 CCN51 - 6 TCS01 -1.20533 0.320  90.9  -3.766  0.0385
##  4 CCN51 - 5 CCN51 -0.86933 0.276 108.0  -3.144  0.1951
##  4 CCN51 - 6 CCN51 -0.84333 0.276 108.0  -3.050  0.2403
##  4 CCN51 - 0 ICS95 -0.87267 0.320  90.9  -2.727  0.4441
##  4 CCN51 - 1 ICS95 -1.18633 0.320  90.9  -3.707  0.0459
##  4 CCN51 - 2 ICS95 -0.03433 0.320  90.9  -0.107  1.0000
##  4 CCN51 - 3 ICS95 -0.48567 0.320  90.9  -1.518  0.9944
##  4 CCN51 - 4 ICS95 -0.02333 0.320  90.9  -0.073  1.0000
##  4 CCN51 - 5 ICS95 -1.23167 0.320  90.9  -3.849  0.0300
##  4 CCN51 - 6 ICS95 -1.33567 0.320  90.9  -4.174  0.0105
##  4 CCN51 - 0 TCS01 -1.37333 0.320  90.9  -4.291  0.0070
##  4 CCN51 - 1 TCS01 -1.11267 0.320  90.9  -3.477  0.0876
##  4 CCN51 - 2 TCS01 -0.82400 0.320  90.9  -2.575  0.5549
##  4 CCN51 - 3 TCS01 -0.66567 0.320  90.9  -2.080  0.8738
##  4 CCN51 - 4 TCS01 -0.28067 0.320  90.9  -0.877  1.0000
##  4 CCN51 - 5 TCS01 -0.90967 0.320  90.9  -2.842  0.3653
##  4 CCN51 - 6 TCS01 -1.62867 0.320  90.9  -5.089  0.0004
##  5 CCN51 - 6 CCN51  0.02600 0.276 108.0   0.094  1.0000
##  5 CCN51 - 0 ICS95 -0.00333 0.320  90.9  -0.010  1.0000
##  5 CCN51 - 1 ICS95 -0.31700 0.320  90.9  -0.991  1.0000
##  5 CCN51 - 2 ICS95  0.83500 0.320  90.9   2.609  0.5295
##  5 CCN51 - 3 ICS95  0.38367 0.320  90.9   1.199  0.9998
##  5 CCN51 - 4 ICS95  0.84600 0.320  90.9   2.644  0.5042
##  5 CCN51 - 5 ICS95 -0.36233 0.320  90.9  -1.132  0.9999
##  5 CCN51 - 6 ICS95 -0.46633 0.320  90.9  -1.457  0.9966
##  5 CCN51 - 0 TCS01 -0.50400 0.320  90.9  -1.575  0.9913
##  5 CCN51 - 1 TCS01 -0.24333 0.320  90.9  -0.760  1.0000
##  5 CCN51 - 2 TCS01  0.04533 0.320  90.9   0.142  1.0000
##  5 CCN51 - 3 TCS01  0.20367 0.320  90.9   0.636  1.0000
##  5 CCN51 - 4 TCS01  0.58867 0.320  90.9   1.839  0.9555
##  5 CCN51 - 5 TCS01 -0.04033 0.320  90.9  -0.126  1.0000
##  5 CCN51 - 6 TCS01 -0.75933 0.320  90.9  -2.373  0.7017
##  6 CCN51 - 0 ICS95 -0.02933 0.320  90.9  -0.092  1.0000
##  6 CCN51 - 1 ICS95 -0.34300 0.320  90.9  -1.072  1.0000
##  6 CCN51 - 2 ICS95  0.80900 0.320  90.9   2.528  0.5896
##  6 CCN51 - 3 ICS95  0.35767 0.320  90.9   1.118  0.9999
##  6 CCN51 - 4 ICS95  0.82000 0.320  90.9   2.562  0.5642
##  6 CCN51 - 5 ICS95 -0.38833 0.320  90.9  -1.213  0.9997
##  6 CCN51 - 6 ICS95 -0.49233 0.320  90.9  -1.538  0.9934
##  6 CCN51 - 0 TCS01 -0.53000 0.320  90.9  -1.656  0.9847
##  6 CCN51 - 1 TCS01 -0.26933 0.320  90.9  -0.842  1.0000
##  6 CCN51 - 2 TCS01  0.01933 0.320  90.9   0.060  1.0000
##  6 CCN51 - 3 TCS01  0.17767 0.320  90.9   0.555  1.0000
##  6 CCN51 - 4 TCS01  0.56267 0.320  90.9   1.758  0.9713
##  6 CCN51 - 5 TCS01 -0.06633 0.320  90.9  -0.207  1.0000
##  6 CCN51 - 6 TCS01 -0.78533 0.320  90.9  -2.454  0.6439
##  0 ICS95 - 1 ICS95 -0.31367 0.276 108.0  -1.134  0.9999
##  0 ICS95 - 2 ICS95  0.83833 0.276 108.0   3.032  0.2497
##  0 ICS95 - 3 ICS95  0.38700 0.276 108.0   1.400  0.9981
##  0 ICS95 - 4 ICS95  0.84933 0.276 108.0   3.072  0.2293
##  0 ICS95 - 5 ICS95 -0.35900 0.276 108.0  -1.298  0.9993
##  0 ICS95 - 6 ICS95 -0.46300 0.276 108.0  -1.675  0.9833
##  0 ICS95 - 0 TCS01 -0.50067 0.320  90.9  -1.564  0.9919
##  0 ICS95 - 1 TCS01 -0.24000 0.320  90.9  -0.750  1.0000
##  0 ICS95 - 2 TCS01  0.04867 0.320  90.9   0.152  1.0000
##  0 ICS95 - 3 TCS01  0.20700 0.320  90.9   0.647  1.0000
##  0 ICS95 - 4 TCS01  0.59200 0.320  90.9   1.850  0.9531
##  0 ICS95 - 5 TCS01 -0.03700 0.320  90.9  -0.116  1.0000
##  0 ICS95 - 6 TCS01 -0.75600 0.320  90.9  -2.362  0.7089
##  1 ICS95 - 2 ICS95  1.15200 0.276 108.0   4.166  0.0098
##  1 ICS95 - 3 ICS95  0.70067 0.276 108.0   2.534  0.5845
##  1 ICS95 - 4 ICS95  1.16300 0.276 108.0   4.206  0.0085
##  1 ICS95 - 5 ICS95 -0.04533 0.276 108.0  -0.164  1.0000
##  1 ICS95 - 6 ICS95 -0.14933 0.276 108.0  -0.540  1.0000
##  1 ICS95 - 0 TCS01 -0.18700 0.320  90.9  -0.584  1.0000
##  1 ICS95 - 1 TCS01  0.07367 0.320  90.9   0.230  1.0000
##  1 ICS95 - 2 TCS01  0.36233 0.320  90.9   1.132  0.9999
##  1 ICS95 - 3 TCS01  0.52067 0.320  90.9   1.627  0.9874
##  1 ICS95 - 4 TCS01  0.90567 0.320  90.9   2.830  0.3735
##  1 ICS95 - 5 TCS01  0.27667 0.320  90.9   0.865  1.0000
##  1 ICS95 - 6 TCS01 -0.44233 0.320  90.9  -1.382  0.9983
##  2 ICS95 - 3 ICS95 -0.45133 0.276 108.0  -1.632  0.9874
##  2 ICS95 - 4 ICS95  0.01100 0.276 108.0   0.040  1.0000
##  2 ICS95 - 5 ICS95 -1.19733 0.276 108.0  -4.330  0.0055
##  2 ICS95 - 6 ICS95 -1.30133 0.276 108.0  -4.707  0.0013
##  2 ICS95 - 0 TCS01 -1.33900 0.320  90.9  -4.184  0.0101
##  2 ICS95 - 1 TCS01 -1.07833 