setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data")
datos<-read.table("todos_phys.csv", header=T, sep=',')
datos$curva <- factor(datos$curva, levels = c("1", "2", "3"), 
                      labels = c("T3", "T1", "T2"))
datos$gen<-as.factor(datos$gen)
datos$curva<-as.factor(datos$curva)
datos$id<-as.factor(datos$id)
datos$muestra<-as.factor(datos$muestra)
datos$diam2<-as.factor(datos$diam2)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ tibble  3.2.1     ✔ purrr   1.0.1
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.1     ✔ forcats 1.0.0
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'stringr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::arrange()   masks plyr::arrange()
## ✖ purrr::compact()   masks plyr::compact()
## ✖ dplyr::count()     masks plyr::count()
## ✖ dplyr::desc()      masks plyr::desc()
## ✖ dplyr::failwith()  masks plyr::failwith()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::id()        masks plyr::id()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::mutate()    masks plyr::mutate()
## ✖ dplyr::rename()    masks plyr::rename()
## ✖ dplyr::summarise() masks plyr::summarise()
## ✖ dplyr::summarize() masks plyr::summarize()
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
library(emmeans)
##Summary statistics
summ<-datos %>%
  group_by(curva, gen, diam2) %>%
  get_summary_stats(acidez.grano, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 7
##    curva diam2 gen   variable         n  mean    sd
##    <fct> <fct> <fct> <chr>        <dbl> <dbl> <dbl>
##  1 T3    0     CCN51 acidez.grano     3 0.393 0.025
##  2 T3    1     CCN51 acidez.grano     3 0.363 0.045
##  3 T3    2     CCN51 acidez.grano     3 0.3   0    
##  4 T3    3     CCN51 acidez.grano     3 0.577 0.07 
##  5 T3    4     CCN51 acidez.grano     3 0.567 0.103
##  6 T3    5     CCN51 acidez.grano     3 0.643 0.046
##  7 T3    6     CCN51 acidez.grano     3 0.32  0.165
##  8 T3    0     ICS95 acidez.grano     3 0.37  0.036
##  9 T3    1     ICS95 acidez.grano     3 0.333 0.04 
## 10 T3    2     ICS95 acidez.grano     3 0.457 0.08 
## 11 T3    3     ICS95 acidez.grano     3 0.927 0.081
## 12 T3    4     ICS95 acidez.grano     3 0.8   0.436
## 13 T3    5     ICS95 acidez.grano     3 0.623 0.491
## 14 T3    6     ICS95 acidez.grano     3 0.64  0.078
## 15 T3    0     TCS01 acidez.grano     3 0.377 0.086
## 16 T3    1     TCS01 acidez.grano     3 0.387 0.085
## 17 T3    2     TCS01 acidez.grano     3 0.457 0.025
## 18 T3    3     TCS01 acidez.grano     3 1.55  0.081
## 19 T3    4     TCS01 acidez.grano     3 1.82  0.307
## 20 T3    5     TCS01 acidez.grano     3 1.87  0.1  
## 21 T3    6     TCS01 acidez.grano     3 1.31  0.258
## 22 T1    0     CCN51 acidez.grano     3 0.29  0.036
## 23 T1    1     CCN51 acidez.grano     3 0.23  0.07 
## 24 T1    2     CCN51 acidez.grano     3 0.78  0.036
## 25 T1    3     CCN51 acidez.grano     3 0.643 0.215
## 26 T1    4     CCN51 acidez.grano     3 0.953 0.381
## 27 T1    5     CCN51 acidez.grano     3 0.713 0.231
## 28 T1    6     CCN51 acidez.grano     3 0.727 0.176
## 29 T1    0     ICS95 acidez.grano     3 0.51  0.085
## 30 T1    1     ICS95 acidez.grano     3 0.26  0.02 
## 31 T1    2     ICS95 acidez.grano     3 0.82  0.036
## 32 T1    3     ICS95 acidez.grano     3 0.667 0.154
## 33 T1    4     ICS95 acidez.grano     3 0.793 0.126
## 34 T1    5     ICS95 acidez.grano     3 0.447 0.031
## 35 T1    6     ICS95 acidez.grano     3 0.507 0.076
## 36 T1    0     TCS01 acidez.grano     3 0.467 0.049
## 37 T1    1     TCS01 acidez.grano     3 0.36  0.072
## 38 T1    2     TCS01 acidez.grano     