setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data")
datos<-read.table("todos_phys.csv", header=T, sep=',')
datos$curva <- factor(datos$curva, levels = c("1", "2", "3"), 
                      labels = c("T3", "T1", "T2"))
datos$gen<-as.factor(datos$gen)
datos$curva<-as.factor(datos$curva)
datos$id<-as.factor(datos$id)
datos$muestra<-as.factor(datos$muestra)
datos$diam2<-as.factor(datos$diam2)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ tibble  3.2.1     ✔ purrr   1.0.1
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.1     ✔ forcats 1.0.0
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'stringr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::arrange()   masks plyr::arrange()
## ✖ purrr::compact()   masks plyr::compact()
## ✖ dplyr::count()     masks plyr::count()
## ✖ dplyr::desc()      masks plyr::desc()
## ✖ dplyr::failwith()  masks plyr::failwith()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::id()        masks plyr::id()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::mutate()    masks plyr::mutate()
## ✖ dplyr::rename()    masks plyr::rename()
## ✖ dplyr::summarise() masks plyr::summarise()
## ✖ dplyr::summarize() masks plyr::summarize()
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
library(emmeans)
##Summary statistics
summ<-datos %>%
  group_by(curva, gen, diam2) %>%
  get_summary_stats(acidez.testa, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 7
##    curva diam2 gen   variable         n  mean    sd
##    <fct> <fct> <fct> <chr>        <dbl> <dbl> <dbl>
##  1 T3    0     CCN51 acidez.testa     3 0.797 0.13 
##  2 T3    1     CCN51 acidez.testa     3 0.957 0.148
##  3 T3    2     CCN51 acidez.testa     3 0.22  0.02 
##  4 T3    3     CCN51 acidez.testa     3 0.287 0.059
##  5 T3    4     CCN51 acidez.testa     3 0.4   0.066
##  6 T3    5     CCN51 acidez.testa     3 0.363 0.032
##  7 T3    6     CCN51 acidez.testa     3 0.117 0.006
##  8 T3    0     ICS95 acidez.testa     3 0.95  0.111
##  9 T3    1     ICS95 acidez.testa     3 1.06  0.144
## 10 T3    2     ICS95 acidez.testa     3 0.37  0.108
## 11 T3    3     ICS95 acidez.testa     3 0.993 0.621
## 12 T3    4     ICS95 acidez.testa     3 0.873 0.34 
## 13 T3    5     ICS95 acidez.testa     3 0.443 0.188
## 14 T3    6     ICS95 acidez.testa     3 0.17  0.04 
## 15 T3    0     TCS01 acidez.testa     3 0.727 0.064
## 16 T3    1     TCS01 acidez.testa     3 0.893 0.181
## 17 T3    2     TCS01 acidez.testa     3 0.777 0.121
## 18 T3    3     TCS01 acidez.testa     3 2.13  0.174
## 19 T3    4     TCS01 acidez.testa     3 2.13  0.206
## 20 T3    5     TCS01 acidez.testa     3 1.90  0.133
## 21 T3    6     TCS01 acidez.testa     3 1.03  0.1  
## 22 T1    0     CCN51 acidez.testa     3 0.637 0.049
## 23 T1    1     CCN51 acidez.testa     3 1.15  0.285
## 24 T1    2     CCN51 acidez.testa     3 1.01  0.078
## 25 T1    3     CCN51 acidez.testa     3 1.47  0.397
## 26 T1    4     CCN51 acidez.testa     3 0.807 0.44 
## 27 T1    5     CCN51 acidez.testa     3 0.537 0.218
## 28 T1    6     CCN51 acidez.testa     3 0.577 0.345
## 29 T1    0     ICS95 acidez.testa     3 0.697 0.081
## 30 T1    1     ICS95 acidez.testa     3 1.18  0.075
## 31 T1    2     ICS95 acidez.testa     3 1.26  0.342
## 32 T1    3     ICS95 acidez.testa     3 1.15  0.04 
## 33 T1    4     ICS95 acidez.testa     3 1.24  0.036
## 34 T1    5     ICS95 acidez.testa     3 0.647 0.199
## 35 T1    6     ICS95 acidez.testa     3 0.4   0.321
## 36 T1    0     TCS01 acidez.testa     3 0.587 0.015
## 37 T1    1     TCS01 acidez.testa     3 0.94  0.12 
## 38 T1    2     TCS01 acidez.testa     3 0.7   0.201
## 39 T1    3     TCS01 acidez.testa     3 0.493 0.091
## 40 T1    4     TCS01 acidez.testa     3 0.41  0.05 
## 41 T1    5     TCS01 acidez.testa     3 0.4   0.303
## 42 T1    6     TCS01 acidez.testa     3 0.253 0.167
## 43 T2    0     CCN51 acidez.testa     3 0.881 0.034
## 44 T2    1     CCN51 acidez.testa     3 1.21  0.112
## 45 T2    2     CCN51 acidez.testa     3 2.19  0.205
## 46 T2    3     CCN51 acidez.testa     3 2.96  0.438
## 47 T2    4     CCN51 acidez.testa     3 2.04  0.097
## 48 T2    5     CCN51 acidez.testa     3 1.46  0.366
## 49 T2    6     CCN51 acidez.testa     3 0.744 0.091
## 50 T2    0     ICS95 acidez.testa     3 0.709 0.077
## 51 T2    1     ICS95 acidez.testa     3 1.28  0.024
## 52 T2    2     ICS95 acidez.testa     3 1.43  0.236
## 53 T2    3     ICS95 acidez.testa     3 1.83  0.149
## 54 T2    4     ICS95 acidez.testa     3 1.55  0.48 
## 55 T2    5     ICS95 acidez.testa     3 1.26  0.032
## 56 T2    6     ICS95 acidez.testa     3 0.693 0.183
## 57 T2    0     TCS01 acidez.testa     3 0.729 0.075
## 58 T2    1     TCS01 acidez.testa     3 1.12  0.253
## 59 T2    2     TCS01 acidez.testa     3 0.871 0.282
## 60 T2    3     TCS01 acidez.testa     3 0.881 0.297
## 61 T2    4     TCS01 acidez.testa     3 1.02  0.651
## 62 T2    5     TCS01 acidez.testa     3 0.473 0.287
## 63 T2    6     TCS01 acidez.testa     3 0.364 0.212
##Visualization
bxp <- ggboxplot(
  datos, x = "curva", y = "acidez.testa",
  color = "diam2", palette = "jco",
  facet.by =  "gen"
)
bxp

##Check assumptions
##Outliers

datos %>%
  group_by(curva, gen, diam2) %>%
  identify_outliers(acidez.testa)
##  [1] curva        diam2        gen          time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm<-datos %>%
  group_by(curva, gen, diam2) %>%
  shapiro_test(acidez.testa)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 6
##    curva diam2 gen   variable     statistic      p
##    <fct> <fct> <fct> <chr>            <dbl>  <dbl>
##  1 T3    0     CCN51 acidez.testa     0.998 0.915 
##  2 T3    1     CCN51 acidez.testa     0.954 0.588 
##  3 T3    2     CCN51 acidez.testa     1     1.00  
##  4 T3    3     CCN51 acidez.testa     0.881 0.328 
##  5 T3    4     CCN51 acidez.testa     0.983 0.747 
##  6 T3    5     CCN51 acidez.testa     0.871 0.298 
##  7 T3    6     CCN51 acidez.testa     0.75  0     
##  8 T3    0     ICS95 acidez.testa     0.976 0.702 
##  9 T3    1     ICS95 acidez.testa     0.942 0.537 
## 10 T3    2     ICS95 acidez.testa     0.942 0.537 
## 11 T3    3     ICS95 acidez.testa     0.948 0.561 
## 12 T3    4     ICS95 acidez.testa     0.885 0.339 
## 13 T3    5     ICS95 acidez.testa     0.971 0.675 
## 14 T3    6     ICS95 acidez.testa     1     1.00  
## 15 T3    0     TCS01 acidez.testa     0.75  0     
## 16 T3    1     TCS01 acidez.testa     0.878 0.317 
## 17 T3    2     TCS01 acidez.testa     0.991 0.817 
## 18 T3    3     TCS01 acidez.testa     0.900 0.387 
## 19 T3    4     TCS01 acidez.testa     0.847 0.232 
## 20 T3    5     TCS01 acidez.testa     0.75  0     
## 21 T3    6     TCS01 acidez.testa     0.900 0.384 
## 22 T1    0     CCN51 acidez.testa     0.832 0.194 
## 23 T1    1     CCN51 acidez.testa     0.999 0.942 
## 24 T1    2     CCN51 acidez.testa     0.932 0.497 
## 25 T1    3     CCN51 acidez.testa     0.942 0.537 
## 26 T1    4     CCN51 acidez.testa     0.956 0.596 
## 27 T1    5     CCN51 acidez.testa     0.930 0.488 
## 28 T1    6     CCN51 acidez.testa     0.941 0.532 
## 29 T1    0     ICS95 acidez.testa     0.980 0.726 
## 30 T1    1     ICS95 acidez.testa     0.75  0     
## 31 T1    2     ICS95 acidez.testa     0.962 0.626 
## 32 T1    3     ICS95 acidez.testa     0.980 0.726 
## 33 T1    4     ICS95 acidez.testa     0.942 0.537 
## 34 T1    5     ICS95 acidez.testa     0.915 0.437 
## 35 T1    6     ICS95 acidez.testa     0.814 0.149 
## 36 T1    0     TCS01 acidez.testa     0.964 0.637 
## 37 T1    1     TCS01 acidez.testa     1     1.00  
## 38 T1    2     TCS01 acidez.testa     0.993 0.835 
## 39 T1    3     TCS01 acidez.testa     0.984 0.756 
## 40 T1    4     TCS01 acidez.testa     1     1.00  
## 41 T1    5     TCS01 acidez.testa     0.792 0.0944
## 42 T1    6     TCS01 acidez.testa     0.923 0.463 
## 43 T2    0     CCN51 acidez.testa     0.979 0.722 
## 44 T2    1     CCN51 acidez.testa     0.823 0.170 
## 45 T2    2     CCN51 acidez.testa     0.884 0.337 
## 46 T2    3     CCN51 acidez.testa     0.831 0.190 
## 47 T2    4     CCN51 acidez.testa     0.759 0.0197
## 48 T2    5     CCN51 acidez.testa     0.904 0.397 
## 49 T2    6     CCN51 acidez.testa     0.918 0.446 
## 50 T2    0     ICS95 acidez.testa     0.974 0.689 
## 51 T2    1     ICS95 acidez.testa     0.999 0.954 
## 52 T2    2     ICS95 acidez.testa     0.870 0.296 
## 53 T2    3     ICS95 acidez.testa     0.978 0.717 
## 54 T2    4     ICS95 acidez.testa     0.999 0.928 
## 55 T2    5     ICS95 acidez.testa     0.928 0.480 
## 56 T2    6     ICS95 acidez.testa     0.908 0.411 
## 57 T2    0     TCS01 acidez.testa     0.988 0.786 
## 58 T2    1     TCS01 acidez.testa     0.965 0.641 
## 59 T2    2     TCS01 acidez.testa     0.920 0.452 
## 60 T2    3     TCS01 acidez.testa     0.997 0.898 
## 61 T2    4     TCS01 acidez.testa     0.987 0.780 
## 62 T2    5     TCS01 acidez.testa     0.841 0.217 
## 63 T2    6     TCS01 acidez.testa     0.924 0.468
##Create QQ plot for each cell of design:

ggqqplot(datos, "acidez.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev<-datos %>%
  group_by(diam2) %>%
  levene_test(acidez.testa ~ curva*gen)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         8    18     0.656 0.722
## 2 1         8    18     0.697 0.690
## 3 2         8    18     0.636 0.738
## 4 3         8    18     0.934 0.513
## 5 4         8    18     1.36  0.278
## 6 5         8    18     0.460 0.868
## 7 6         8    18     0.684 0.700
##Computation

res.aov <- anova_test(
  data = datos, dv = acidez.testa, wid = id,
  within = diam2, between = c(curva, gen)
)
res.aov
## ANOVA Table (type II tests)
## 
## $ANOVA
##            Effect DFn DFd      F        p p<.05   ges
## 1           curva   2  18 41.490 1.82e-07     * 0.514
## 2             gen   2  18  1.717 2.08e-01       0.042
## 3           diam2   6 108 46.860 7.07e-28     * 0.667
## 4       curva:gen   4  18 55.141 7.39e-10     * 0.738
## 5     curva:diam2  12 108 10.199 3.93e-13     * 0.466
## 6       gen:diam2  12 108  2.685 3.00e-03     * 0.187
## 7 curva:gen:diam2  24 108 10.203 3.02e-18     * 0.636
## 
## $`Mauchly's Test for Sphericity`
##            Effect     W     p p<.05
## 1           diam2 0.099 0.015     *
## 2     curva:diam2 0.099 0.015     *
## 3       gen:diam2 0.099 0.015     *
## 4 curva:gen:diam2 0.099 0.015     *
## 
## $`Sphericity Corrections`
##            Effect   GGe       DF[GG]    p[GG] p[GG]<.05   HFe       DF[HF]
## 1           diam2 0.608  3.65, 65.68 7.84e-18         * 0.782  4.69, 84.44
## 2     curva:diam2 0.608   7.3, 65.68 9.59e-09         * 0.782  9.38, 84.44
## 3       gen:diam2 0.608   7.3, 65.68 1.50e-02         * 0.782  9.38, 84.44
## 4 curva:gen:diam2 0.608 14.59, 65.68 7.66e-12         * 0.782 18.76, 84.44
##      p[HF] p[HF]<.05
## 1 2.72e-22         *
## 2 1.07e-10         *
## 3 8.00e-03         *
## 4 1.09e-14         *
get_anova_table(res.aov)
## ANOVA Table (type II tests)
## 
##            Effect   DFn   DFd      F        p p<.05   ges
## 1           curva  2.00 18.00 41.490 1.82e-07     * 0.514
## 2             gen  2.00 18.00  1.717 2.08e-01       0.042
## 3           diam2  3.65 65.68 46.860 7.84e-18     * 0.667
## 4       curva:gen  4.00 18.00 55.141 7.39e-10     * 0.738
## 5     curva:diam2  7.30 65.68 10.199 9.59e-09     * 0.466
## 6       gen:diam2  7.30 65.68  2.685 1.50e-02     * 0.187
## 7 curva:gen:diam2 14.59 65.68 10.203 7.66e-12     * 0.636
#Table by error
res.aov.error <- aov(acidez.testa ~ diam2*curva*gen + Error(id/diam2), datos)
res.aov.error
## 
## Call:
## aov(formula = acidez.testa ~ diam2 * curva * gen + Error(id/diam2), 
##     data = datos)
## 
## Grand Mean: 0.9496931
## 
## Stratum 1: id
## 
## Terms:
##                     curva       gen curva:gen Residuals
## Sum of Squares   7.162679  0.296367 19.038559  1.553727
## Deg. of Freedom         2         2         4        18
## 
## Residual standard error: 0.2937995
## 48 out of 56 effects not estimable
## Estimated effects may be unbalanced
## 
## Stratum 2: id:diam2
## 
## Terms:
##                     diam2 diam2:curva diam2:gen diam2:curva:gen Residuals
## Sum of Squares  13.589033    5.914994  1.557364       11.834711  5.219858
## Deg. of Freedom         6          12        12              24       108
## 
## Residual standard error: 0.2198454
## Estimated effects may be unbalanced
## Emmeans
emmip(res.aov.error, gen ~ diam2 | curva)
## Note: re-fitting model with sum-to-zero contrasts