0.320  90.9  -3.370  0.1159
##  2 ICS95 - 2 TCS01 -0.78967 0.320  90.9  -2.468  0.6341
##  2 ICS95 - 3 TCS01 -0.63133 0.320  90.9  -1.973  0.9172
##  2 ICS95 - 4 TCS01 -0.24633 0.320  90.9  -0.770  1.0000
##  2 ICS95 - 5 TCS01 -0.87533 0.320  90.9  -2.735  0.4382
##  2 ICS95 - 6 TCS01 -1.59433 0.320  90.9  -4.982  0.0005
##  3 ICS95 - 4 ICS95  0.46233 0.276 108.0   1.672  0.9836
##  3 ICS95 - 5 ICS95 -0.74600 0.276 108.0  -2.698  0.4628
##  3 ICS95 - 6 ICS95 -0.85000 0.276 108.0  -3.074  0.2281
##  3 ICS95 - 0 TCS01 -0.88767 0.320  90.9  -2.774  0.4114
##  3 ICS95 - 1 TCS01 -0.62700 0.320  90.9  -1.959  0.9218
##  3 ICS95 - 2 TCS01 -0.33833 0.320  90.9  -1.057  1.0000
##  3 ICS95 - 3 TCS01 -0.18000 0.320  90.9  -0.562  1.0000
##  3 ICS95 - 4 TCS01  0.20500 0.320  90.9   0.641  1.0000
##  3 ICS95 - 5 TCS01 -0.42400 0.320  90.9  -1.325  0.9990
##  3 ICS95 - 6 TCS01 -1.14300 0.320  90.9  -3.572  0.0676
##  4 ICS95 - 5 ICS95 -1.20833 0.276 108.0  -4.370  0.0047
##  4 ICS95 - 6 ICS95 -1.31233 0.276 108.0  -4.746  0.0011
##  4 ICS95 - 0 TCS01 -1.35000 0.320  90.9  -4.218  0.0090
##  4 ICS95 - 1 TCS01 -1.08933 0.320  90.9  -3.404  0.1061
##  4 ICS95 - 2 TCS01 -0.80067 0.320  90.9  -2.502  0.6089
##  4 ICS95 - 3 TCS01 -0.64233 0.320  90.9  -2.007  0.9045
##  4 ICS95 - 4 TCS01 -0.25733 0.320  90.9  -0.804  1.0000
##  4 ICS95 - 5 TCS01 -0.88633 0.320  90.9  -2.770  0.4143
##  4 ICS95 - 6 TCS01 -1.60533 0.320  90.9  -5.016  0.0005
##  5 ICS95 - 6 ICS95 -0.10400 0.276 108.0  -0.376  1.0000
##  5 ICS95 - 0 TCS01 -0.14167 0.320  90.9  -0.443  1.0000
##  5 ICS95 - 1 TCS01  0.11900 0.320  90.9   0.372  1.0000
##  5 ICS95 - 2 TCS01  0.40767 0.320  90.9   1.274  0.9994
##  5 ICS95 - 3 TCS01  0.56600 0.320  90.9   1.769  0.9696
##  5 ICS95 - 4 TCS01  0.95100 0.320  90.9   2.972  0.2864
##  5 ICS95 - 5 TCS01  0.32200 0.320  90.9   1.006  1.0000
##  5 ICS95 - 6 TCS01 -0.39700 0.320  90.9  -1.241  0.9996
##  6 ICS95 - 0 TCS01 -0.03767 0.320  90.9  -0.118  1.0000
##  6 ICS95 - 1 TCS01  0.22300 0.320  90.9   0.697  1.0000
##  6 ICS95 - 2 TCS01  0.51167 0.320  90.9   1.599  0.9896
##  6 ICS95 - 3 TCS01  0.67000 0.320  90.9   2.094  0.8675
##  6 ICS95 - 4 TCS01  1.05500 0.320  90.9   3.297  0.1390
##  6 ICS95 - 5 TCS01  0.42600 0.320  90.9   1.331  0.9989
##  6 ICS95 - 6 TCS01 -0.29300 0.320  90.9  -0.916  1.0000
##  0 TCS01 - 1 TCS01  0.26067 0.276 108.0   0.943  1.0000
##  0 TCS01 - 2 TCS01  0.54933 0.276 108.0   1.987  0.9136
##  0 TCS01 - 3 TCS01  0.70767 0.276 108.0   2.559  0.5656
##  0 TCS01 - 4 TCS01  1.09267 0.276 108.0   3.952  0.0202
##  0 TCS01 - 5 TCS01  0.46367 0.276 108.0   1.677  0.9830
##  0 TCS01 - 6 TCS01 -0.25533 0.276 108.0  -0.923  1.0000
##  1 TCS01 - 2 TCS01  0.28867 0.276 108.0   1.044  1.0000
##  1 TCS01 - 3 TCS01  0.44700 0.276 108.0   1.617  0.9887
##  1 TCS01 - 4 TCS01  0.83200 0.276 108.0   3.009  0.2620
##  1 TCS01 - 5 TCS01  0.20300 0.276 108.0   0.734  1.0000
##  1 TCS01 - 6 TCS01 -0.51600 0.276 108.0  -1.866  0.9502
##  2 TCS01 - 3 TCS01  0.15833 0.276 108.0   0.573  1.0000
##  2 TCS01 - 4 TCS01  0.54333 0.276 108.0   1.965  0.9212
##  2 TCS01 - 5 TCS01 -0.08567 0.276 108.0  -0.310  1.0000
##  2 TCS01 - 6 TCS01 -0.80467 0.276 108.0  -2.910  0.3194
##  3 TCS01 - 4 TCS01  0.38500 0.276 108.0   1.392  0.9982
##  3 TCS01 - 5 TCS01 -0.24400 0.276 108.0  -0.882  1.0000
##  3 TCS01 - 6 TCS01 -0.96300 0.276 108.0  -3.483  0.0830
##  4 TCS01 - 5 TCS01 -0.62900 0.276 108.0  -2.275  0.7678
##  4 TCS01 - 6 TCS01 -1.34800 0.276 108.0  -4.875  0.0007
##  5 TCS01 - 6 TCS01 -0.71900 0.276 108.0  -2.600  0.5349
## 
## curva = T2:
##  contrast          estimate    SE    df t.ratio p.value
##  0 CCN51 - 1 CCN51 -1.01300 0.276 108.0  -3.664  0.0495
##  0 CCN51 - 2 CCN51 -0.07733 0.276 108.0  -0.280  1.0000
##  0 CCN51 - 3 CCN51  0.81867 0.276 108.0   2.961  0.2892
##  0 CCN51 - 4 CCN51  0.89100 0.276 108.0   3.223  0.1624
##  0 CCN51 - 5 CCN51  0.51367 0.276 108.0   1.858  0.9523
##  0 CCN51 - 6 CCN51  0.11000 0.276 108.0   0.398  1.0000
##  0 CCN51 - 0 ICS95 -0.78200 0.320  90.9  -2.444  0.6515
##  0 CCN51 - 1 ICS95 -1.40533 0.320  90.9  -4.391  0.0049
##  0 CCN51 - 2 ICS95 -0.71600 0.320  90.9  -2.237  0.7899
##  0 CCN51 - 3 ICS95 -0.44800 0.320  90.9  -1.400  0.9979
##  0 CCN51 - 4 ICS95 -0.00233 0.320  90.9  -0.007  1.0000
##  0 CCN51 - 5 ICS95 -0.18667 0.320  90.9  -0.583  1.0000
##  0 CCN51 - 6 ICS95 -0.54000 0.320  90.9  -1.687  0.9813
##  0 CCN51 - 0 TCS01 -0.46700 0.320  90.9  -1.459  0.9965
##  0 CCN51 - 1 TCS01 -0.98167 0.320  90.9  -3.067  0.2351
##  0 CCN51 - 2 TCS01 -0.11733 0.320  90.9  -0.367  1.0000
##  0 CCN51 - 3 TCS01 -0.45833 0.320  90.9  -1.432  0.9972
##  0 CCN51 - 4 TCS01  0.38667 0.320  90.9   1.208  0.9997
##  0 CCN51 - 5 TCS01  0.14900 0.320  90.9   0.466  1.0000
##  0 CCN51 - 6 TCS01 -0.28667 0.320  90.9  -0.896  1.0000
##  1 CCN51 - 2 CCN51  0.93567 0.276 108.0   3.384  0.1082
##  1 CCN51 - 3 CCN51  1.83167 0.276 108.0   6.625  <.0001
##  1 CCN51 - 4 CCN51  1.90400 0.276 108.0   6.886  <.0001
##  1 CCN51 - 5 CCN51  1.52667 0.276 108.0   5.522  <.0001
##  1 CCN51 - 6 CCN51  1.12300 0.276 108.0   4.062  0.0140
##  1 CCN51 - 0 ICS95  0.23100 0.320  90.9   0.722  1.0000
##  1 CCN51 - 1 ICS95 -0.39233 0.320  90.9  -1.226  0.9997
##  1 CCN51 - 2 ICS95  0.29700 0.320  90.9   0.928  1.0000
##  1 CCN51 - 3 ICS95  0.56500 0.320  90.9   1.765  0.9701
##  1 CCN51 - 4 ICS95  1.01067 0.320  90.9   3.158  0.1927
##  1 CCN51 - 5 ICS95  0.82633 0.320  90.9   2.582  0.5495
##  1 CCN51 - 6 ICS95  0.47300 0.320  90.9   1.478  0.9959
##  1 CCN51 - 0 TCS01  0.54600 0.320  90.9   1.706  0.9789
##  1 CCN51 - 1 TCS01  0.03133 0.320  90.9   0.098  1.0000
##  1 CCN51 - 2 TCS01  0.89567 0.320  90.9   2.799  0.3944
##  1 CCN51 - 3 TCS01  0.55467 0.320  90.9   1.733  0.9752
##  1 CCN51 - 4 TCS01  1.39967 0.320  90.9   4.374  0.0053
##  1 CCN51 - 5 TCS01  1.16200 0.320  90.9   3.631  0.0572
##  1 CCN51 - 6 TCS01  0.72633 0.320  90.9   2.270  0.7700
##  2 CCN51 - 3 CCN51  0.89600 0.276 108.0   3.241  0.1554
##  2 CCN51 - 4 CCN51  0.96833 0.276 108.0   3.502  0.0787
##  2 CCN51 - 5 CCN51  0.59100 0.276 108.0   2.137  0.8473
##  2 CCN51 - 6 CCN51  0.18733 0.276 108.0   0.678  1.0000
##  2 CCN51 - 0 ICS95 -0.70467 0.320  90.9  -2.202  0.8108
##  2 CCN51 - 1 ICS95 -1.32800 0.320  90.9  -4.150  0.0114
##  2 CCN51 - 2 ICS95 -0.63867 0.320  90.9  -1.996  0.9089
##  2 CCN51 - 3 ICS95 -0.37067 0.320  90.9  -1.158  0.9999
##  2 CCN51 - 4 ICS95  0.07500 0.320  90.9   0.234  1.0000
##  2 CCN51 - 5 ICS95 -0.10933 0.320  90.9  -0.342  1.0000
##  2 CCN51 - 6 ICS95 -0.46267 0.320  90.9  -1.446  0.9969
##  2 CCN51 - 0 TCS01 -0.38967 0.320  90.9  -1.218  0.9997
##  2 CCN51 - 1 TCS01 -0.90433 0.320  90.9  -2.826  0.3763
##  2 CCN51 - 2 TCS01 -0.04000 0.320  90.9  -0.125  1.0000
##  2 CCN51 - 3 TCS01 -0.38100 0.320  90.9  -1.191  0.9998
##  2 CCN51 - 4 TCS01  0.46400 0.320  90.9   1.450  0.9968
##  2 CCN51 - 5 TCS01  0.22633 0.320  90.9   0.707  1.0000
##  2 CCN51 - 6 TCS01 -0.20933 0.320  90.9  -0.654  1.0000
##  3 CCN51 - 4 CCN51  0.07233 0.276 108.0   0.262  1.0000
##  3 CCN51 - 5 CCN51 -0.30500 0.276 108.0  -1.103  0.9999
##  3 CCN51 - 6 CCN51 -0.70867 0.276 108.0  -2.563  0.5629
##  3 CCN51 - 0 ICS95 -1.60067 0.320  90.9  -5.002  0.0005
##  3 CCN51 - 1 ICS95 -2.22400 0.320  90.9  -6.949  <.0001
##  3 CCN51 - 2 ICS95 -1.53467 0.320  90.9  -4.795  0.0011
##  3 CCN51 - 3 ICS95 -1.26667 0.320  90.9  -3.958  0.0213
##  3 CCN51 - 4 ICS95 -0.82100 0.320  90.9  -2.565  0.5619
##  3 CCN51 - 5 ICS95 -1.00533 0.320  90.9  -3.141  0.2000
##  3 CCN51 - 6 ICS95 -1.35867 0.320  90.9  -4.245  0.0082
##  3 CCN51 - 0 TCS01 -1.28567 0.320  90.9  -4.017  0.0176
##  3 CCN51 - 1 TCS01 -1.80033 0.320  90.9  -5.626  <.0001
##  3 CCN51 - 2 TCS01 -0.93600 0.320  90.9  -2.925  0.3138
##  3 CCN51 - 3 TCS01 -1.27700 0.320  90.9  -3.990  0.0192
##  3 CCN51 - 4 TCS01 -0.43200 0.320  90.9  -1.350  0.9987
##  3 CCN51 - 5 TCS01 -0.66967 0.320  90.9  -2.093  0.8680
##  3 CCN51 - 6 TCS01 -1.10533 0.320  90.9  -3.454  0.0931
##  4 CCN51 - 5 CCN51 -0.37733 0.276 108.0  -1.365  0.9986
##  4 CCN51 - 6 CCN51 -0.78100 0.276 108.0  -2.825  0.3744
##  4 CCN51 - 0 ICS95 -1.67300 0.320  90.9  -5.228  0.0002
##  4 CCN51 - 1 ICS95 -2.29633 0.320  90.9  -7.175  <.0001
##  4 CCN51 - 2 ICS95 -1.60700 0.320  90.9  -5.021  0.0005
##  4 CCN51 - 3 ICS95 -1.33900 0.320  90.9  -4.184  0.0101
##  4 CCN51 - 4 ICS95 -0.89333 0.320  90.9  -2.791  0.3993
##  4 CCN51 - 5 ICS95 -1.07767 0.320  90.9  -3.367  0.1165
##  4 CCN51 - 6 ICS95 -1.43100 0.320  90.9  -4.472  0.0037
##  4 CCN51 - 0 TCS01 -1.35800 0.320  90.9  -4.243  0.0083
##  4 CCN51 - 1 TCS01 -1.87267 0.320  90.9  -5.852  <.0001
##  4 CCN51 - 2 TCS01 -1.00833 0.320  90.9  -3.151  0.1959
##  4 CCN51 - 3 TCS01 -1.34933 0.320  90.9  -4.216  0.0091
##  4 CCN51 - 4 TCS01 -0.50433 0.320  90.9  -1.576  0.9912
##  4 CCN51 - 5 TCS01 -0.74200 0.320  90.9  -2.319  0.7384
##  4 CCN51 - 6 TCS01 -1.17767 0.320  90.9  -3.680  0.0497
##  5 CCN51 - 6 CCN51 -0.40367 0.276 108.0  -1.460  0.9967
##  5 CCN51 - 0 ICS95 -1.29567 0.320  90.9  -4.049  0.0159
##  5 CCN51 - 1 ICS95 -1.91900 0.320  90.9  -5.996  <.0001
##  5 CCN51 - 2 ICS95 -1.22967 0.320  90.9  -3.842  0.0306
##  5 CCN51 - 3 ICS95 -0.96167 0.320  90.9  -3.005  0.2678
##  5 CCN51 - 4 ICS95 -0.51600 0.320  90.9  -1.612  0.9886
##  5 CCN51 - 5 ICS95 -0.70033 0.320  90.9  -2.188  0.8185
##  5 CCN51 - 6 ICS95 -1.05367 0.320  90.9  -3.292  0.1405
##  5 CCN51 - 0 TCS01 -0.98067 0.320  90.9  -3.064  0.2367
##  5 CCN51 - 1 TCS01 -1.49533 0.320  90.9  -4.673  0.0018
##  5 CCN51 - 2 TCS01 -0.63100 0.320  90.9  -1.972  0.9176
##  5 CCN51 - 3 TCS01 -0.97200 0.320  90.9  -3.037  0.2506
##  5 CCN51 - 4 TCS01 -0.12700 0.320  90.9  -0.397  1.0000
##  5 CCN51 - 5 TCS01 -0.36467 0.320  90.9  -1.139  0.9999
##  5 CCN51 - 6 TCS01 -0.80033 0.320  90.9  -2.501  0.6096
##  6 CCN51 - 0 ICS95 -0.89200 0.320  90.9  -2.787  0.4021
##  6 CCN51 - 1 ICS95 -1.51533 0.320  90.9  -4.735  0.0014
##  6 CCN51 - 2 ICS95 -0.82600 0.320  90.9  -2.581  0.5503
##  6 CCN51 - 3 ICS95 -0.55800 0.320  90.9  -1.744  0.9737
##  6 CCN51 - 4 ICS95 -0.11233 0.320  90.9  -0.351  1.0000
##  6 CCN51 - 5 ICS95 -0.29667 0.320  90.9  -0.927  1.0000
##  6 CCN51 - 6 ICS95 -0.65000 0.320  90.9  -2.031  0.8950
##  6 CCN51 - 0 TCS01 -0.57700 0.320  90.9  -1.803  0.9633
##  6 CCN51 - 1 TCS01 -1.09167 0.320  90.9  -3.411  0.1041
##  6 CCN51 - 2 TCS01 -0.22733 0.320  90.9  -0.710  1.0000
##  6 CCN51 - 3 TCS01 -0.56833 0.320  90.9  -1.776  0.9683
##  6 CCN51 - 4 TCS01  0.27667 0.320  90.9   0.865  1.0000
##  6 CCN51 - 5 TCS01  0.03900 0.320  90.9   0.122  1.0000
##  6 CCN51 - 6 TCS01 -0.39667 0.320  90.9  -1.239  0.9996
##  0 ICS95 - 1 ICS95 -0.62333 0.276 108.0  -2.254  0.7807
##  0 ICS95 - 2 ICS95  0.06600 0.276 108.0   0.239  1.0000
##  0 ICS95 - 3 ICS95  0.33400 0.276 108.0   1.208  0.9997
##  0 ICS95 - 4 ICS95  0.77967 0.276 108.0   2.820  0.3776
##  0 ICS95 - 5 ICS95  0.59533 0.276 108.0   2.153  0.8391
##  0 ICS95 - 6 ICS95  0.24200 0.276 108.0   0.875  1.0000
##  0 ICS95 - 0 TCS01  0.31500 0.320  90.9   0.984  1.0000
##  0 ICS95 - 1 TCS01 -0.19967 0.320  90.9  -0.624  1.0000
##  0 ICS95 - 2 TCS01  0.66467 0.320  90.9   2.077  0.8752
##  0 ICS95 - 3 TCS01  0.32367 0.320  90.9   1.011  1.0000
##  0 ICS95 - 4 TCS01  1.16867 0.320  90.9   3.652  0.0539
##  0 ICS95 - 5 TCS01  0.93100 0.320  90.9   2.909  0.3232
##  0 ICS95 - 6 TCS01  0.49533 0.320  90.9   1.548  0.9929
##  1 ICS95 - 2 ICS95  0.68933 0.276 108.0   2.493  0.6151
##  1 ICS95 - 3 ICS95  0.95733 0.276 108.0   3.462  0.0878
##  1 ICS95 - 4 ICS95  1.40300 0.276 108.0   5.074  0.0003
##  1 ICS95 - 5 ICS95  1.21867 0.276 108.0   4.408  0.0041
##  1 ICS95 - 6 ICS95  0.86533 0.276 108.0   3.130  0.2016
##  1 ICS95 - 0 TCS01  0.93833 0.320  90.9   2.932  0.3094
##  1 ICS95 - 1 TCS01  0.42367 0.320  90.9   1.324  0.9990
##  1 ICS95 - 2 TCS01  1.28800 0.320  90.9   4.025  0.0172
##  1 ICS95 - 3 TCS01  0.94700 0.320  90.9   2.959  0.2935
##  1 ICS95 - 4 TCS01  1.79200 0.320  90.9   5.600  <.0001
##  1 ICS95 - 5 TCS01  1.55433 0.320  90.9   4.857  0.0009
##  1 ICS95 - 6 TCS01  1.11867 0.320  90.9   3.496  0.0833
##  2 ICS95 - 3 ICS95  0.26800 0.276 108.0   0.969  1.0000
##  2 ICS95 - 4 ICS95  0.71367 0.276 108.0   2.581  0.5493
##  2 ICS95 - 5 ICS95  0.52933 0.276 108.0   1.914  0.9372
##  2 ICS95 - 6 ICS95  0.17600 0.276 108.0   0.637  1.0000
##  2 ICS95 - 0 TCS01  0.24900 0.320  90.9   0.778  1.0000
##  2 ICS95 - 1 TCS01 -0.26567 0.320  90.9  -0.830  1.0000
##  2 ICS95 - 2 TCS01  0.59867 0.320  90.9   1.871  0.9480
##  2 ICS95 - 3 TCS01  0.25767 0.320  90.9   0.805  1.0000
##  2 ICS95 - 4 TCS01  1.10267 0.320  90.9   3.446  0.0952
##  2 ICS95 - 5 TCS01  0.86500 0.320  90.9   2.703  0.4611
##  2 ICS95 - 6 TCS01  0.42933 0.320  90.9   1.342  0.9988
##  3 ICS95 - 4 ICS95  0.44567 0.276 108.0   1.612  0.9891
##  3 ICS95 - 5 ICS95  0.26133 0.276 108.0   0.945  1.0000
##  3 ICS95 - 6 ICS95 -0.09200 0.276 108.0  -0.333  1.0000
##  3 ICS95 - 0 TCS01 -0.01900 0.320  90.9  -0.059  1.0000
##  3 ICS95 - 1 TCS01 -0.53367 0.320  90.9  -1.668  0.9835
##  3 ICS95 - 2 TCS01  0.33067 0.320  90.9   1.033  1.0000
##  3 ICS95 - 3 TCS01 -0.01033 0.320  90.9  -0.032  1.0000
##  3 ICS95 - 4 TCS01  0.83467 0.320  90.9   2.608  0.5302
##  3 ICS95 - 5 TCS01  0.59700 0.320  90.9   1.865  0.9493
##  3 ICS95 - 6 TCS01  0.16133 0.320  90.9   0.504  1.0000
##  4 ICS95 - 5 ICS95 -0.18433 0.276 108.0  -0.667  1.0000
##  4 ICS95 - 6 ICS95 -0.53767 0.276 108.0  -1.945  0.9280
##  4 ICS95 - 0 TCS01 -0.46467 0.320  