3 0.53  0.044
## 39 T1    3     TCS01 acidez.grano     3 0.603 0.029
## 40 T1    4     TCS01 acidez.grano     3 0.493 0.055
## 41 T1    5     TCS01 acidez.grano     3 0.63  0.035
## 42 T1    6     TCS01 acidez.grano     3 0.49  0.07 
## 43 T2    0     CCN51 acidez.grano     3 0.376 0.01 
## 44 T2    1     CCN51 acidez.grano     3 0.19  0.034
## 45 T2    2     CCN51 acidez.grano     3 0.31  0.096
## 46 T2    3     CCN51 acidez.grano     3 0.931 0.033
## 47 T2    4     CCN51 acidez.grano     3 1.04  0.159
## 48 T2    5     CCN51 acidez.grano     3 0.703 0.133
## 49 T2    6     CCN51 acidez.grano     3 0.513 0.062
## 50 T2    0     ICS95 acidez.grano     3 0.34  0.056
## 51 T2    1     ICS95 acidez.grano     3 0.188 0.007
## 52 T2    2     ICS95 acidez.grano     3 0.2   0.054
## 53 T2    3     ICS95 acidez.grano     3 0.388 0.167
## 54 T2    4     ICS95 acidez.grano     3 0.493 0.307
## 55 T2    5     ICS95 acidez.grano     3 0.457 0.203
## 56 T2    6     ICS95 acidez.grano     3 0.336 0.126
## 57 T2    0     TCS01 acidez.grano     3 0.226 0.044
## 58 T2    1     TCS01 acidez.grano     3 0.19  0.032
## 59 T2    2     TCS01 acidez.grano     3 0.33  0.215
## 60 T2    3     TCS01 acidez.grano     3 0.335 0.063
## 61 T2    4     TCS01 acidez.grano     3 0.611 0.173
## 62 T2    5     TCS01 acidez.grano     3 0.633 0.261
## 63 T2    6     TCS01 acidez.grano     3 0.451 0.185
##Visualization
bxp <- ggboxplot(
  datos, x = "curva", y = "acidez.grano",
  color = "diam2", palette = "jco",
  facet.by =  "gen"
)
bxp

##Check assumptions
##Outliers

datos %>%
  group_by(curva, gen, diam2) %>%
  identify_outliers(acidez.grano)
##  [1] curva        diam2        gen          time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm<-datos %>%
  group_by(curva, gen, diam2) #%>%
  #shapiro_test(acidez.grano)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 189 × 10
##     curva diam2 time.let gen   muestra ph.testa acidez.testa ph.grano
##     <fct> <fct> <chr>    <fct> <fct>      <dbl>        <dbl>    <dbl>
##   1 T3    0     cero     CCN51 14          3.19        0.79      5.58
##   2 T3    0     cero     CCN51 25          3.18        0.93      5.63
##   3 T3    0     cero     CCN51 36          3.20        0.67      5.59
##   4 T3    0     cero     ICS95 14          3.24        1.07      5.66
##   5 T3    0     cero     ICS95 25          3.24        0.85      5.60
##   6 T3    0     cero     ICS95 36          3.23        0.93      5.55
##   7 T3    0     cero     TCS01 14          3.69        0.69      5.67
##   8 T3    0     cero     TCS01 25          3.58        0.69      5.70
##   9 T3    0     cero     TCS01 36          3.60        0.8       5.70
##  10 T1    0     cero     CCN51 14          3.06        0.58      5.49
##  11 T1    0     cero     CCN51 25          2.92        0.66      5.38
##  12 T1    0     cero     CCN51 36          2.89        0.67      5.36
##  13 T1    0     cero     ICS95 14          2.96        0.61      5.04
##  14 T1    0     cero     ICS95 25          2.82        0.71      4.94
##  15 T1    0     cero     ICS95 36          2.78        0.77      5.15
##  16 T1    0     cero     TCS01 14          3.45        0.6       5.69
##  17 T1    0     cero     TCS01 25          3.53        0.59      5.42
##  18 T1    0     cero     TCS01 36          3.42        0.57      5.51
##  19 T2    0     cero     CCN51 14          2.38        0.912     5.31
##  20 T2    0     cero     CCN51 25          2.57        0.887     5.37
##  21 T2    0     cero     CCN51 36          2.25        0.845     5.32
##  22 T2    0     cero     ICS95 14          2.80        