emm_curva <- emmeans(res.aov.error, pairwise ~ curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_curva
## $emmeans
##  curva emmean    SE df lower.CL upper.CL
##  T3     0.837 0.037 18     0.76    0.915
##  T1     0.788 0.037 18     0.71    0.866
##  T2     1.224 0.037 18     1.15    1.301
## 
## Results are averaged over the levels of: diam2, gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate     SE df t.ratio p.value
##  T3 - T1    0.0494 0.0523 18   0.943  0.6210
##  T3 - T2   -0.3861 0.0523 18  -7.375  <.0001
##  T1 - T2   -0.4354 0.0523 18  -8.318  <.0001
## 
## Results are averaged over the levels of: diam2, gen 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_curva <- emmeans(res.aov.error, pairwise ~ gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_gen_curva
## $emmeans
## curva = T3:
##  gen   emmean     SE df lower.CL upper.CL
##  CCN51  0.449 0.0641 18    0.314    0.583
##  ICS95  0.694 0.0641 18    0.560    0.829
##  TCS01  1.370 0.0641 18    1.235    1.504
## 
## curva = T1:
##  gen   emmean     SE df lower.CL upper.CL
##  CCN51  0.884 0.0641 18    0.750    1.019
##  ICS95  0.940 0.0641 18    0.805    1.074
##  TCS01  0.540 0.0641 18    0.406    0.675
## 
## curva = T2:
##  gen   emmean     SE df lower.CL upper.CL
##  CCN51  1.641 0.0641 18    1.506    1.776
##  ICS95  1.250 0.0641 18    1.116    1.385
##  TCS01  0.779 0.0641 18    0.645    0.914
## 
## Results are averaged over the levels of: diam2 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast      estimate     SE df t.ratio p.value
##  CCN51 - ICS95  -0.2457 0.0907 18  -2.710  0.0364
##  CCN51 - TCS01  -0.9210 0.0907 18 -10.157  <.0001
##  ICS95 - TCS01  -0.6752 0.0907 18  -7.447  <.0001
## 
## curva = T1:
##  contrast      estimate     SE df t.ratio p.value
##  CCN51 - ICS95  -0.0552 0.0907 18  -0.609  0.8170
##  CCN51 - TCS01   0.3438 0.0907 18   3.792  0.0036
##  ICS95 - TCS01   0.3990 0.0907 18   4.401  0.0010
## 
## curva = T2:
##  contrast      estimate     SE df t.ratio p.value
##  CCN51 - ICS95   0.3908 0.0907 18   4.310  0.0012
##  CCN51 - TCS01   0.8618 0.0907 18   9.505  <.0001
##  ICS95 - TCS01   0.4710 0.0907 18   5.194  0.0002
## 
## Results are averaged over the levels of: diam2 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_diam2 <- emmeans(res.aov.error, pairwise ~ diam2 | curva*gen)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2
## $emmeans
## curva = T3, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.797 0.134 119   0.5316    1.062
##  1      0.957 0.134 119   0.6916    1.222
##  2      0.220 0.134 119  -0.0451    0.485
##  3      0.287 0.134 119   0.0216    0.552
##  4      0.400 0.134 119   0.1349    0.665
##  5      0.363 0.134 119   0.0983    0.628
##  6      0.117 0.134 119  -0.1484    0.382
## 
## curva = T1, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.637 0.134 119   0.3716    0.902
##  1      1.150 0.134 119   0.8849    1.415
##  2      1.013 0.134 119   0.7483    1.278
##  3      1.470 0.134 119   1.2049    1.735
##  4      0.807 0.134 119   0.5416    1.072
##  5      0.537 0.134 119   0.2716    0.802
##  6      0.577 0.134 119   0.3116    0.842
## 
## curva = T2, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.881 0.134 119   0.6163    1.146
##  1      1.213 0.134 119   0.9476    1.478
##  2      2.186 0.134 119   1.9213    2.451
##  3      2.964 0.134 119   2.6989    3.229
##  4      2.043 0.134 119   1.7779    2.308
##  5      1.456 0.134 119   1.1909    1.721
##  6      0.744 0.134 119   0.4789    1.009
## 
## curva = T3, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.950 0.134 119   0.6849    1.215
##  1      1.060 0.134 119   0.7949    1.325
##  2      0.370 0.134 119   0.1049    0.635
##  3      0.993 0.134 119   0.7283    1.258
##  4      0.873 0.134 119   0.6083    1.138
##  5      0.443 0.134 119   0.1783    0.708
##  6      0.170 0.134 119  -0.0951    0.435
## 
## curva = T1, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.697 0.134 119   0.4316    0.962
##  1      1.183 0.134 119   0.9183    1.448
##  2      1.263 0.134 119   0.9983    1.528
##  3      1.147 0.134 119   0.8816    1.412
##  4      1.240 0.134 119   0.9749    1.505
##  5      0.647 0.134 119   0.3816    0.912
##  6      0.400 0.134 119   0.1349    0.665
## 
## curva = T2, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.709 0.134 119   0.4443    0.974
##  1      1.282 0.134 119   1.0166    1.547
##  2      1.430 0.134 119   1.1653    1.695
##  3      1.828 0.134 119   1.5633    2.093
##  4      1.549 0.134 119   1.2839    1.814
##  5      1.260 0.134 119   0.9949    1.525
##  6      0.693 0.134 119   0.4279    0.958
## 
## curva = T3, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.727 0.134 119   0.4616    0.992
##  1      0.893 0.134 119   0.6283    1.158
##  2      0.777 0.134 119   0.5116    1.042
##  3      2.133 0.134 119   1.8683    2.398
##  4      2.127 0.134 119   1.8616    2.392
##  5      1.897 0.134 119   1.6316    2.162
##  6      1.033 0.134 119   0.7683    1.298
## 
## curva = T1, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.587 0.134 119   0.3216    0.852
##  1      0.940 0.134 119   0.6749    1.205
##  2      0.700 0.134 119   0.4349    0.965
##  3      0.493 0.134 119   0.2283    0.758
##  4      0.410 0.134 119   0.1449    0.675
##  5      0.400 0.134 119   0.1349    0.665
##  6      0.253 0.134 119  -0.0117    0.518
## 
## curva = T2, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0      0.729 0.134 119   0.4636    0.994
##  1      1.122 0.134 119   0.8566    1.387
##  2      0.871 0.134 119   0.6059    1.136
##  3      0.881 0.134 119   0.6156    1.146
##  4      1.016 0.134 119   0.7513    1.281
##  5      0.473 0.134 119   0.2079    0.738
##  6      0.364 0.134 119   0.0986    0.629
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3, gen = CCN51:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.16000 0.18 108  -0.891  0.9732
##  0 - 2     0.57667 0.18 108   3.213  0.0279
##  0 - 3     0.51000 0.18 108   2.841  0.0766
##  0 - 4     0.39667 0.18 108   2.210  0.2990
##  0 - 5     0.43333 0.18 108   2.414  0.2029
##  0 - 6     0.68000 0.18 108   3.788  0.0045
##  1 - 2     0.73667 0.18 108   4.104  0.0015
##  1 - 3     0.67000 0.18 108   3.733  0.0055
##  1 - 4     0.55667 0.18 108   3.101  0.0384
##  1 - 5     0.59333 0.18 108   3.305  0.0213
##  1 - 6     0.84000 0.18 108   4.680  0.0002
##  2 - 3    -0.06667 0.18 108  -0.371  0.9998
##  2 - 4    -0.18000 0.18 108  -1.003  0.9524
##  2 - 5    -0.14333 0.18 108  -0.799  0.9847
##  2 - 6     0.10333 0.18 108   0.576  0.9974
##  3 - 4    -0.11333 0.18 108  -0.631  0.9956
##  3 - 5    -0.07667 0.18 108  -0.427  0.9995
##  3 - 6     0.17000 0.18 108   0.947  0.9638
##  4 - 5     0.03667 0.18 108   0.204  1.0000
##  4 - 6     0.28333 0.18 108   1.578  0.6962
##  5 - 6     0.24667 0.18 108   1.374  0.8143
## 
## curva = T1, gen = CCN51:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.51333 0.18 108  -2.860  0.0731
##  0 - 2    -0.37667 0.18 108  -2.098  0.3611
##  0 - 3    -0.83333 0.18 108  -4.642  0.0002
##  0 - 4    -0.17000 0.18 108  -0.947  0.9638
##  0 - 5     0.10000 0.18 108   0.557  0.9978
##  0 - 6     0.06000 0.18 108   0.334  0.9999
##  1 - 2     0.13667 0.18 108   0.761  0.9880
##  1 - 3    -0.32000 0.18 108  -1.783  0.5625
##  1 - 4     0.34333 0.18 108   1.913  0.4765
##  1 - 5     0.61333 0.18 108   3.417  0.0152
##  1 - 6     0.57333 0.18 108   3.194  0.0295
##  2 - 3    -0.45667 0.18 108  -2.544  0.1543
##  2 - 4     0.20667 0.18 108   1.151  0.9104
##  2 - 5     0.47667 0.18 108   2.655  0.1201
##  2 - 6     0.43667 0.18 108   2.433  0.1954
##  3 - 4     0.66333 0.18 108   3.695  0.0062
##  3 - 5     0.93333 0.18 108   5.200  <.0001
##  3 - 6     0.89333 0.18 108   4.977  <.0001
##  4 - 5     0.27000 0.18 108   1.504  0.7418
##  4 - 6     0.23000 0.18 108   1.281  0.8590
##  5 - 6    -0.04000 0.18 108  -0.223  1.0000
## 
## curva = T2, gen = CCN51:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.33133 0.18 108  -1.846  0.5205
##  0 - 2    -1.30500 0.18 108  -7.270  <.0001
##  0 - 3    -2.08267 0.18 108 -11.602  <.0001
##  0 - 4    -1.16167 0.18 108  -6.472  <.0001
##  0 - 5    -0.57467 0.18 108  -3.201  0.0289
##  0 - 6     0.13733 0.18 108   0.765  0.9877
##  1 - 2    -0.97367 0.18 108  -5.424  <.0001
##  1 - 3    -1.75133 0.18 108  -9.757  <.0001
##  1 - 4    -0.83033 0.18 108  -4.626  0.0002
##  1 - 5    -0.24333 0.18 108  -1.356  0.8237
##  1 - 6     0.46867 0.18 108   2.611  0.1330
##  2 - 3    -0.77767 0.18 108  -4.332  0.0006
##  2 - 4     0.14333 0.18 108   0.799  0.9847
##  2 - 5     0.73033 0.18 108   4.069  0.0017
##  2 - 6     1.44233 0.18 108   8.035  <.0001
##  3 - 4     0.92100 0.18 108   5.131  <.0001
##  3 - 5     1.50800 0.18 108   8.401  <.0001
##  3 - 6     2.22000 0.18 108  12.367  <.0001
##  4 - 5     0.58700 0.18 108   3.270  0.0236
##  4 - 6     1.29900 0.18 108   7.237  <.0001
##  5 - 6     0.71200 0.18 108   3.967  0.0025
## 
## curva = T3, gen = ICS95:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.11000 0.18 108  -0.613  0.9963
##  0 - 2     0.58000 0.18 108   3.231  0.0265
##  0 - 3    -0.04333 0.18 108  -0.241  1.0000
##  0 - 4     0.07667 0.18 108   0.427  0.9995
##  0 - 5     0.50667 0.18 108   2.823  0.0803
##  0 - 6     