90.9  -1.452  0.9967
##  4 ICS95 - 1 TCS01 -0.97933 0.320  90.9  -3.060  0.2388
##  4 ICS95 - 2 TCS01 -0.11500 0.320  90.9  -0.359  1.0000
##  4 ICS95 - 3 TCS01 -0.45600 0.320  90.9  -1.425  0.9974
##  4 ICS95 - 4 TCS01  0.38900 0.320  90.9   1.216  0.9997
##  4 ICS95 - 5 TCS01  0.15133 0.320  90.9   0.473  1.0000
##  4 ICS95 - 6 TCS01 -0.28433 0.320  90.9  -0.888  1.0000
##  5 ICS95 - 6 ICS95 -0.35333 0.276 108.0  -1.278  0.9994
##  5 ICS95 - 0 TCS01 -0.28033 0.320  90.9  -0.876  1.0000
##  5 ICS95 - 1 TCS01 -0.79500 0.320  90.9  -2.484  0.6219
##  5 ICS95 - 2 TCS01  0.06933 0.320  90.9   0.217  1.0000
##  5 ICS95 - 3 TCS01 -0.27167 0.320  90.9  -0.849  1.0000
##  5 ICS95 - 4 TCS01  0.57333 0.320  90.9   1.792  0.9655
##  5 ICS95 - 5 TCS01  0.33567 0.320  90.9   1.049  1.0000
##  5 ICS95 - 6 TCS01 -0.10000 0.320  90.9  -0.312  1.0000
##  6 ICS95 - 0 TCS01  0.07300 0.320  90.9   0.228  1.0000
##  6 ICS95 - 1 TCS01 -0.44167 0.320  90.9  -1.380  0.9983
##  6 ICS95 - 2 TCS01  0.42267 0.320  90.9   1.321  0.9990
##  6 ICS95 - 3 TCS01  0.08167 0.320  90.9   0.255  1.0000
##  6 ICS95 - 4 TCS01  0.92667 0.320  90.9   2.896  0.3316
##  6 ICS95 - 5 TCS01  0.68900 0.320  90.9   2.153  0.8378
##  6 ICS95 - 6 TCS01  0.25333 0.320  90.9   0.792  1.0000
##  0 TCS01 - 1 TCS01 -0.51467 0.276 108.0  -1.861  0.9514
##  0 TCS01 - 2 TCS01  0.34967 0.276 108.0   1.265  0.9995
##  0 TCS01 - 3 TCS01  0.00867 0.276 108.0   0.031  1.0000
##  0 TCS01 - 4 TCS01  0.85367 0.276 108.0   3.087  0.2215
##  0 TCS01 - 5 TCS01  0.61600 0.276 108.0   2.228  0.7968
##  0 TCS01 - 6 TCS01  0.18033 0.276 108.0   0.652  1.0000
##  1 TCS01 - 2 TCS01  0.86433 0.276 108.0   3.126  0.2033
##  1 TCS01 - 3 TCS01  0.52333 0.276 108.0   1.893  0.9433
##  1 TCS01 - 4 TCS01  1.36833 0.276 108.0   4.949  0.0005
##  1 TCS01 - 5 TCS01  1.13067 0.276 108.0   4.089  0.0128
##  1 TCS01 - 6 TCS01  0.69500 0.276 108.0   2.514  0.5999
##  2 TCS01 - 3 TCS01 -0.34100 0.276 108.0  -1.233  0.9997
##  2 TCS01 - 4 TCS01  0.50400 0.276 108.0   1.823  0.9602
##  2 TCS01 - 5 TCS01  0.26633 0.276 108.0   0.963  1.0000
##  2 TCS01 - 6 TCS01 -0.16933 0.276 108.0  -0.612  1.0000
##  3 TCS01 - 4 TCS01  0.84500 0.276 108.0   3.056  0.2372
##  3 TCS01 - 5 TCS01  0.60733 0.276 108.0   2.197  0.8152
##  3 TCS01 - 6 TCS01  0.17167 0.276 108.0   0.621  1.0000
##  4 TCS01 - 5 TCS01 -0.23767 0.276 108.0  -0.860  1.0000
##  4 TCS01 - 6 TCS01 -0.67333 0.276 108.0  -2.435  0.6577
##  5 TCS01 - 6 TCS01 -0.43567 0.276 108.0  -1.576  0.9916
## 
## P value adjustment: tukey method for comparing a family of 21 estimates
emm_diam2 <- emmeans(res.aov.error, pairwise ~ diam2)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_diam2
## $emmeans
##  diam2 emmean     SE   df lower.CL upper.CL
##  0       5.57 0.0754 90.9     5.42     5.72
##  1       5.76 0.0754 90.9     5.61     5.91
##  2       5.06 0.0754 90.9     4.91     5.21
##  3       4.68 0.0754 90.9     4.53     4.83
##  4       4.39 0.0754 90.9     4.24     4.54
##  5       4.77 0.0754 90.9     4.62     4.92
##  6       5.21 0.0754 90.9     5.06     5.36
## 
## Results are averaged over the levels of: curva, gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate     SE  df t.ratio p.value
##  0 - 1     -0.1923 0.0922 108  -2.086  0.3684
##  0 - 2      0.5084 0.0922 108   5.516  <.0001
##  0 - 3      0.8890 0.0922 108   9.646  <.0001
##  0 - 4      1.1839 0.0922 108  12.845  <.0001
##  0 - 5      0.8053 0.0922 108   8.738  <.0001
##  0 - 6      0.3598 0.0922 108   3.904  0.0031
##  1 - 2      0.7007 0.0922 108   7.602  <.0001
##  1 - 3      1.0813 0.0922 108  11.732  <.0001
##  1 - 4      1.3761 0.0922 108  14.931  <.0001
##  1 - 5      0.9976 0.0922 108  10.824  <.0001
##  1 - 6      0.5521 0.0922 108   5.990  <.0001
##  2 - 3      0.3806 0.0922 108   4.130  0.0014
##  2 - 4      0.6754 0.0922 108   7.329  <.0001
##  2 - 5      0.2969 0.0922 108   3.221  0.0272
##  2 - 6     -0.1486 0.0922 108  -1.612  0.6748
##  3 - 4      0.2948 0.0922 108   3.199  0.0291
##  3 - 5     -0.0837 0.0922 108  -0.909  0.9705
##  3 - 6     -0.5292 0.0922 108  -5.742  <.0001
##  4 - 5     -0.3786 0.0922 108  -4.107  0.0015
##  4 - 6     -0.8240 0.0922 108  -8.941  <.0001
##  5 - 6     -0.4455 0.0922 108  -4.834  0.0001
## 
## Results are averaged over the levels of: curva, gen 
## P value adjustment: tukey method for comparing a family of 7 estimates
emm_diam2_curva <- emmeans(res.aov.error, pairwise ~ diam2 | curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_diam2_curva