0.78000 0.18 108   4.345  0.0006
##  1 - 2     0.69000 0.18 108   3.844  0.0038
##  1 - 3     0.06667 0.18 108   0.371  0.9998
##  1 - 4     0.18667 0.18 108   1.040  0.9435
##  1 - 5     0.61667 0.18 108   3.435  0.0143
##  1 - 6     0.89000 0.18 108   4.958  0.0001
##  2 - 3    -0.62333 0.18 108  -3.473  0.0128
##  2 - 4    -0.50333 0.18 108  -2.804  0.0841
##  2 - 5    -0.07333 0.18 108  -0.409  0.9996
##  2 - 6     0.20000 0.18 108   1.114  0.9225
##  3 - 4     0.12000 0.18 108   0.669  0.9940
##  3 - 5     0.55000 0.18 108   3.064  0.0425
##  3 - 6     0.82333 0.18 108   4.587  0.0002
##  4 - 5     0.43000 0.18 108   2.396  0.2106
##  4 - 6     0.70333 0.18 108   3.918  0.0029
##  5 - 6     0.27333 0.18 108   1.523  0.7306
## 
## curva = T1, gen = ICS95:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.48667 0.18 108  -2.711  0.1053
##  0 - 2    -0.56667 0.18 108  -3.157  0.0328
##  0 - 3    -0.45000 0.18 108  -2.507  0.1672
##  0 - 4    -0.54333 0.18 108  -3.027  0.0471
##  0 - 5     0.05000 0.18 108   0.279  1.0000
##  0 - 6     0.29667 0.18 108   1.653  0.6486
##  1 - 2    -0.08000 0.18 108  -0.446  0.9994
##  1 - 3     0.03667 0.18 108   0.204  1.0000
##  1 - 4    -0.05667 0.18 108  -0.316  0.9999
##  1 - 5     0.53667 0.18 108   2.990  0.0520
##  1 - 6     0.78333 0.18 108   4.364  0.0006
##  2 - 3     0.11667 0.18 108   0.650  0.9949
##  2 - 4     0.02333 0.18 108   0.130  1.0000
##  2 - 5     0.61667 0.18 108   3.435  0.0143
##  2 - 6     0.86333 0.18 108   4.810  0.0001
##  3 - 4    -0.09333 0.18 108  -0.520  0.9985
##  3 - 5     0.50000 0.18 108   2.785  0.0880
##  3 - 6     0.74667 0.18 108   4.160  0.0012
##  4 - 5     0.59333 0.18 108   3.305  0.0213
##  4 - 6     0.84000 0.18 108   4.680  0.0002
##  5 - 6     0.24667 0.18 108   1.374  0.8143
## 
## curva = T2, gen = ICS95:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.57233 0.18 108  -3.188  0.0300
##  0 - 2    -0.72100 0.18 108  -4.017  0.0021
##  0 - 3    -1.11900 0.18 108  -6.234  <.0001
##  0 - 4    -0.83967 0.18 108  -4.678  0.0002
##  0 - 5    -0.55067 0.18 108  -3.068  0.0421
##  0 - 6     0.01633 0.18 108   0.091  1.0000
##  1 - 2    -0.14867 0.18 108  -0.828  0.9815
##  1 - 3    -0.54667 0.18 108  -3.045  0.0448
##  1 - 4    -0.26733 0.18 108  -1.489  0.7506
##  1 - 5     0.02167 0.18 108   0.121  1.0000
##  1 - 6     0.58867 0.18 108   3.279  0.0230
##  2 - 3    -0.39800 0.18 108  -2.217  0.2951
##  2 - 4    -0.11867 0.18 108  -0.661  0.9944
##  2 - 5     0.17033 0.18 108   0.949  0.9635
##  2 - 6     0.73733 0.18 108   4.108  0.0015
##  3 - 4     0.27933 0.18 108   1.556  0.7102
##  3 - 5     0.56833 0.18 108   3.166  0.0319
##  3 - 6     1.13533 0.18 108   6.325  <.0001
##  4 - 5     0.28900 0.18 108   1.610  0.6762
##  4 - 6     0.85600 0.18 108   4.769  0.0001
##  5 - 6     0.56700 0.18 108   3.159  0.0326
## 
## curva = T3, gen = TCS01:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.16667 0.18 108  -0.928  0.9672
##  0 - 2    -0.05000 0.18 108  -0.279  1.0000
##  0 - 3    -1.40667 0.18 108  -7.836  <.0001
##  0 - 4    -1.40000 0.18 108  -7.799  <.0001
##  0 - 5    -1.17000 0.18 108  -6.518  <.0001
##  0 - 6    -0.30667 0.18 108  -1.708  0.6120
##  1 - 2     0.11667 0.18 108   0.650  0.9949
##  1 - 3    -1.24000 0.18 108  -6.908  <.0001
##  1 - 4    -1.23333 0.18 108  -6.871  <.0001
##  1 - 5    -1.00333 0.18 108  -5.590  <.0001
##  1 - 6    -0.14000 0.18 108  -0.780  0.9864
##  2 - 3    -1.35667 0.18 108  -7.558  <.0001
##  2 - 4    -1.35000 0.18 108  -7.521  <.0001
##  2 - 5    -1.12000 0.18 108  -6.239  <.0001
##  2 - 6    -0.25667 0.18 108  -1.430  0.7845
##  3 - 4     0.00667 0.18 108   0.037  1.0000
##  3 - 5     0.23667 0.18 108   1.318  0.8419
##  3 - 6     1.10000 0.18 108   6.128  <.0001
##  4 - 5     0.23000 0.18 108   1.281  0.8590
##  4 - 6     1.09333 0.18 108   6.091  <.0001
##  5 - 6     0.86333 0.18 108   4.810  0.0001
## 
## curva = T1, gen = TCS01:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.35333 0.18 108  -1.968  0.4407
##  0 - 2    -0.11333 0.18 108  -0.631  0.9956
##  0 - 3     0.09333 0.18 108   0.520  0.9985
##  0 - 4     0.17667 0.18 108   0.984  0.9564
##  0 - 5     0.18667 0.18 108   1.040  0.9435
##  0 - 6     0.33333 0.18 108   1.857  0.5131
##  1 - 2     0.24000 0.18 108   1.337  0.8330
##  1 - 3     0.44667 0.18 108   2.488  0.1739
##  1 - 4     0.53000 0.18 108   2.953  0.0574
##  1 - 5     0.54000 0.18 108   3.008  0.0495
##  1 - 6     0.68667 0.18 108   3.825  0.0040
##  2 - 3     0.20667 0.18 108   1.151  0.9104
##  2 - 4     0.29000 0.18 108   1.616  0.6726
##  2 - 5     0.30000 0.18 108   1.671  0.6365
##  2 - 6     0.44667 0.18 108   2.488  0.1739
##  3 - 4     0.08333 0.18 108   0.464  0.9992
##  3 - 5     0.09333 0.18 108   0.520  0.9985
##  3 - 6     0.24000 0.18 108   1.337  0.8330
##  4 - 5     0.01000 0.18 108   0.056  1.0000
##  4 - 6     0.15667 0.18 108   0.873  0.9759
##  5 - 6     0.14667 0.18 108   0.817  0.9827
## 
## curva = T2, gen = TCS01:
##  contrast estimate   SE  df t.ratio p.value
##  0 - 1    -0.39300 0.18 108  -2.189  0.3099
##  0 - 2    -0.14233 0.18 108  -0.793  0.9852
##  0 - 3    -0.15200 0.18 108  -0.847  0.9793
##  0 - 4    -0.28767 0.18 108  -1.603  0.6810
##  0 - 5     0.25567 0.18 108   1.424  0.7876
##  0 - 6     0.36500 0.18 108   2.033  0.4001
##  1 - 2     0.25067 0.18 108   1.396  0.8026
##  1 - 3     0.24100 0.18 108   1.343  0.8302
##  1 - 4     0.10533 0.18 108   0.587  0.9971
##  1 - 5     0.64867 0.18 108   3.614  0.0081
##  1 - 6     0.75800 0.18 108   4.223  0.0010
##  2 - 3    -0.00967 0.18 108  -0.054  1.0000
##  2 - 4    -0.14533 0.18 108  -0.810  0.9835
##  2 - 5     0.39800 0.18 108   2.217  0.2951
##  2 - 6     0.50733 0.18 108   2.826  0.0795
##  3 - 4    -0.13567 0.18 108  -0.756  0.9885
##  3 - 5     0.40767 0.18 108   2.271  0.2677
##  3 - 6     0.51700 0.18 108   2.880  0.0694
##  4 - 5     0.54333 0.18 108   3.027  0.0471
##  4 - 6     0.65267 0.18 108   3.636  0.0076
##  5 - 6     0.10933 0.18 108   0.609  0.9964
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
emm_gen_diam2_trend <- emmeans(res.aov.error, pairwise ~ diam2*gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2_trend
## $emmeans
## curva = T3:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51  0.797 0.134 119   0.5316    1.062
##  1     CCN51  0.957 0.134 119   0.6916    1.222
##  2     CCN51  0.220 0.134 119  -0.0451    0.485
##  3     CCN51  0.287 0.134 119   0.0216    0.552
##  4     CCN51  0.400 0.134 119   0.1349    0.665
##  5     CCN51  0.363 0.134 119   0.0983    0.628
##  6     CCN51  0.117 0.134 119  -0.1484    0.382
##  0     ICS95  0.950 0.134 119   0.6849    1.215
##  1     ICS95  1.060 0.134 119   0.7949    1.325
##  2     ICS95  0.370 0.134 119   0.1049    0.635
##  3     ICS95  0.993 0.134 119   0.7283    1.258
##  4     ICS95  0.873 0.134 119   0.6083    1.138
##  5     ICS95  0.443 0.134 119   0.1783    0.708
##  6     ICS95  0.170 0.134 119  -0.0951    0.435
##  0     TCS01  0.727 0.134 119   0.4616    0.992
##  1     TCS01  0.893 0.134 119   0.6283    1.158
##  2     TCS01  0.777 0.134 119   0.5116    1.042
##  3     TCS01  2.133 0.134 119   1.8683    2.398
##  4     TCS01  2.127 0.134 119   1.8616    2.392
##  5     TCS01  1.897 0.134 119   1.6316    2.162
##  6     TCS01  1.033 0.134 119   0.7683    1.298
## 
## curva = T1:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51  0.637 0.134 119   0.3716    0.902
##  1     CCN51  1.150 0.134 119   0.8849    1.415
##  2     CCN51  1.013 0.134 119   0.7483    1.278
##  3     CCN51  1.470 0.134 119   1.2049    1.735
##  4     CCN51  0.807 0.134 119   0.5416    1.072
##  5     CCN51  0.537 0.134 119   0.2716    0.802
##  6     CCN51  0.577 0.134 119   0.3116    0.842
##  0     ICS95  0.697 0.134 119   0.4316    0.962
##  1     ICS95  1.183 0.134 119   0.9183    1.448
##  2     ICS95  1.263 0.134 119   0.9983    1.528
##  3     ICS95  1.147 0.134 119   0.8816    1.412
##  4     ICS95  1.240 0.134 119   0.9749    1.505
##  5     ICS95  0.647 0.134 119   0.3816    0.912
##  6     ICS95  0.400 0.134 119   0.1349    0.665
##  0     TCS01  0.587 0.134 119   0.3216    0.852
##  1     TCS01  0.940 0.134 119   0.6749    1.205
##  2     TCS01  0.700 0.134 119   0.4349    0.965
##  3     TCS01  0.493 0.134 119   0.2283    0.758
##  4     TCS01  0.410 0.134 119   0.1449    0.675
##  5     TCS01  0.400 0.134 119   0.1349    0.665
##  6     TCS01  0.253 0.134 119  -0.0117    0.518
## 
## curva = T2:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51  0.881 0.134 119   0.6163    1.146
##  1     CCN51  1.213 0.134 119   0.9476    1.478
##  2     CCN51  2.186 0.134 119   1.9213    2.451
##  3     CCN51  2.964 0.134 119   2.6989    3.229
##  4     CCN51  2.043 0.134 119   1.7779    2.308
##  5     CCN51  1.456 0.134 119   1.1909    1.721
##  6     CCN51  0.744 0.134 119   0.4789    1.009
##  0     ICS95  0.709 0.134 119   0.4443    0.974
##  1     ICS95  1.282 0.134 119   1.0166    1.547
##  2     ICS95  1.430 0.134 119   1.1653    1.695
##  3     ICS95  1.828 0.134 119   1.5633    2.093
##  4     ICS95  1.549 0.134 119   1.2839    1.814
##  5     ICS95  1.260 0.134 119   0.9949    1.525
##  6     ICS95  0.693 0.134 119   0.4279    0.958
##  0     TCS01  0.729 0.134 119   0.4636    0.994
##  1     TCS01  1.122 0.134 119   0.8566    1.387
##  2     TCS01  0.871 0.134 119   0.6059    1.136
##  3     TCS01  0.881 0.134 119   0.6156    1.146
##  4     TCS01  1.016 0.134 119   0.7513    1.281
##  5     TCS01  0.473 0.134 119   0.2079    0.738
##  6     TCS01  0.364 0.134 119   0.0986    0.629
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast           estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51 -0.160000 0.180 108  -0.891  1.0000
##  0 CCN51 - 2 CCN51  0.576667 0.180 108   3.213  0.1663
##  0 CCN51 - 3 CCN51  0.510000 0.180 108   2.841  0.3634
##  0 CCN51 - 4 CCN51  0.396667 0.180 108   2.210  0.8075
##  0 CCN51 - 5 CCN51  0.433333 0.180 108   2.414  0.6730
##  0 CCN51 - 6 CCN51  0.680000 0.180 108   3.788  0.0340
##  0 CCN51 - 0 ICS95 -0.153333 0.189 119  -0.810  1.0000
##  0 CCN51 - 1 ICS95 -0.263333 0.189 119  -1.391  0.9983
##  0 CCN51 - 2 ICS95  0.426667 0.189 119   2.254  0.7817
##  0 CCN51 - 3 ICS95 -0.196667 0.189 119  -1.039  1.0000
##  0 CCN51 - 4 ICS95 -0.076667 0.189 119  -0.405  1.0000
##  0 CCN51 - 5 ICS95  0.353333 0.189 119   1.866  0.9507
##  0 CCN51 - 6 ICS95  0.626667 0.189 119   3.310  0.1291
##  0 CCN51 - 0 TCS01  0.070000 0.189 119   0.370  1.0000
##  0 CCN51 - 1 TCS01 -0.096667 0.189 119  -0.511  1.0000
##  0 CCN51 - 2 TCS01  0.020000 0.189 119   0.106  1.0000
##  0 CCN51 - 3 TCS01 -1.336667 0.189 119  -7.061  <.0001
##  0 CCN51 - 4 TCS01 -1.330000 0.189 119  -7.025  <.0001
##  0 CCN51 - 5 TCS01 -1.100000 0.189 119  -5.811  <.0001
##  0 CCN51 - 6 TCS01 -0.236667 0.189 119  -1.250  0.9996
##  1 CCN51 - 2 CCN51  0.736667 0.180 108   4.104  0.0121
##  1 CCN51 - 3 CCN51  0.670000 0.180 108   3.733  0.0403
##  1 CCN51 - 4 CCN51  0.556667 0.180 108   3.101  0.2149
##  1 CCN51 - 5 CCN51  0.593333 0.180 108   3.305  0.1324
##  1 CCN51 - 6 CCN51  0.840000 0.180 108   4.680  0.0015
##  1 CCN51 - 0 ICS95  0.006667 0.189 119   0.035  1.0000
##  1 CCN51 - 1 ICS95 -0.103333 0.189 119  -0.546  1.0000
##  1 CCN51 - 2 ICS95  0.586667 0.189 119   3.099  0.2142
##  1 CCN51 - 3 ICS95 -0.036667 0.189 119  -0.194  1.0000
##  1 CCN51 - 4 ICS95  0.083333 0.189 119   0.440  1.0000
##  1 CCN51 - 5 ICS95  0.513333 0.189 119   2.712  0.4522
##  1 CCN51 - 6 ICS95  0.786667 0.189 119   4.155  0.0097
##  1 CCN51 - 0 TCS01  0.230000 0.189 119   1.215  0.9997
##  1 CCN51 - 1 TCS01  0.063333 0.189 119   0.335  1.0000
##  1 CCN51 - 2 TCS01  0.180000 0.189 119   0.951  1.0000
##  1 CCN51 - 3 TCS01 -1.176667 0.189 119  -6.215  <.0001
##  1 CCN51 - 4 TCS01 -1.170000 0.189 119  -6.180  <.0001
##  1 CCN51 - 5 TCS01 -0.940000 0.189 119  -4.965  0.0004
##  1 CCN51 - 6 TCS01 -0.076667 0.189 119  -0.405  1.0000
##  2 CCN51 - 3 CCN51 -0.066667 0.180 108  -0.371  1.0000
##  2 CCN51 - 4 CCN51 -0.180000 0.180 108  -1.003  1.0000
##  2 CCN51 - 5 CCN51 -0.143333 0.180 108  -0.799  1.0000
##  2 CCN51 - 6 CCN51  0.103333 0.180 108   0.576  1.0000
##  2 CCN51 - 0 ICS95 -0.730000 0.189 119  -3.856  0.0266
##  2 CCN51 - 1 ICS95 -0.840000 0.189 119  -4.437  0.0035
##  2 CCN51 - 2 ICS95 -0.150000 0.189 119  -0.792  1.0000
##  2 CCN51 - 3 ICS95 -0.773333 0.189 119  -4.085  0.0124
##  2 CCN51 - 4 ICS95 -0.653333 0.189 119  -3.451  0.0889
##  2 CCN51 - 5 ICS95 -0.223333 0.189 119  -1.180  0.9998
##  2 CCN51 - 6 ICS95  0.050000 0.189 119   0.264  1.0000
##  2 CCN51 - 0 TCS01 -0.506667 0.189 119  -2.676  0.4779
##  2 CCN51 - 1 TCS01 -0.673333 0.189 119  -3.557  0.0661
##  2 CCN51 - 2 TCS01 -0.556667 0.189 119  -2.940  0.2996
##  2 CCN51 - 3 TCS01 -1.913333 0.189 119 -10.107  <.0001
##  2 CCN51 - 4 TCS01 -1.906667 0.189 119 -10.072  <.0001
##  2 CCN51 - 5 TCS01 -1.676667 0.189 119  -8.857  <.0001
##  2 CCN51 - 6 TCS01 -0.813333 0.189 119  -4.296  0.0059
##  3 CCN51 - 4 CCN51 -0.113333 0.180 108  -0.631  1.0000
##  3 CCN51 - 5 CCN51 -0.076667 0.180 108  -0.427  1.0000
##  3 CCN51 - 6 CCN51  0.170000 0.180 108   0.947  1.0000
##  3 CCN51 - 0 ICS95 -0.663333 0.189 119  -3.504  0.0768
##  3 CCN51 - 1 ICS95 -0.773333 0.189 119  -4.085  0.0124
##  3 CCN51 - 2 ICS95 -0.083333 0.189 119  -0.440  1.0000
##  3 CCN51 - 3 ICS95 -0.706667 0.189 119  -3.733  0.0392
##  3 CCN51 - 4 ICS95 -0.586667 0.189 119  -3.099  0.2142
##  3 CCN51 - 5 ICS95 -0.156667 0.189 119  -0.828  1.0000
##  3 CCN51 - 6 ICS95  0.116667 0.189 119   0.616  1.0000
##  3 CCN51 - 0 TCS01 -0.440000 0.189 119  -2.324  0.7360
##  3 CCN51 - 1 TCS01 -0.606667 0.189 119  -3.205  0.1676
##  3 CCN51 - 2 TCS01 -0.490000 0.189 119  -2.588  0.5435
##  3 CCN51 - 3 TCS01 -1.846667 0.189 119  -9.755  <.0001
##  3 CCN51 - 4 TCS01 -1.840000 0.189 119  -9.719  <.0001
##  3 CCN51 - 5 TCS01 -1.610000 0.189 119  -8.504  <.0001
##  3 CCN51 - 6 TCS01 -0.746667 0.189 119  -3.944  0.0199
##  4 CCN51 - 5 CCN51  0.036667 0.180 108   0.204  1.0000
##  4 CCN51 - 6 CCN51  0.283333 0.180 108   1.578  0.9914
##  4 CCN51 - 0 ICS95 -0.550000 0.189 119  -2.905  0.3210
##  4 CCN51 - 1 ICS95 -0.660000 0.189 119  -3.486  0.0807
##  4 CCN51 - 2 ICS95  0.030000 0.189 119   0.158  1.0000
##  4 CCN51 - 3 ICS95 -0.593333 0.189 119  -3.134  0.1978
##  4 CCN51 - 4 ICS95 -0.473333 0.189 119  -2.500  0.6097
##  4 CCN51 - 5 ICS95 -0.043333 0.189 119  -0.229  1.0000
##  4 CCN51 - 6 ICS95  0.230000 0.189 119   1.215  0.9997
##  4 CCN51 - 0 TCS01 -0.326667 0.189 119  -1.726  0.9774
##  4 CCN51 - 1 TCS01 -0.493333 0.189 119  -2.606  0.5303
##  4 CCN51 - 2 TCS01 -0.376667 0.189 119  -1.990  0.9132
##  4 CCN51 - 3 TCS01 -1.733333 0.189 119  -9.156  <.0001
##  4 CCN51 - 4 TCS01 -1.726667 0.189 119  -9.121  <.0001
##  4 CCN51 - 5 TCS01 -1.496667 0.189 119  -7.906  <.0001
##  4 CCN51 - 6 TCS01 -0.633333 0.189 119  -3.345  0.1179
##  5 CCN51 - 6 CCN51  0.246667 0.180 108   1.374  0.9985
##  5 CCN51 - 0 ICS95 -0.586667 0.189 119  -3.099  0.2142
##  5 CCN51 - 1 ICS95 -0.696667 0.189 119  -3.680  0.0460
##  5 CCN51 - 2 ICS95 -0.006667 0.189 119  -0.035  1.0000
##  5 CCN51 - 3 ICS95 -0.630000 0.189 119  -3.328  0.1234
##  5 CCN51 - 4 ICS95 -0.510000 0.189 119  -2.694  0.4650
##  5 CCN51 - 5 ICS95 -0.080000 0.189 119  -0.423  1.0000
##  5 CCN51 - 6 ICS95  0.193333 0.189 119   1.021  1.0000
##  5 CCN51 - 0 TCS01 -0.363333 0.189 119  -1.919  0.9364
##  5 CCN51 - 1 TCS01 -0.530000 0.189 119  -2.800  0.3900
##  5 CCN51 - 2 TCS01 -0.413333 0.189 119  -2.183  0.8233
##  5 CCN51 - 3 TCS01 -1.770000 0.189 119  -9.350  <.0001
##  5 CCN51 - 4 TCS01 -1.763333 0.189 119  -9.314  <.0001
##  5 CCN51 - 5 TCS01 -1.533333 0.189 119  -8.100  <.0001
##  5 CCN51 - 6 TCS01 -0.670000 0.189 119  -3.539  0.0695
##  6 CCN51 - 0 ICS95 -0.833333 0.189 119  -4.402  0.0040
##  6 CCN51 - 1 ICS95 -0.943333 0.189 119  -4.983  0.0004
##  6 CCN51 - 2 ICS95 -0.253333 0.189 119  -1.338  0.9990
##  6 CCN51 - 3 ICS95 -0.876667 0.189 119  -4.631  0.0017
##  6 CCN51 - 4 ICS95 -0.756667 0.189 119  -3.997  0.0167
##  6 CCN51 - 5 ICS95 -0.326667 0.189 119  -1.726  0.9774
##  6 CCN51 - 6 ICS95 -0.053333 0.189 119  -0.282  1.0000
##  6 CCN51 - 0 TCS01 -0.610000 0.189 119  -3.222  0.1607
##  6 CCN51 - 1 TCS01 -0.776667 0.189 119  -4.103  0.0117
##  6 CCN51 - 2 TCS01 -0.660000 0.189 119  -3.486  0.0807
##  6 CCN51 - 3 TCS01 -2.016667 0.189 119 -10.653  <.0001
##  6 CCN51 - 4 TCS01 -2.010000 0.189 119 -10.617  <.0001
##  6 CCN51 - 5 TCS01 -1.780000 0.189 119  -9.402  <.0001
##  6 CCN51 - 6 TCS01 -0.916667 0.189 119  -4.842  0.0007
##  0 ICS95 - 1 ICS95 -0.110000 0.180 108  -0.613  1.0000
##  0 ICS95 - 2 ICS95  0.580000 0.180 108   3.231  0.1590
##  0 ICS95 - 3 ICS95 -0.043333 0.180 108  -0.241  1.0000
##  0 ICS95 - 4 ICS95  0.076667 0.180 108   0.427  1.0000
##  0 ICS95 - 5 ICS95  0.506667 0.180 108   2.823  0.3757
##  0 ICS95 - 6 ICS95  0.780000 0.180 108   4.345  0.0052
##  0 ICS95 - 0 TCS01  0.223333 0.189 119   1.180  0.9998
##  0 ICS95 - 1 TCS01  0.056667 0.189 119   0.299  1.0000
##  0 ICS95 - 2 TCS01  0.173333 0.189 119   0.916  1.0000
##  0 ICS95 - 3 TCS01 -1.183333 0.189 119  -6.251  <.0001
##  0 ICS95 - 4 TCS01 -1.176667 0.189 119  -6.215  <.0001
##  0 ICS95 - 5 TCS01 -0.946667 0.189 119  -5.001  0.0004
##  0 ICS95 - 6 TCS01 -0.083333 0.189 119  -0.440  1.0000
##  1 ICS95 - 2 ICS95  0.690000 0.180 108   3.844  0.0285
##  1 ICS95 - 3 ICS95  0.066667 0.180 108   0.371  1.0000
##  1 ICS95 - 4 ICS95  0.186667 0.180 108   1.040  1.0000
##  1 ICS95 - 5 ICS95  0.616667 0.180 108   3.435  0.0944
##  1 ICS95 - 6 ICS95  0.890000 0.180 108   4.958  0.0005
##  1 ICS95 - 0 TCS01  0.333333 0.189 119   1.761  0.9721
##  1 ICS95 - 1 TCS01  0.166667 0.189 119   0.880  1.0000
##  1 ICS95 - 2 TCS01  0.283333 0.189 119   1.497  0.9956
##  1 ICS95 - 3 TCS01 -1.073333 0.189 119  -5.670  <.0001
##  1 ICS95 - 4 TCS01 -1.066667 0.189 119  -5.634  <.0001
##  1 ICS95 - 5 TCS01 -0.836667 0.189 119  -4.420  0.0037
##  1 ICS95 - 6 TCS01  0.026667 0.189 119   0.141  1.0000
##  2 ICS95 - 3 ICS95 -0.623333 0.180 108  -3.473  0.0854
##  2 ICS95 - 4 ICS95 -0.503333 0.180 108  -2.804  0.3883
##  2 ICS95 - 5 ICS95 -0.073333 0.180 108  -0.409  1.0000
##  2 ICS95 - 6 ICS95  0.200000 0.180 108   1.114  0.9999
##  2 ICS95 - 0 TCS01 -0.356667 0.189 119  -1.884  0.9463
##  2 ICS95 - 1 TCS01 -0.523333 0.189 119  -2.764  0.4145
##  2 ICS95 - 2 TCS01 -0.406667 0.189 119  -2.148  0.8425
##  2 ICS95 - 3 TCS01 -1.763333 0.189 119  -9.314  <.0001
##  2 ICS95 - 4 TCS01 -1.756667 0.189 119  -9.279  <.0001
##  2 ICS95 - 5 TCS01 -1.526667 0.189 