## $emmeans
## curva = T3:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.63 0.131 90.9     5.37     5.89
##  1       5.42 0.131 90.9     5.16     5.68
##  2       5.05 0.131 90.9     4.79     5.31
##  3       3.99 0.131 90.9     3.73     4.25
##  4       3.98 0.131 90.9     3.72     4.24
##  5       3.95 0.131 90.9     3.69     4.21
##  6       4.62 0.131 90.9     4.36     4.88
## 
## curva = T1:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.33 0.131 90.9     5.07     5.59
##  1       5.40 0.131 90.9     5.14     5.66
##  2       4.50 0.131 90.9     4.24     4.76
##  3       4.69 0.131 90.9     4.43     4.95
##  4       4.27 0.131 90.9     4.01     4.53
##  5       5.17 0.131 90.9     4.91     5.43
##  6       5.44 0.131 90.9     5.18     5.70
## 
## curva = T2:
##  diam2 emmean    SE   df lower.CL upper.CL
##  0       5.75 0.131 90.9     5.49     6.01
##  1       6.47 0.131 90.9     6.21     6.73
##  2       5.64 0.131 90.9     5.38     5.90
##  3       5.36 0.131 90.9     5.10     5.62
##  4       4.91 0.131 90.9     4.65     5.17
##  5       5.17 0.131 90.9     4.91     5.43
##  6       5.57 0.131 90.9     5.31     5.83
## 
## Results are averaged over the levels of: gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1     0.21144 0.16 108   1.325  0.8390
##  0 - 2     0.58156 0.16 108   3.643  0.0074
##  0 - 3     1.64144 0.16 108  10.283  <.0001
##  0 - 4     1.64800 0.16 108  10.324  <.0001
##  0 - 5     1.68100 0.16 108  10.530  <.0001
##  0 - 6     1.00778 0.16 108   6.313  <.0001
##  1 - 2     0.37011 0.16 108   2.319  0.2449
##  1 - 3     1.43000 0.16 108   8.958  <.0001
##  1 - 4     1.43656 0.16 108   8.999  <.0001
##  1 - 5     1.46956 0.16 108   9.206  <.0001
##  1 - 6     0.79633 0.16 108   4.989  <.0001
##  2 - 3     1.05989 0.16 108   6.640  <.0001
##  2 - 4     1.06644 0.16 108   6.681  <.0001
##  2 - 5     1.09944 0.16 108   6.887  <.0001
##  2 - 6     0.42622 0.16 108   2.670  0.1161
##  3 - 4     0.00656 0.16 108   0.041  1.0000
##  3 - 5     0.03956 0.16 108   0.248  1.0000
##  3 - 6    -0.63367 0.16 108  -3.970  0.0024
##  4 - 5     0.03300 0.16 108   0.207  1.0000
##  4 - 6    -0.64022 0.16 108  -4.011  0.0021
##  5 - 6    -0.67322 0.16 108  -4.217  0.0010
## 
## curva = T1:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.07122 0.16 108  -0.446  0.9994
##  0 - 2     0.83089 0.16 108   5.205  <.0001
##  0 - 3     0.63856 0.16 108   4.000  0.0022
##  0 - 4     1.06211 0.16 108   6.653  <.0001
##  0 - 5     0.15989 0.16 108   1.002  0.9526
##  0 - 6    -0.10578 0.16 108  -0.663  0.9943
##  1 - 2     0.90211 0.16 108   5.651  <.0001
##  1 - 3     0.70978 0.16 108   4.446  0.0004
##  1 - 4     1.13333 0.16 108   7.100  <.0001
##  1 - 5     0.23111 0.16 108   1.448  0.7745
##  1 - 6    -0.03456 0.16 108  -0.216  1.0000
##  2 - 3    -0.19233 0.16 108  -1.205  0.8909
##  2 - 4     0.23122 0.16 108   1.448  0.7741
##  2 - 5    -0.67100 0.16 108  -4.203  0.0010
##  2 - 6    -0.93667 0.16 108  -5.868  <.0001
##  3 - 4     0.42356 0.16 108   2.653  0.1207
##  3 - 5    -0.47867 0.16 108  -2.999  0.0508
##  3 - 6    -0.74433 0.16 108  -4.663  0.0002
##  4 - 5    -0.90222 0.16 108  -5.652  <.0001
##  4 - 6    -1.16789 0.16 108  -7.316  <.0001
##  5 - 6    -0.26567 0.16 108  -1.664  0.6411
## 
## curva = T2:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.71700 0.16 108  -4.492  0.0003
##  0 - 2     0.11278 0.16 108   0.706  0.9920
##  0 - 3     0.38711 0.16 108   2.425  0.1984
##  0 - 4     0.84144 0.16 108   5.271  <.0001
##  0 - 5     0.57500 0.16 108   3.602  0.0084
##  0 - 6     0.17744 0.16 108   1.112  0.9233
##  1 - 2     0.82978 0.16 108   5.198  <.0001
##  1 - 3     1.10411 0.16 108   6.917  <.0001
##  1 - 4     1.55844 0.16 108   9.763  <.0001
##  1 - 5     1.29200 0.16 108   8.094  <.0001
##  1 - 6     0.89444 0.16 108   5.603  <.0001
##  2 - 3     0.27433 0.16 108   1.719  0.6053
##  2 - 4     0.72867 0.16 108   4.565  0.0003
##  2 - 5     0.46222 0.16 108   2.896  0.0667
##  2 - 6     0.06467 0.16 108   0.405  0.9996
##  3 - 4     0.45433 0.16 108   2.846  0.0756
##  3 - 5     0.18789 0.16 108   1.177  0.9013
##  3 - 6    -0.20967 0.16 108  -1.313  0.8443
##  4 - 5    -0.26644 0.16 108  -1.669  0.6379
##  4 - 6    -0.66400 0.16 108  -4.160  0.0012
##  5 - 6    -0.39756 0.16 108  -2.490  0.1732
## 
## Results are averaged over the levels of: gen 
## P value adjustment: tukey method for comparing a family of 7 estimates
##Splitting dataframe by temperature ramp
## Protocol 3 (T3)