119  -8.064  <.0001
##  2 ICS95 - 6 TCS01 -0.663333 0.189 119  -3.504  0.0768
##  3 ICS95 - 4 ICS95  0.120000 0.180 108   0.669  1.0000
##  3 ICS95 - 5 ICS95  0.550000 0.180 108   3.064  0.2332
##  3 ICS95 - 6 ICS95  0.823333 0.180 108   4.587  0.0021
##  3 ICS95 - 0 TCS01  0.266667 0.189 119   1.409  0.9979
##  3 ICS95 - 1 TCS01  0.100000 0.189 119   0.528  1.0000
##  3 ICS95 - 2 TCS01  0.216667 0.189 119   1.144  0.9999
##  3 ICS95 - 3 TCS01 -1.140000 0.189 119  -6.022  <.0001
##  3 ICS95 - 4 TCS01 -1.133333 0.189 119  -5.987  <.0001
##  3 ICS95 - 5 TCS01 -0.903333 0.189 119  -4.772  0.0010
##  3 ICS95 - 6 TCS01 -0.040000 0.189 119  -0.211  1.0000
##  4 ICS95 - 5 ICS95  0.430000 0.180 108   2.396  0.6863
##  4 ICS95 - 6 ICS95  0.703333 0.180 108   3.918  0.0225
##  4 ICS95 - 0 TCS01  0.146667 0.189 119   0.775  1.0000
##  4 ICS95 - 1 TCS01 -0.020000 0.189 119  -0.106  1.0000
##  4 ICS95 - 2 TCS01  0.096667 0.189 119   0.511  1.0000
##  4 ICS95 - 3 TCS01 -1.260000 0.189 119  -6.656  <.0001
##  4 ICS95 - 4 TCS01 -1.253333 0.189 119  -6.620  <.0001
##  4 ICS95 - 5 TCS01 -1.023333 0.189 119  -5.406  0.0001
##  4 ICS95 - 6 TCS01 -0.160000 0.189 119  -0.845  1.0000
##  5 ICS95 - 6 ICS95  0.273333 0.180 108   1.523  0.9944
##  5 ICS95 - 0 TCS01 -0.283333 0.189 119  -1.497  0.9956
##  5 ICS95 - 1 TCS01 -0.450000 0.189 119  -2.377  0.6996
##  5 ICS95 - 2 TCS01 -0.333333 0.189 119  -1.761  0.9721
##  5 ICS95 - 3 TCS01 -1.690000 0.189 119  -8.927  <.0001
##  5 ICS95 - 4 TCS01 -1.683333 0.189 119  -8.892  <.0001
##  5 ICS95 - 5 TCS01 -1.453333 0.189 119  -7.677  <.0001
##  5 ICS95 - 6 TCS01 -0.590000 0.189 119  -3.117  0.2059
##  6 ICS95 - 0 TCS01 -0.556667 0.189 119  -2.940  0.2996
##  6 ICS95 - 1 TCS01 -0.723333 0.189 119  -3.821  0.0297
##  6 ICS95 - 2 TCS01 -0.606667 0.189 119  -3.205  0.1676
##  6 ICS95 - 3 TCS01 -1.963333 0.189 119 -10.371  <.0001
##  6 ICS95 - 4 TCS01 -1.956667 0.189 119 -10.336  <.0001
##  6 ICS95 - 5 TCS01 -1.726667 0.189 119  -9.121  <.0001
##  6 ICS95 - 6 TCS01 -0.863333 0.189 119  -4.560  0.0022
##  0 TCS01 - 1 TCS01 -0.166667 0.180 108  -0.928  1.0000
##  0 TCS01 - 2 TCS01 -0.050000 0.180 108  -0.279  1.0000
##  0 TCS01 - 3 TCS01 -1.406667 0.180 108  -7.836  <.0001
##  0 TCS01 - 4 TCS01 -1.400000 0.180 108  -7.799  <.0001
##  0 TCS01 - 5 TCS01 -1.170000 0.180 108  -6.518  <.0001
##  0 TCS01 - 6 TCS01 -0.306667 0.180 108  -1.708  0.9793
##  1 TCS01 - 2 TCS01  0.116667 0.180 108   0.650  1.0000
##  1 TCS01 - 3 TCS01 -1.240000 0.180 108  -6.908  <.0001
##  1 TCS01 - 4 TCS01 -1.233333 0.180 108  -6.871  <.0001
##  1 TCS01 - 5 TCS01 -1.003333 0.180 108  -5.590  <.0001
##  1 TCS01 - 6 TCS01 -0.140000 0.180 108  -0.780  1.0000
##  2 TCS01 - 3 TCS01 -1.356667 0.180 108  -7.558  <.0001
##  2 TCS01 - 4 TCS01 -1.350000 0.180 108  -7.521  <.0001
##  2 TCS01 - 5 TCS01 -1.120000 0.180 108  -6.239  <.0001
##  2 TCS01 - 6 TCS01 -0.256667 0.180 108  -1.430  0.9974
##  3 TCS01 - 4 TCS01  0.006667 0.180 108   0.037  1.0000
##  3 TCS01 - 5 TCS01  0.236667 0.180 108   1.318  0.9991
##  3 TCS01 - 6 TCS01  1.100000 0.180 108   6.128  <.0001
##  4 TCS01 - 5 TCS01  0.230000 0.180 108   1.281  0.9994
##  4 TCS01 - 6 TCS01  1.093333 0.180 108   6.091  <.0001
##  5 TCS01 - 6 TCS01  0.863333 0.180 108   4.810  0.0009
## 
## curva = T1:
##  contrast           estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51 -0.513333 0.180 108  -2.860  0.3513
##  0 CCN51 - 2 CCN51 -0.376667 0.180 108  -2.098  0.8667
##  0 CCN51 - 3 CCN51 -0.833333 0.180 108  -4.642  0.0017
##  0 CCN51 - 4 CCN51 -0.170000 0.180 108  -0.947  1.0000
##  0 CCN51 - 5 CCN51  0.100000 0.180 108   0.557  1.0000
##  0 CCN51 - 6 CCN51  0.060000 0.180 108   0.334  1.0000
##  0 CCN51 - 0 ICS95 -0.060000 0.189 119  -0.317  1.0000
##  0 CCN51 - 1 ICS95 -0.546667 0.189 119  -2.888  0.3320
##  0 CCN51 - 2 ICS95 -0.626667 0.189 119  -3.310  0.1291
##  0 CCN51 - 3 ICS95 -0.510000 0.189 119  -2.694  0.4650
##  0 CCN51 - 4 ICS95 -0.603333 0.189 119  -3.187  0.1748
##  0 CCN51 - 5 ICS95 -0.010000 0.189 119  -0.053  1.0000
##  0 CCN51 - 6 ICS95  0.236667 0.189 119   1.250  0.9996
##  0 CCN51 - 0 TCS01  0.050000 0.189 119   0.264  1.0000
##  0 CCN51 - 1 TCS01 -0.303333 0.189 119  -1.602  0.9900
##  0 CCN51 - 2 TCS01 -0.063333 0.189 119  -0.335  1.0000
##  0 CCN51 - 3 TCS01  0.143333 0.189 119   0.757  1.0000
##  0 CCN51 - 4 TCS01  0.226667 0.189 119   1.197  0.9998
##  0 CCN51 - 5 TCS01  0.236667 0.189 119   1.250  0.9996
##  0 CCN51 - 6 TCS01  0.383333 0.189 119   2.025  0.8997
##  1 CCN51 - 2 CCN51  0.136667 0.180 108   0.761  1.0000
##  1 CCN51 - 3 CCN51 -0.320000 0.180 108  -1.783  0.9680
##  1 CCN51 - 4 CCN51  0.343333 0.180 108   1.913  0.9377
##  1 CCN51 - 5 CCN51  0.613333 0.180 108   3.417  0.0992
##  1 CCN51 - 6 CCN51  0.573333 0.180 108   3.194  0.1738
##  1 CCN51 - 0 ICS95  0.453333 0.189 119   2.395  0.6871
##  1 CCN51 - 1 ICS95 -0.033333 0.189 119  -0.176  1.0000
##  1 CCN51 - 2 ICS95 -0.113333 0.189 119  -0.599  1.0000
##  1 CCN51 - 3 ICS95  0.003333 0.189 119   0.018  1.0000
##  1 CCN51 - 4 ICS95 -0.090000 0.189 119  -0.475  1.0000
##  1 CCN51 - 5 ICS95  0.503333 0.189 119   2.659  0.4909
##  1 CCN51 - 6 ICS95  0.750000 0.189 119   3.962  0.0188
##  1 CCN51 - 0 TCS01  0.563333 0.189 119   2.976  0.2790
##  1 CCN51 - 1 TCS01  0.210000 0.189 119   1.109  0.9999
##  1 CCN51 - 2 TCS01  0.450000 0.189 119   2.377  0.6996
##  1 CCN51 - 3 TCS01  0.656667 0.189 119   3.469  0.0847
##  1 CCN51 - 4 TCS01  0.740000 0.189 119   3.909  0.0224
##  1 CCN51 - 5 TCS01  0.750000 0.189 119   3.962  0.0188
##  1 CCN51 - 6 TCS01  0.896667 0.189 119   4.736  0.0011
##  2 CCN51 - 3 CCN51 -0.456667 0.180 108  -2.544  0.5771
##  2 CCN51 - 4 CCN51  0.206667 0.180 108   1.151  0.9999
##  2 CCN51 - 5 CCN51  0.476667 0.180 108   2.655  0.4940
##  2 CCN51 - 6 CCN51  0.436667 0.180 108   2.433  0.6596
##  2 CCN51 - 0 ICS95  0.316667 0.189 119   1.673  0.9838
##  2 CCN51 - 1 ICS95 -0.170000 0.189 119  -0.898  1.0000
##  2 CCN51 - 2 ICS95 -0.250000 0.189 119  -1.321  0.9991
##  2 CCN51 - 3 ICS95 -0.133333 0.189 119  -0.704  1.0000
##  2 CCN51 - 4 ICS95 -0.226667 0.189 119  -1.197  0.9998
##  2 CCN51 - 5 ICS95  0.366667 0.189 119   1.937  0.9311
##  2 CCN51 - 6 ICS95  0.613333 0.189 119   3.240  0.1539
##  2 CCN51 - 0 TCS01  0.426667 0.189 119   2.254  0.7817
##  2 CCN51 - 1 TCS01  0.073333 0.189 119   0.387  1.0000
##  2 CCN51 - 2 TCS01  0.313333 0.189 119   1.655  0.9855
##  2 CCN51 - 3 TCS01  0.520000 0.189 119   2.747  0.4269
##  2 CCN51 - 4 TCS01  0.603333 0.189 119   3.187  0.1748
##  2 CCN51 - 5 TCS01  0.613333 0.189 119   3.240  0.1539
##  2 CCN51 - 6 TCS01  0.760000 0.189 119   4.015  0.0158
##  3 CCN51 - 4 CCN51  0.663333 0.180 108   3.695  0.0451
##  3 CCN51 - 5 CCN51  0.933333 0.180 108   5.200  0.0002
##  3 CCN51 - 6 CCN51  0.893333 0.180 108   4.977  0.0005
##  3 CCN51 - 0 ICS95  0.773333 0.189 119   4.085  0.0124
##  3 CCN51 - 1 ICS95  0.286667 0.189 119   1.514  0.9949
##  3 CCN51 - 2 ICS95  0.206667 0.189 119   1.092  0.9999
##  3 CCN51 - 3 ICS95  0.323333 0.189 119   1.708  0.9797
##  3 CCN51 - 4 ICS95  0.230000 0.189 119   1.215  0.9997
##  3 CCN51 - 5 ICS95  0.823333 0.189 119   4.349  0.0048
##  3 CCN51 - 6 ICS95  1.070000 0.189 119   5.652  <.0001
##  3 CCN51 - 0 TCS01  0.883333 0.189 119   4.666  0.0014
##  3 CCN51 - 1 TCS01  0.530000 0.189 119   2.800  0.3900
##  3 CCN51 - 2 TCS01  0.770000 0.189 119   4.067  0.0132
##  3 CCN51 - 3 TCS01  0.976667 0.189 119   5.159  0.0002
##  3 CCN51 - 4 TCS01  1.060000 0.189 119   5.599  <.0001
##  3 CCN51 - 5 TCS01  1.070000 0.189 119   5.652  <.0001
##  3 CCN51 - 6 TCS01  1.216667 0.189 119   6.427  <.0001
##  4 CCN51 - 5 CCN51  0.270000 0.180 108   1.504  0.9952
##  4 CCN51 - 6 CCN51  0.230000 0.180 108   1.281  0.9994
##  4 CCN51 - 0 ICS95  0.110000 0.189 119   0.581  1.0000
##  4 CCN51 - 1 ICS95 -0.376667 0.189 119  -1.990  0.9132
##  4 CCN51 - 2 ICS95 -0.456667 0.189 119  -2.412  0.6745
##  4 CCN51 - 3 ICS95 -0.340000 0.189 119  -1.796  0.9660
##  4 CCN51 - 4 ICS95 -0.433333 0.189 119  -2.289  0.7593
##  4 CCN51 - 5 ICS95  0.160000 0.189 119   0.845  1.0000
##  4 CCN51 - 6 ICS95  0.406667 0.189 119   2.148  0.8425
##  4 CCN51 - 0 TCS01  0.220000 0.189 119   1.162  0.9999
##  4 CCN51 - 1 TCS01 -0.133333 0.189 119  -0.704  1.0000
##  4 CCN51 - 2 TCS01  0.106667 0.189 119   0.563  1.0000
##  4 CCN51 - 3 TCS01  0.313333 0.189 119   1.655  0.9855
##  4 CCN51 - 4 TCS01  0.396667 0.189 119   2.095  0.8689
##  4 CCN51 - 5 TCS01  0.406667 0.189 119   2.148  0.8425
##  4 CCN51 - 6 TCS01  0.553333 0.189 119   2.923  0.3102
##  5 CCN51 - 6 CCN51 -0.040000 0.180 108  -0.223  1.0000
##  5 CCN51 - 0 ICS95 -0.160000 0.189 119  -0.845  1.0000
##  5 CCN51 - 1 ICS95 -0.646667 0.189 119  -3.416  0.0979
##  5 CCN51 - 2 ICS95 -0.726667 0.189 119  -3.838  0.0281
##  5 CCN51 - 3 ICS95 -0.610000 0.189 119  -3.222  0.1607
##  5 CCN51 - 4 ICS95 -0.703333 0.189 119  -3.715  0.0413
##  5 CCN51 - 5 ICS95 -0.110000 0.189 119  -0.581  1.0000
##  5 CCN51 - 6 ICS95  0.136667 0.189 119   0.722  1.0000
##  5 CCN51 - 0 TCS01 -0.050000 0.189 119  -0.264  1.0000
##  5 CCN51 - 1 TCS01 -0.403333 0.189 119  -2.131  0.8516
##  5 CCN51 - 2 TCS01 -0.163333 0.189 119  -0.863  1.0000
##  5 CCN51 - 3 TCS01  0.043333 0.189 119   0.229  1.0000
##  5 CCN51 - 4 TCS01  0.126667 0.189 119   0.669  1.0000
##  5 CCN51 - 5 TCS01  0.136667 0.189 119   0.722  1.0000
##  5 CCN51 - 6 TCS01  0.283333 0.189 119   1.497  0.9956
##  6 CCN51 - 0 ICS95 -0.120000 0.189 119  -0.634  1.0000
##  6 CCN51 - 1 ICS95 -0.606667 0.189 119  -3.205  0.1676
##  6 CCN51 - 2 ICS95 -0.686667 0.189 119  -3.627  0.0539
##  6 CCN51 - 3 ICS95 -0.570000 0.189 119  -3.011  0.2594
##  6 CCN51 - 4 ICS95 -0.663333 0.189 119  -3.504  0.0768
##  6 CCN51 - 5 ICS95 -0.070000 0.189 119  -0.370  1.0000
##  6 CCN51 - 6 ICS95  0.176667 0.189 119   0.933  1.0000
##  6 CCN51 - 0 TCS01 -0.010000 0.189 119  -0.053  1.0000
##  6 CCN51 - 1 TCS01 -0.363333 0.189 119  -1.919  0.9364
##  6 CCN51 - 2 TCS01 -0.123333 0.189 119  -0.651  1.0000
##  6 CCN51 - 3 TCS01  0.083333 0.189 119   0.440  1.0000
##  6 CCN51 - 4 TCS01  0.166667 0.189 119   0.880  1.0000
##  6 CCN51 - 5 TCS01  0.176667 0.189 119   0.933  1.0000
##  6 CCN51 - 6 TCS01  0.323333 0.189 119   1.708  0.9797
##  0 ICS95 - 1 ICS95 -0.486667 0.180 108  -2.711  0.4534
##  0 ICS95 - 2 ICS95 -0.566667 0.180 108  -3.157  0.1895
##  0 ICS95 - 3 ICS95 -0.450000 0.180 108  -2.507  0.6049
##  0 ICS95 - 4 ICS95 -0.543333 0.180 108  -3.027  0.2525
##  0 ICS95 - 5 ICS95  0.050000 0.180 108   0.279  1.0000
##  0 ICS95 - 6 ICS95  0.296667 0.180 108   1.653  0.9855
##  0 ICS95 - 0 TCS01  0.110000 0.189 119   0.581  1.0000
##  0 ICS95 - 1 TCS01 -0.243333 0.189 119  -1.285  0.9994
##  0 ICS95 - 2 TCS01 -0.003333 0.189 119  -0.018  1.0000
##  0 ICS95 - 3 TCS01  0.203333 0.189 119   1.074  1.0000
##  0 ICS95 - 4 TCS01  0.286667 0.189 119   1.514  0.9949
##  0 ICS95 - 5 TCS01  0.296667 0.189 119   1.567  0.9923
##  0 ICS95 - 6 TCS01  0.443333 0.189 119   2.342  0.7241
##  1 ICS95 - 2 ICS95 -0.080000 0.180 108  -0.446  1.0000
##  1 ICS95 - 3 ICS95  0.036667 0.180 108   0.204  1.0000
##  1 ICS95 - 4 ICS95 -0.056667 0.180 108  -0.316  1.0000
##  1 ICS95 - 5 ICS95  0.536667 0.180 108   2.990  0.2727
##  1 ICS95 - 6 ICS95  0.783333 0.180 108   4.364  0.0049
##  1 ICS95 - 0 TCS01  0.596667 0.189 119   3.152  0.1899
##  1 ICS95 - 1 TCS01  0.243333 0.189 119   1.285  0.9994
##  1 ICS95 - 2 TCS01  0.483333 0.189 119   2.553  0.5700
##  1 ICS95 - 3 TCS01  0.690000 0.189 119   3.645  0.0511
##  1 ICS95 - 4 TCS01  0.773333 0.189 119   4.085  0.0124
##  1 ICS95 - 5 TCS01  0.783333 0.189 119   4.138  0.0103
##  1 ICS95 - 6 TCS01  0.930000 0.189 119   4.913  0.0005
##  2 ICS95 - 3 ICS95  0.116667 0.180 108   0.650  1.0000
##  2 ICS95 - 4 ICS95  0.023333 0.180 108   0.130  1.0000
##  2 ICS95 - 5 ICS95  0.616667 0.180 108   3.435  0.0944
##  2 ICS95 - 6 ICS95  0.863333 0.180 108   4.810  0.0009
##  2 ICS95 - 0 TCS01  0.676667 0.189 119   3.574  0.0629
##  2 ICS95 - 1 TCS01  0.323333 0.189 119   1.708  0.9797
##  2 ICS95 - 2 TCS01  0.563333 0.189 119   2.976  0.2790
##  2 ICS95 - 3 TCS01  0.770000 0.189 119   4.067  0.0132
##  2 ICS95 - 4 TCS01  0.853333 0.189 119   4.508  0.0027
##  2 ICS95 - 5 TCS01  0.863333 0.189 119   4.560  0.0022
##  2 ICS95 - 6 TCS01  1.010000 0.189 119   5.335  0.0001
##  3 ICS95 - 4 ICS95 -0.093333 0.180 108  -0.520  1.0000
##  3 ICS95 - 5 ICS95  0.500000 0.180 108   2.785  0.4010
##  3 ICS95 - 6 ICS95  0.746667 0.180 108   4.160  0.0100
##  3 ICS95 - 0 TCS01  0.560000 0.189 119   2.958  0.2892
##  3 ICS95 - 1 TCS01  0.206667 0.189 119   1.092  0.9999
##  3 ICS95 - 2 TCS01  0.446667 0.189 119   2.359  0.7119
##  3 ICS95 - 3 TCS01  0.653333 0.189 119   3.451  0.0889
##  3 ICS95 - 4 TCS01  0.736667 0.189 119   3.891  0.0237
##  3 ICS95 - 5 TCS01  0.746667 0.189 119   3.944  0.0199
##  3 ICS95 - 6 TCS01  0.893333 0.189 119   4.719  0.0012
##  4 ICS95 - 5 ICS95  0.593333 0.180 108   3.305  0.1324
##  4 ICS95 - 6 ICS95  0.840000 0.180 108   4.680  0.0015
##  4 ICS95 - 0 TCS01  0.653333 0.189 119   3.451  0.0889
##  4 ICS95 - 1 TCS01  0.300000 0.189 119   1.585  0.9912
##  4 ICS95 - 2 TCS01  0.540000 0.189 119   2.852  0.3547
##  4 ICS95 - 3 TCS01  0.746667 0.189 119   3.944  0.0199
##  4 ICS95 - 4 TCS01  0.830000 0.189 119   4.384  0.0042
##  4 ICS95 - 5 TCS01  0.840000 0.189 119   4.437  0.0035
##  4 ICS95 - 6 TCS01  0.986667 0.189 119   5.212  0.0002
##  5 ICS95 - 6 ICS95  0.246667 0.180 108   1.374  0.9985
##  5 ICS95 - 0 TCS01  0.060000 0.189 119   0.317  1.0000
##  5 ICS95 - 1 TCS01 -0.293333 0.189 119  -1.549  0.9932
##  5 ICS95 - 2 TCS01 -0.053333 0.189 119  -0.282  1.0000
##  5 ICS95 - 3 TCS01  0.153333 0.189 119   0.810  1.0000
##  5 ICS95 - 4 TCS01  0.236667 0.189 119   1.250  0.9996
##  5 ICS95 - 5 TCS01  0.246667 0.189 119   1.303  0.9993
##  5 ICS95 - 6 TCS01  0.393333 0.189 119   2.078  0.8771
##  6 ICS95 - 0 TCS01 -0.186667 0.189 119  -0.986  1.0000
##  6 ICS95 - 1 TCS01 -0.540000 0.189 119  -2.852  0.3547
##  6 ICS95 - 2 TCS01 -0.300000 0.189 119  -1.585  0.9912
##  6 ICS95 - 3 TCS01 -0.093333 0.189 119  -0.493  1.0000
##  6 ICS95 - 4 TCS01 -0.010000 0.189 119  -0.053  1.0000
##  6 ICS95 - 5 TCS01  0.000000 0.189 119   0.000  1.0000
##  6 ICS95 - 6 TCS01  0.146667 0.189 119   0.775  1.0000
##  0 TCS01 - 1 TCS01 -0.353333 0.180 108  -1.968  0.9201
##  0 TCS01 - 2 TCS01 -0.113333 0.180 108  -0.631  1.0000
##  0 TCS01 - 3 TCS01  0.093333 0.180 108   0.520  1.0000
##  0 TCS01 - 4 TCS01  0.176667 0.180 108   0.984  1.0000
##  0 TCS01 - 5 TCS01  0.186667 0.180 108   1.040  1.0000
##  0 TCS01 - 6 TCS01  0.333333 0.180 108   1.857  0.9525
##  1 TCS01 - 2 TCS01  0.240000 0.180 108   1.337  0.9989
##  1 TCS01 - 3 TCS01  0.446667 0.180 108   2.488  0.6187
##  1 TCS01 - 4 TCS01  0.530000 0.180 108   2.953  0.2940
##  1 TCS01 - 5 TCS01  0.540000 0.180 108   3.008  0.2625
##  1 TCS01 - 6 TCS01  0.686667 0.180 108   3.825  0.0302
##  2 TCS01 - 3 TCS01  0.206667 0.180 108   1.151  0.9999
##  2 TCS01 - 4 TCS01  0.290000 0.180 108   1.616  0.9888
##  2 TCS01 - 5 TCS01  0.300000 0.180 108   1.671  0.9837
##  2 TCS01 - 6 TCS01  0.446667 0.180 108   2.488  0.6187
##  3 TCS01 - 4 TCS01  0.083333 0.180 108   0.464  1.0000
##  3 TCS01 - 5 TCS01  0.093333 0.180 108   0.520  1.0000
##  3 TCS01 - 6 TCS01  0.240000 0.180 108   1.337  0.9989
##  4 TCS01 - 5 TCS01  0.010000 0.180 108   0.056  1.0000
##  4 TCS01 - 6 TCS01  0.156667 0.180 108   0.873  1.0000
##  5 TCS01 - 6 TCS01  0.146667 0.180 108   0.817  1.0000
## 
## curva = T2:
##  contrast           estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51 -0.331333 0.180 108  -1.846  0.9551
##  0 CCN51 - 2 CCN51 -1.305000 0.180 108  -7.270  <.0001
##  0 CCN51 - 3 CCN51 -2.082667 0.180 108 -11.602  <.0001
##  0 CCN51 - 4 CCN51 -1.161667 0.180 108  -6.472  <.0001
##  0 CCN51 - 5 CCN51 -0.574667 0.180 108  -3.201  0.1707
##  0 CCN51 - 6 CCN51  0.137333 0.180 108   0.765  1.0000
##  0 CCN51 - 0 ICS95  0.172000 0.189 119   0.909  1.0000
##  0 CCN51 - 1 ICS95 -0.400333 0.189 119  -2.115  0.8595
##  0 CCN51 - 2 ICS95 -0.549000 0.189 119  -2.900  0.3243
##  0 CCN51 - 3 ICS95 -0.947000 0.189 119  -5.002  0.0004
##  0 CCN51 - 4 ICS95 -0.667667 0.189 119  -3.527  0.0720
##  0 CCN51 - 5 ICS95 -0.378667 0.189 119  -2.000  0.9093
##  0 CCN51 - 6 ICS95  0.188333 0.189 119   0.995  1.0000
##  0 CCN51 - 0 TCS01  0.152667 0.189 119   0.806  1.0000
##  0 CCN51 - 1 TCS01 -0.240333 0.189 119  -1.270  0.9995
##  0 CCN51 - 2 TCS01  0.010333 0.189 119   0.055  1.0000
##  0 CCN51 - 3 TCS01  0.000667 0.189 119   0.004  1.0000
##  0 CCN51 - 4 TCS01 -0.135000 0.189 119  -0.713  1.0000
##  0 CCN51 - 5 TCS01  0.408333 0.189 119   2.157  0.8378
##  0 CCN51 - 6 TCS01  0.517667 0.189 119   2.734  0.4357
##  1 CCN51 - 2 CCN51 -0.973667 0.180 108  -5.424  0.0001
##  1 CCN51 - 3 CCN51 -1.751333 0.180 108  -9.757  <.0001
##  1 CCN51 - 4 CCN51 -0.830333 0.180 108  -4.626  0.0018
##  1 CCN51 - 5 CCN51 -0.243333 0.180 108  -1.356  0.9987
##  1 CCN51 - 6 CCN51  0.468667 0.180 108   2.611  0.5271
##  1 CCN51 - 0 ICS95  0.503333 0.189 119   2.659  0.4909
##  1 CCN51 - 1 ICS95 -0.069000 0.189 119  -0.364  1.0000
##  1 CCN51 - 2 ICS95 -0.217667 0.189 119  -1.150  0.9999
##  1 CCN51 - 3 ICS95 -0.615667 0.189 119  -3.252  0.1493
##  1 CCN51 - 4 ICS95 -0.336333 0.189 119  -1.777  0.9695
##  1 CCN51 - 5 ICS95 -0.047333 0.189 119  -0.250  1.0000
##  1 CCN51 - 6 ICS95  0.519667 0.189 119   2.745  0.4281
##  1 CCN51 - 0 TCS01  0.484000 0.189 119   2.557  0.5674
##  1 CCN51 - 1 TCS01  0.091000 0.189 119   0.481  1.0000
##  1 CCN51 - 2 TCS01  0.341667 0.189 119   1.805  0.9643
##  1 CCN51 - 3 TCS01  0.332000 0.189 119   1.754  0.9732
##  1 CCN51 - 4 TCS01  0.196333 0.189 119   1.037  1.0000
##  1 CCN51 - 5 TCS01  0.739667 0.189 119   3.907  0.0225
##  1 CCN51 - 6 TCS01  0.849000 0.189 119   4.485  0.0029
##  2 CCN51 - 3 CCN51 -0.777667 0.180 108  -4.332  0.0054
##  2 CCN51 - 4 CCN51  0.143333 0.180 108   0.799  1.0000
##  2 CCN51 - 5 CCN51  0.730333 0.180 108   4.069  0.0137
##  2 CCN51 - 6 CCN51  1.442333 0.180 108   8.035  <.0001
##  2 CCN51 - 0 ICS95  1.477000 0.189 119   7.802  <.0001
##  2 CCN51 - 1 ICS95  0.904667 0.189 119   4.779  0.0009
##  2 CCN51 - 2 ICS95  0.756000 0.189 119   3.993  0.0169
##  2 CCN51 - 3 ICS95  0.358000 0.189 119   1.891  0.9444
##  2 CCN51 - 4 ICS95  0.637333 0.189 119   3.367  0.1116
##  2 CCN51 - 5 ICS95  0.926333 0.189 119   4.893  0.0006
##  2 CCN51 - 6 ICS95  1.493333 0.189 119   7.888  <.0001
##  2 CCN51 - 0 TCS01  1.457667 0.189 119   7.700  <.0001
##  2 CCN51 - 1 TCS01  1.064667 0.189 119   5.624  <.0001
##  2 CCN51 - 2 TCS01  1.315333 0.189 119   6.948  <.0001
##  2 CCN51 - 3 TCS01  1.305667 0.189 119   6.897  <.0001
##  2 CCN51 - 4 TCS01  1.170000 0.189 119   6.180  <.0001
##  2 CCN51 - 5 TCS01  1.713333 0.189 119   9.050  <.0001
##  2 CCN51 - 6 TCS01  1.822667 0.189 119   9.628  <.0001
##  3 CCN51 - 4 CCN51  0.921000 0.180 108   5.131  0.0002
##  3 CCN51 - 5 CCN51  1.508000 0.180 108   8.401  <.0001
##  3 CCN51 - 6 CCN51  2.220000 0.180 108  12.367  <.0001
##  3 CCN51 - 0 ICS95  2.254667 0.189 119  11.910  <.0001
##  3 CCN51 - 1 ICS95  1.682333 0.189 119   8.887  <.0001
##  3 CCN51 - 2 ICS95  1.533667 0.189 119   8.101  <.0001
##  3 CCN51 - 3 ICS95  1.135667 0.189 119   5.999  <.0001
##  3 CCN51 - 4 ICS95  1.415000 0.189 119   7.474  <.0001
##  3 CCN51 - 5 ICS95  1.704000 0.189 119   9.001  <.0001
##  3 CCN51 - 6 ICS95  2.271000 0.189 119  11.996  <.0001
##  3 CCN51 - 0 TCS01  2.235333 0.189 119  11.808  <.0001
##  3 CCN51 - 1 TCS01  1.842333 0.189 119   9.732  <.0001
##  3 CCN51 - 2 TCS01  2.093000 0.189 119  11.056  <.0001
##  3 CCN51 - 3 TCS01  2.083333 0.189 119  11.005  <.0001
##  3 CCN51 - 4 TCS01  1.947667 0.189 119  10.288  <.0001
##  3 CCN51 - 5 TCS01  2.491000 0.189 119  13.158  <.0001
##  3 CCN51 - 6 TCS01  2.600333 0.189 119  13.736  <.0001
##  4 CCN51 - 5 CCN51  0.587000 0.180 108   3.270  0.1446
##  4 CCN51 - 6 CCN51  1.299000 0.180 108   7.237  <.0001
##  4 CCN51 - 0 ICS95  1.333667 0.189 119   7.045  <.0001
##  4 CCN51 - 1 ICS95  0.761333 0.189 119   4.022  0.0154
##  4 CCN51 - 2 ICS95  0.612667 0.189 119   3.236  0.1552
##  4 CCN51 - 3 ICS95  0.214667 0.189 119   1.134  0.9999
##  4 CCN51 - 4 ICS95  0.494000 0.189 119   2.609  0.5277
##  4 CCN51 - 5 ICS95  0.783000 0.189 119   4.136  0.0104
##  4 CCN51 - 6 ICS95  1.350000 0.189 119   7.131  <.0001
##  4 CCN51 - 0 TCS01  1.314333 0.189 119   6.943  <.0001
##  4 CCN51 - 1 TCS01  0.921333 0.189 119   4.867  0.0006
##  4 CCN51 - 2 TCS01  1.172000 0.189 119   6.191  <.0001
##  4 CCN51 - 3 TCS01  1.162333 0.189 119   6.140  <.0001
##  4 CCN51 - 4 TCS01  1.026667 0.189 119   5.423  0.0001
##  4 CCN51 - 5 TCS01  1.570000 0.189 119   8.293  <.0001
##  4 CCN51 - 6 TCS01  1.679333 0.189 119   8.871  <.0001
##  5 CCN51 - 6 CCN51  0.712000 0.180 108   3.967  0.0192
##  5 CCN51 - 0 ICS95  0.746667 0.189 119   3.944  0.0199
##  5 CCN51 - 1 ICS95  0.174333 0.189 119   0.921  1.0000
##  5 CCN51 - 2 ICS95  0.025667 0.189 119   0.136  1.0000
##  5 CCN51 - 3 ICS95 -0.372333 0.189 119  -1.967  0.9213
##  5 CCN51 - 4 ICS95 -0.093000 0.189 119  -0.491  1.0000
##  5 CCN51 - 5 ICS95  0.196000 0.189 119   1.035  1.0000
##  5 CCN51 - 6 ICS95  0.763000 0.189 119   4.030  0.0149
##  5 CCN51 - 0 TCS01  0.727333 0.189 119   3.842  0.0278
##  5 CCN51 - 1 TCS01  0.334333 0.189 119   1.766  0.9713
##  5 CCN51 - 2 TCS01  0.585000 0.189 119   3.090  0.2185
##  5 CCN51 - 3 TCS01  0.575333 0.189 119   3.039  0.2443
##  5 CCN51 - 4 TCS01  0.439667 0.189 119   2.322  0.7372
##  5 CCN51 - 5 TCS01  0.983000 0.189 119   5.192  0.0002
##  5 CCN51 - 6 TCS01  1.092333 0.189 119   5.770  <.0001
##  6 CCN51 - 0 ICS95  0.034667 0.189 119   0.183  1.0000
##  6 CCN51 - 1 ICS95 -0.537667 0.189 119  -2.840  0.3628
##  6 CCN51 - 2 ICS95 -0.686333 0.189 119  -3.625  0.0541
##  6 CCN51 - 3 ICS95 -1.084333 0.189 119  -5.728  <.0001
##  6 CCN51 - 4 ICS95 -0.805000 0.189 119  -4.252  0.0069
##  6 CCN51 - 5 ICS95 -0.516000 0.189 119  -2.726  0.4420
##  6 CCN51 - 6 ICS95  0.051000 0.189 119   0.269  1.0000
##  6 CCN51 - 0 TCS01  0.015333 0.189 119   0.081  1.0000
##  6 CCN51 - 1 TCS01 -0.377667 0.189 119  -1.995  0.9112
##  6 CCN51 - 2 TCS01 -0.127000 0.189 119  -0.671  1.0000
##  6 CCN51 - 3 TCS01 -0.136667 0.189 119  -0.722  1.0000
##  6 CCN51 - 4 TCS01 -0.272333 0.189 119  -1.439  0.9973
##  6 CCN51 - 5 TCS01  0.271000 0.189 119   1.431  0.9975
##  6 CCN51 - 6 TCS01  0.380333 0.189 119   2.009  0.9059
##  0 ICS95 - 1 ICS95 -0.572333 0.180 108  -3.188  0.1760
##  0 ICS95 - 2 ICS95 -0.721000 0.180 108  -4.017  0.0163
##  0 ICS95 - 3 ICS95 -1.119000 0.180 108  -6.234  <.0001
##  0 ICS95 - 4 ICS95 -0.839667 0.180 108  -4.678  0.0015
##  0 ICS95 - 5 ICS95 -0.550667 0.180 108  -3.068  0.2313
##  0 ICS95 - 6 ICS95  0.016333 0.180 108   0.091  1.0000
##  0 ICS95 - 0 TCS01 -0.019333 0.189 119  -0.102  1.0000
##  0 ICS95 - 1 TCS01 -0.412333 0.189 119  -2.178  0.8263
##  0 ICS95 - 2 TCS01 -0.161667 0.189 119  -0.854  1.0000
##  0 ICS95 - 3 TCS01 -0.171333 0.189 119  -0.905  1.0000
##  0 ICS95 - 4 TCS01 -0.307000 0.189 119  -1.622  0.9885
##  0 ICS95 - 5 TCS01  0.236333 0.189 119   1.248  0.9996
##  0 ICS95 - 6 TCS01  0.345667 0.189 119   1.826  0.9600
##  1 ICS95 - 2 ICS95 -0.148667 0.180 108  -0.828  1.0000
##  1 ICS95 - 3 ICS95 -0.546667 0.180 108  -3.045  0.2427
##  1 ICS95 - 4 ICS95 -0.267333 0.180 108  -1.489  0.9957
##  1 ICS95 - 5 ICS95  0.021667 0.180 108   0.121  1.0000
##  1 ICS95 - 6 ICS95  0.588667 0.180 108   3.279  0.1413
##  1 ICS95 - 0 TCS01  0.553000 0.189 119   2.921  0.3113
##  1 ICS95 - 1 TCS01  0.160000 0.189 119   0.845  1.0000
##  1 ICS95 - 2 TCS01  0.410667 0.189 119   2.169  0.8311
##  1 ICS95 - 3 TCS01  0.401000 0.189 119   2.118  0.8578
##  1 ICS95 - 4 TCS01  0.265333 0.189 119   1.402  0.9981
##  1 ICS95 - 5 TCS01  0.808667 0.189 119   4.272  0.0064
##  1 ICS95 - 6 TCS01  0.918000 0.189 119   4.849  0.0007
##  2 ICS95 - 3 ICS95 -0.398000 0.180 108  -2.217  0.8032
##  2 ICS95 - 4 ICS95 -0.118667 0.180 108  -0.661  1.0000
##  2 ICS95 - 5 ICS95  0.170333 0.180 108   0.949  1.0000
##  2 ICS95 - 6 ICS95  0.737333 0.180 108   4.108  0.0120
##  2 ICS95 - 0 TCS01  0.701667 0.189 119   3.706  0.0425
##  2 ICS95 - 1 TCS01  0.308667 0.189 119   1.630  0.9878
##  2 ICS95 - 2 TCS01  0.559333 0.189 119   2.955  0.2912
##  2 ICS95 - 3 TCS01  0.549667 0.189 119   2.903  0.3221
##  2 ICS95 - 4 TCS01  0.414000 0.189 119   2.187  0.8214
##  2 ICS95 - 5 TCS01  0.957333 0.189 119   5.057  0.0003
##  2 ICS95 - 6 TCS01  1.066667 0.189 119   5.634  <.0001
##  3 ICS95 - 4 ICS95  0.279333 0.180 108   1.556  0.9927
##  3 ICS95 - 5 ICS95  0.568333 0.180 108   3.166  0.1855
##  3 ICS95 - 6 ICS95  1.135333 0.180 108   6.325  <.0001
##  3 ICS95 - 0 TCS01  1.099667 0.189 119   5.809  <.0001
##  3 ICS95 - 1 TCS01  0.706667 0.189 119   3.733  0.0392
##  3 ICS95 - 2 TCS01  0.957333 0.189 119   5.057  0.0003
##  3 ICS95 - 3 TCS01  0.947667 0.189 119   5.006  0.0004
##  3 ICS95 - 4 TCS01  0.812000 0.189 119   4.289  0.0060
##  3 ICS95 - 5 TCS01  1.355333 0.189 119   7.159  <.0001
##  3 ICS95 - 6 TCS01  1.464667 0.189 119   7.737  <.0001
##  4 ICS95 - 5 ICS95  0.289000 0.180 108   1.610  0.9892
##  4 ICS95 - 6 ICS95  0.856000 0.180 108   4.769  0.0010
##  4 ICS95 - 0 TCS01  0.820333 0.189 119   4.333  0.0051
##  4 ICS95 - 1 TCS01  0.427333 0.189 119   2.257  0.7795
##  4 ICS95 - 2 TCS01  0.678000 0.189 119   3.581  0.0616
##  4 ICS95 - 3 TCS01  0.668333 0.189 119   3.530  0.0713
##  4 ICS95 - 4 TCS01  0.532667 0.189 119   2.814  0.3805
##  4 ICS95 - 5 TCS01  1.076000 0.189 119   5.684  <.0001
##  4 ICS95 - 6 TCS01  1.185333 0.189 119   6.261  <.0001
##  5 ICS95 - 6 ICS95  0.567000 0.180 108   3.159  0.1887
##  5 ICS95 - 0 TCS01  0.531333 0.189 119   2.807  0.3852
##  5 ICS95 - 1 TCS01  0.138333 0.189 119   0.731  1.0000
##  5 ICS95 - 2 TCS01  0.389000 0.189 119   2.055  0.8872
##  5 ICS95 - 3 TCS01  0.379333 0.189 119   2.004  0.9079
##  5 ICS95 - 4 TCS01  0.243667 0.189 119   1.287  0.9994
##  5 ICS95 - 5 TCS01  0.787000 0.189 119   4.157  0.0096
##  5 ICS95 - 6 TCS01  0.896333 0.189 119   4.735  0.0011
##  6 ICS95 - 0 TCS01 -0.035667 0.189 119  -0.188  1.0000
##  6 ICS95 - 1 TCS01 -0.428667 0.189 119  -2.264  0.7751
##  6 ICS95 - 2 TCS01 -0.178000 0.189 119  -0.940  1.0000
##  6 ICS95 - 3 TCS01 -0.187667 0.189 119  -0.991  1.0000
##  6 ICS95 - 4 TCS01 -0.323333 0.189 119  -1.708  0.9797
##  6 ICS95 - 5 TCS01  0.220000 0.189 119   1.162  0.9999
##  6 ICS95 - 6 TCS01  0.329333 0.189 119   1.740  0.9754
##  0 TCS01 - 1 TCS01 -0.393000 0.180 108  -2.189  0.8193
##  0 TCS01 - 2 TCS01 -0.142333 0.180 108  -0.793  1.0000
##  0 TCS01 - 3 TCS01 -0.152000 0.180 108  -0.847  1.0000
##  0 TCS01 - 4 TCS01 -0.287667 0.180 108  -1.603  0.9898
##  0 TCS01 - 5 TCS01  0.255667 0.180 108   1.424  0.9976
##  0 TCS01 - 6 TCS01  0.365000 0.180 108   2.033  0.8955
##  1 TCS01 - 2 TCS01  0.250667 0.180 108   1.396  0.9981
##  1 TCS01 - 3 TCS01  0.241000 0.180 108   1.343  0.9989
##  1 TCS01 - 4 TCS01  0.105333 0.180 108   0.587  1.0000
##  1 TCS01 - 5 TCS01  0.648667 0.180 108   3.614  0.0574
##  1 TCS01 - 6 TCS01  0.758000 0.180 108   4.223  0.0080
##  2 TCS01 - 3 TCS01 -0.009667 0.180 108  -0.054  1.0000
##  2 TCS01 - 4 TCS01 -0.145333 0.180 108  -0.810  1.0000
##  2 TCS01 - 5 TCS01  0.398000 0.180 108   2.217  0.8032
##  2 TCS01 - 6 TCS01  0.507333 0.180 108   2.826  0.3733
##  3 TCS01 - 4 TCS01 -0.135667 0.180 108  -0.756  1.0000
##  3 TCS01 - 5 TCS01  0.407667 0.180 108   2.271  0.7703
##  3 TCS01 - 6 TCS01  0.517000 0.180 108   2.880  0.3382
##  4 TCS01 - 5 TCS01  0.543333 0.180 108   3.027  0.2525
##  4 TCS01 - 6 TCS01  0.652667 0.180 108   3.636  0.0537
##  5 TCS01 - 6 TCS01  0.109333 0.180 108   0.609  1.0000
## 
## P value adjustment: tukey method for comparing a family of 21 estimates
##Splitting dataframe by temperature ramp
## Protocol 3 (T3)