datos.curve1<-filter(datos, curva=="T3")

##Check assumptions
##Outliers

datos.curve1 %>%
  group_by(gen, diam2) %>%
  identify_outliers(ph.grano)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm1<-datos.curve1 %>%
  group_by(gen, diam2) %>%
  shapiro_test(ph.grano)
norm1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic      p
##    <fct> <fct> <chr>        <dbl>  <dbl>
##  1 0     CCN51 ph.grano     0.839 0.210 
##  2 1     CCN51 ph.grano     0.993 0.845 
##  3 2     CCN51 ph.grano     0.994 0.850 
##  4 3     CCN51 ph.grano     0.998 0.922 
##  5 4     CCN51 ph.grano     0.904 0.397 
##  6 5     CCN51 ph.grano     0.805 0.126 
##  7 6     CCN51 ph.grano     0.774 0.0549
##  8 0     ICS95 ph.grano     1.00  0.979 
##  9 1     ICS95 ph.grano     0.945 0.546 
## 10 2     ICS95 ph.grano     0.785 0.0783
## 11 3     ICS95 ph.grano     0.887 0.345 
## 12 4     ICS95 ph.grano     0.770 0.0452
## 13 5     ICS95 ph.grano     0.872 0.301 
## 14 6     ICS95 ph.grano     0.992 0.828 
## 15 0     TCS01 ph.grano     0.795 0.103 
## 16 1     TCS01 ph.grano     0.921 0.455 
## 17 2     TCS01 ph.grano     0.947 0.554 
## 18 3     TCS01 ph.grano     0.934 0.502 
## 19 4     TCS01 ph.grano     0.975 0.697 
## 20 5     TCS01 ph.grano     0.958 0.605 
## 21 6     TCS01 ph.grano     0.981 0.739
##Create QQ plot for each cell of design:

ggqqplot(datos.curve1, "ph.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev1<-datos.curve1 %>%
  group_by(diam2) %>%
  levene_test(ph.grano ~ gen)
lev1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.775 0.502
## 2 1         2     6     1.49  0.298
## 3 2         2     6     0.444 0.661
## 4 3         2     6     0.735 0.518
## 5 4         2     6     0.370 0.705
## 6 5         2     6     1.06  0.405
## 7 6         2     6     0.384 0.697
##Computation

res.aov1 <- anova_test(
  data = datos.curve1, dv = ph.grano, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov1)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd      F        p p<.05   ges
## 1       gen 2.00  6.00 11.772 8.00e-03     * 0.536
## 2     diam2 2.49 14.93 47.894 1.36e-07     * 0.849
## 3 gen:diam2 4.98 14.93  4.756 9.00e-03     * 0.528
#CCN51
datos.ccn<-filter(datos.curve1, gen=="CCN51")
res.aov.ccn1 <- anova_test(
  data = datos.ccn, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F        p p<.05   ges
## 1  diam2   6  12 9.725 0.000503     * 0.805
#ICS95
datos.ics<-filter(datos.curve1, gen=="ICS95")
res.aov.ics1 <- anova_test(
  data = datos.ics, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 10.363 0.000373     * 0.773
#TCS01
datos.tcs<-filter(datos.curve1, gen=="TCS01")
res.aov.tcs1 <- anova_test(
  data = datos.tcs, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 73.305 9.38e-09     * 0.959
## Protocol 1 (T1)

datos.curve2<-filter(datos, curva=="T1")

##Check assumptions
##Outliers

datos.curve2 %>%
  group_by(gen, diam2) %>%
  identify_outliers(ph.grano)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve2 %>%
  group_by(gen, diam2) %>%
  shapiro_test(ph.grano)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic      p
##    <fct> <fct> <chr>        <dbl>  <dbl>
##  1 0     CCN51 ph.grano     0.869 0.293 
##  2 1     CCN51 ph.grano     0.976 0.705 
##  3 2     CCN51 ph.grano     0.907 0.407 
##  4 3     CCN51 ph.grano     0.972 0.681 
##  5 4     CCN51 ph.grano     0.790 0.0916
##  6 5     CCN51 ph.grano     0.977 0.711 
##  7 6     CCN51 ph.grano     0.995 0.860 
##  8 0     ICS95 ph.grano     0.998 0.908 
##  9 1     ICS95 ph.grano     0.991 0.814 
## 10 2     ICS95 ph.grano     0.999 0.942 
## 11 3     ICS95 ph.grano     0.916 0.438 
## 12 4     ICS95 ph.grano     0.891 0.356 
## 13 5     ICS95 ph.grano     0.882 0.331 
## 14 6     ICS95 ph.grano     0.917 0.443 
## 15 0     TCS01 ph.grano     0.971 0.673 
## 16 1     TCS01 ph.grano     0.944 0.545 
## 17 2     TCS01 ph.grano     0.940 0.529 
## 18 3     TCS01 ph.grano     0.904 0.398 
## 19 4     TCS01 ph.grano     0.894 0.367 
## 20 5     TCS01 ph.grano     0.922 0.461 
## 21 6     TCS01 ph.grano     0.927 0.476
##Create QQ plot for each cell of design:

ggqqplot(datos.curve2, "ph.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve2 %>%
  group_by(diam2) %>%
  levene_test(ph.grano ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.367 0.708
## 2 1         2     6     1.35  0.328
## 3 2         2     6     0.131 0.880
## 4 3         2     6     1.33  0.332
## 5 4         2     6     0.724 0.523
## 6 5         2     6     1.16  0.375
## 7 6         2     6     1.28  0.344
##Computation

res.aov2 <- anova_test(
  data = datos.curve2, dv = ph.grano, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd      F        p p<.05   ges
## 1       gen 2.00  6.00  3.429 0.102000       0.122
## 2     diam2 2.19 13.11 13.144 0.000607     * 0.658
## 3 gen:diam2 4.37 13.11  1.169 0.371000       0.255
#CCN51
datos.ccn<-filter(datos.curve2, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 4.166 0.017     * 0.661
#ICS95
datos.ics<-filter(datos.curve2, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 37.148 4.55e-07     * 0.914
#TCS01
datos.tcs<-filter(datos.curve2, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 2.574 0.077       0.532
## Protocol 2 (T2)

datos.curve3<-filter(datos, curva=="T2")

##Check assumptions
##Outliers

datos.curve3 %>%
  group_by(gen, diam2) %>%
  identify_outliers(ph.grano)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve3 %>%
  group_by(gen, diam2) %>%
  shapiro_test(ph.grano)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic     p
##    <fct> <fct> <chr>        <dbl> <dbl>
##  1 0     CCN51 ph.grano     0.808 0.134
##  2 1     CCN51 ph.grano     0.851 0.242
##  3 2     CCN51 ph.grano     0.915 0.436
##  4 3     CCN51 ph.grano     0.990 0.811
##  5 4     CCN51 ph.grano     0.866 0.286
##  6 5     CCN51 ph.grano     0.811 0.140
##  7 6     CCN51 ph.grano     0.952 0.578
##  8 0     ICS95 ph.grano     0.795 0.103
##  9 1     ICS95 ph.grano     1.00  0.961
## 10 2     ICS95 ph.grano     0.966 0.648
## 11 3     ICS95 ph.grano     0.946 0.553
## 12 4     ICS95 ph.grano     1.00  0.960
## 13 5     ICS95 ph.grano     0.922 0.460
## 14 6     ICS95 ph.grano     1.00  0.985
## 15 0     TCS01 ph.grano     0.978 0.719
## 16 1     TCS01 ph.grano     0.937 0.515
## 17 2     TCS01 ph.grano     0.891 0.357
## 18 3     TCS01 ph.grano     0.989 0.798
## 19 4     TCS01 ph.grano     0.939 0.523
## 20 5     TCS01 ph.grano     0.796 0.105
## 21 6     TCS01 ph.grano     0.856 0.256
##Create QQ plot for each cell of design:

ggqqplot(datos.curve3, "ph.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve3 %>%
  group_by(diam2) %>%
  levene_test(ph.grano ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.717 0.526
## 2 1         2     6     0.243 0.792
## 3 2         2     6     1.24  0.355
## 4 3         2     6     1.47  0.302
## 5 4         2     6     1.57  0.283
## 6 5         2     6     0.274 0.770
## 7 6         2     6     0.458 0.653
##Computation

res.aov2 <- anova_test(
  data = datos.curve3, dv = ph.grano, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd      F        p p<.05   ges
## 1       gen 2.00  6.00  3.861 8.40e-02       0.432
## 2     diam2 2.46 14.76 24.157 1.13e-05     * 0.623
## 3 gen:diam2 4.92 14.76  1.583 2.26e-01       0.178
#CCN51
datos.ccn<-filter(datos.curve3, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 56.341 4.28e-08     * 0.939
#ICS95
datos.ics<-filter(datos.curve3, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F       p p<.05   ges
## 1  diam2   6  12 8.556 0.00091     * 0.517
#TCS01
datos.tcs<-filter(datos.curve3, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = ph.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd    F     p p<.05   ges
## 1  diam2   6  12 3.37 0.035     * 0.473
## Gráficas por réplica y genotipo
datos$diam2<-as.numeric(as.character(datos$diam2))
##Gráfica por réplica compuesta
pht<- ggplot(datos, aes(x = diam2)) +
  facet_grid(curva~gen*muestra) +
  geom_line(aes(y=ph.grano)) +
  geom_point(aes(y=ph.grano)) +
  scale_y_continuous(name = expression("Nib pH")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 12))
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
pht

## Gráfica por genotipo

datos2<-summarySE (datos, measurevar = "ph.grano", groupvars = c("curva", "gen","diam2"))
write.csv(datos2, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data_out/pH_mean_grano.csv")

pht2<- ggplot(datos2, aes(x = diam2)) +
  facet_grid(curva~gen) +
  geom_errorbar(aes(ymin=ph.grano-ci, ymax=ph.grano+ci), width=.1) +
  geom_line(aes(y=ph.grano)) +
  geom_point(aes(y=ph.grano)) +
  scale_y_continuous(name = expression("Nib pH")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 15))  
pht2