datos.curve1<-filter(datos, curva=="T3")

##Check assumptions
##Outliers

datos.curve1 %>%
  group_by(gen, diam2) %>%
  identify_outliers(acidez.testa)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm1<-datos.curve1 %>%
  group_by(gen, diam2) %>%
  shapiro_test(acidez.testa)
norm1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable     statistic     p
##    <fct> <fct> <chr>            <dbl> <dbl>
##  1 0     CCN51 acidez.testa     0.998 0.915
##  2 1     CCN51 acidez.testa     0.954 0.588
##  3 2     CCN51 acidez.testa     1     1.00 
##  4 3     CCN51 acidez.testa     0.881 0.328
##  5 4     CCN51 acidez.testa     0.983 0.747
##  6 5     CCN51 acidez.testa     0.871 0.298
##  7 6     CCN51 acidez.testa     0.75  0    
##  8 0     ICS95 acidez.testa     0.976 0.702
##  9 1     ICS95 acidez.testa     0.942 0.537
## 10 2     ICS95 acidez.testa     0.942 0.537
## 11 3     ICS95 acidez.testa     0.948 0.561
## 12 4     ICS95 acidez.testa     0.885 0.339
## 13 5     ICS95 acidez.testa     0.971 0.675
## 14 6     ICS95 acidez.testa     1     1.00 
## 15 0     TCS01 acidez.testa     0.75  0    
## 16 1     TCS01 acidez.testa     0.878 0.317
## 17 2     TCS01 acidez.testa     0.991 0.817
## 18 3     TCS01 acidez.testa     0.900 0.387
## 19 4     TCS01 acidez.testa     0.847 0.232
## 20 5     TCS01 acidez.testa     0.75  0    
## 21 6     TCS01 acidez.testa     0.900 0.384
##Create QQ plot for each cell of design:

ggqqplot(datos.curve1, "acidez.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev1<-datos.curve1 %>%
  group_by(diam2) %>%
  levene_test(acidez.testa ~ gen)
lev1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6    0.410  0.681
## 2 1         2     6    0.0247 0.976
## 3 2         2     6    1.05   0.405
## 4 3         2     6    1.67   0.264
## 5 4         2     6    0.606  0.576
## 6 5         2     6    0.736  0.518
## 7 6         2     6    1.25   0.352
##Computation

res.aov1 <- anova_test(
  data = datos.curve1, dv = acidez.testa, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov1)
## ANOVA Table (type II tests)
## 
##      Effect DFn DFd      F        p p<.05   ges
## 1       gen   2   6 67.963 7.56e-05     * 0.859
## 2     diam2   6  36 23.722 3.85e-11     * 0.743
## 3 gen:diam2  12  36 18.618 6.06e-12     * 0.819
#CCN51
datos.ccn<-filter(datos.curve1, gen=="CCN51")
res.aov.ccn1 <- anova_test(
  data = datos.ccn, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 37.382 4.39e-07     * 0.947
#ICS95
datos.ics<-filter(datos.curve1, gen=="ICS95")
res.aov.ics1 <- anova_test(
  data = datos.ics, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 5.163 0.008     * 0.663
#TCS01
datos.tcs<-filter(datos.curve1, gen=="TCS01")
res.aov.tcs1 <- anova_test(
  data = datos.tcs, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F       p p<.05   ges
## 1  diam2   6  12 91.996 2.5e-09     * 0.962
## Protocol 1 (T1)

datos.curve2<-filter(datos, curva=="T1")

##Check assumptions
##Outliers

datos.curve2 %>%
  group_by(gen, diam2) %>%
  identify_outliers(acidez.testa)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve2 %>%
  group_by(gen, diam2) %>%
  shapiro_test(acidez.testa)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable     statistic      p
##    <fct> <fct> <chr>            <dbl>  <dbl>
##  1 0     CCN51 acidez.testa     0.832 0.194 
##  2 1     CCN51 acidez.testa     0.999 0.942 
##  3 2     CCN51 acidez.testa     0.932 0.497 
##  4 3     CCN51 acidez.testa     0.942 0.537 
##  5 4     CCN51 acidez.testa     0.956 0.596 
##  6 5     CCN51 acidez.testa     0.930 0.488 
##  7 6     CCN51 acidez.testa     0.941 0.532 
##  8 0     ICS95 acidez.testa     0.980 0.726 
##  9 1     ICS95 acidez.testa     0.75  0     
## 10 2     ICS95 acidez.testa     0.962 0.626 
## 11 3     ICS95 acidez.testa     0.980 0.726 
## 12 4     ICS95 acidez.testa     0.942 0.537 
## 13 5     ICS95 acidez.testa     0.915 0.437 
## 14 6     ICS95 acidez.testa     0.814 0.149 
## 15 0     TCS01 acidez.testa     0.964 0.637 
## 16 1     TCS01 acidez.testa     1     1.00  
## 17 2     TCS01 acidez.testa     0.993 0.835 
## 18 3     TCS01 acidez.testa     0.984 0.756 
## 19 4     TCS01 acidez.testa     1     1.00  
## 20 5     TCS01 acidez.testa     0.792 0.0944
## 21 6     TCS01 acidez.testa     0.923 0.463
##Create QQ plot for each cell of design:

ggqqplot(datos.curve2, "acidez.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve2 %>%
  group_by(diam2) %>%
  levene_test(acidez.testa ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6    0.934  0.444
## 2 1         2     6    1.39   0.319
## 3 2         2     6    0.995  0.423
## 4 3         2     6    1.73   0.255
## 5 4         2     6    2.26   0.186
## 6 5         2     6    0.0539 0.948
## 7 6         2     6    0.208  0.818
##Computation

res.aov2 <- anova_test(
  data = datos.curve2, dv = acidez.testa, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect DFn DFd      F        p p<.05   ges
## 1       gen   2   6 12.264 8.00e-03     * 0.479
## 2     diam2   6  36 14.002 3.77e-08     * 0.644
## 3 gen:diam2  12  36  2.549 1.50e-02     * 0.397
#CCN51
datos.ccn<-filter(datos.curve2, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 4.953 0.009     * 0.638
#ICS95
datos.ics<-filter(datos.curve2, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F        p p<.05 ges
## 1  diam2   6  12 8.636 0.000871     * 0.8
#TCS01
datos.tcs<-filter(datos.curve2, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 6.598 0.003     * 0.714
## Protocol 2 (T2)

datos.curve3<-filter(datos, curva=="T2")

##Check assumptions
##Outliers

datos.curve3 %>%
  group_by(gen, diam2) %>%
  identify_outliers(acidez.testa)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve3 %>%
  group_by(gen, diam2) %>%
  shapiro_test(acidez.testa)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable     statistic      p
##    <fct> <fct> <chr>            <dbl>  <dbl>
##  1 0     CCN51 acidez.testa     0.979 0.722 
##  2 1     CCN51 acidez.testa     0.823 0.170 
##  3 2     CCN51 acidez.testa     0.884 0.337 
##  4 3     CCN51 acidez.testa     0.831 0.190 
##  5 4     CCN51 acidez.testa     0.759 0.0197
##  6 5     CCN51 acidez.testa     0.904 0.397 
##  7 6     CCN51 acidez.testa     0.918 0.446 
##  8 0     ICS95 acidez.testa     0.974 0.689 
##  9 1     ICS95 acidez.testa     0.999 0.954 
## 10 2     ICS95 acidez.testa     0.870 0.296 
## 11 3     ICS95 acidez.testa     0.978 0.717 
## 12 4     ICS95 acidez.testa     0.999 0.928 
## 13 5     ICS95 acidez.testa     0.928 0.480 
## 14 6     ICS95 acidez.testa     0.908 0.411 
## 15 0     TCS01 acidez.testa     0.988 0.786 
## 16 1     TCS01 acidez.testa     0.965 0.641 
## 17 2     TCS01 acidez.testa     0.920 0.452 
## 18 3     TCS01 acidez.testa     0.997 0.898 
## 19 4     TCS01 acidez.testa     0.987 0.780 
## 20 5     TCS01 acidez.testa     0.841 0.217 
## 21 6     TCS01 acidez.testa     0.924 0.468
##Create QQ plot for each cell of design:

ggqqplot(datos.curve3, "acidez.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve3 %>%
  group_by(diam2) %>%
  levene_test(acidez.testa ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6    0.472  0.645
## 2 1         2     6    1.38   0.321
## 3 2         2     6    0.0562 0.946
## 4 3         2     6    0.340  0.725
## 5 4         2     6    1.37   0.323
## 6 5         2     6    0.758  0.509
## 7 6         2     6    0.308  0.746
##Computation

res.aov2 <- anova_test(
  data = datos.curve3, dv = acidez.testa, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect DFn DFd      F        p p<.05   ges
## 1       gen   2   6 35.993 4.55e-04     * 0.718
## 2     diam2   6  36 27.554 4.58e-12     * 0.783
## 3 gen:diam2  12  36  6.044 1.21e-05     * 0.613
#CCN51
datos.ccn<-filter(datos.curve3, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 30.175 1.45e-06     * 0.935
#ICS95
datos.ics<-filter(datos.curve3, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F     p p<.05  ges
## 1  diam2   6  12 17.165 3e-05     * 0.82
#TCS01
datos.tcs<-filter(datos.curve3, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = acidez.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 2.141 0.123       0.467
## Gráficas por réplica y genotipo
datos$diam2<-as.numeric(as.character(datos$diam2))
##Gráfica por réplica compuesta
pht<- ggplot(datos, aes(x = diam2)) +
  facet_grid(curva~gen*muestra) +
  geom_line(aes(y=acidez.testa)) +
  geom_point(aes(y=acidez.testa)) +
  scale_y_continuous(name = expression("Testa acidity")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 linewidth = 0.25)) +
  theme(text = element_text(size = 12))

pht

## Gráfica por genotipo

datos2<-summarySE (datos, measurevar = "acidez.testa", groupvars = c("curva", "gen","diam2"))
write.csv(datos2, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data_out/acidity_mean_testa.csv")

pht2<- ggplot(datos2, aes(x = diam2)) +
  facet_grid(curva~gen) +
  geom_errorbar(aes(ymin=acidez.testa-ci, ymax=acidez.testa+ci), width=.1) +
  geom_line(aes(y=acidez.testa)) +
  geom_point(aes(y=acidez.testa)) +
  scale_y_continuous(name = expression("Testa acidity")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 linewidth = 0.25)) +
  theme(text = element_text(size = 15))  
pht2