0.792     5.37
##  23 T2    0     cero     ICS95 25          3.72        0.695     6.52
##  24 T2    0     cero     ICS95 36          3.76        0.641     6.45
##  25 T2    0     cero     TCS01 14          3.63        0.659     6.12
##  26 T2    0     cero     TCS01 25          3.22        0.719     5.86
##  27 T2    0     cero     TCS01 36          3.07        0.808     5.42
##  28 T3    1     uno      CCN51 14          3.19        0.83      5.60
##  29 T3    1     uno      CCN51 25          3.12        0.92      5.52
##  30 T3    1     uno      CCN51 36          3.09        1.12      5.46
##  31 T3    1     uno      ICS95 14          3.11        0.9       5.45
##  32 T3    1     uno      ICS95 25          3.65        1.1       5.48
##  33 T3    1     uno      ICS95 36          3.03        1.18      5.57
##  34 T3    1     uno      TCS01 14          3.29        0.76      5.36
##  35 T3    1     uno      TCS01 25          3.44        0.82      5.55
##  36 T3    1     uno      TCS01 36          3.23        1.1       4.79
##  37 T1    1     uno      CCN51 14          2.79        1.14      5.73
##  38 T1    1     uno      CCN51 25          2.85        0.87      5.55
##  39 T1    1     uno      CCN51 36          2.67        1.44      5.44
##  40 T1    1     uno      ICS95 14          2.45        1.27      5.39
##  41 T1    1     uno      ICS95 25          2.40        1.14      5.32
##  42 T1    1     uno      ICS95 36          2.25        1.14      5.35
##  43 T1    1     uno      TCS01 14          2.49        0.94      5.19
##  44 T1    1     uno      TCS01 25          2.4         1.06      5.64
##  45 T1    1     uno      TCS01 36          3.05        0.82      5.01
##  46 T2    1     uno      CCN51 14          3.17        1.16      6.55
##  47 T2    1     uno      CCN51 25          3.12        1.14      6.48
##  48 T2    1     uno      CCN51 36          3.09        1.34      6.02
##  49 T2    1     uno      ICS95 14          2.90        1.26      6.6 
##  50 T2    1     uno      ICS95 25          2.85        1.31      6.88
##  51 T2    1     uno      ICS95 36          2.98        1.28      6.74
##  52 T2    1     uno      TCS01 14          3.34        0.9       6.57
##  53 T2    1     uno      TCS01 25          2.94        1.40      5.97
##  54 T2    1     uno      TCS01 36          3.09        1.07      6.40
##  55 T3    2     dos      CCN51 14          3.84        0.24      5.36
##  56 T3    2     dos      CCN51 25          4.17        0.2       5.46
##  57 T3    2     dos      CCN51 36          4.06        0.22      5.54
##  58 T3    2     dos      ICS95 14          3.35        0.28      5.16
##  59 T3    2     dos      ICS95 25          3.48        0.49      4.51
##  60 T3    2     dos      ICS95 36          3.64        0.34      5.13
##  61 T3    2     dos      TCS01 14          3.67        0.79      5.17
##  62 T3    2     dos      TCS01 25          3.66        0.65      4.46
##  63 T3    2     dos      TCS01 36          3.70        0.89      4.67
##  64 T1    2     dos      CCN51 14          2.56        0.99      4.41
##  65 T1    2     dos      CCN51 25          2.57        1.1       4.15
##  66 T1    2     dos      CCN51 36          2.53        0.95      4.36
##  67 T1    2     dos      ICS95 14          1.82        1.56      4.35
##  68 T1    2     dos      ICS95 25          1.87        1.34      4.05
##  69 T1    2     dos      ICS95 36          1.98        0.89      4.21
##  70 T1    2     dos      TCS01 14          3.59        0.72      4.96
##  71 T1    2     dos      TCS01 25          3.19        0.89      4.91
##  72 T1    2     dos      TCS01 36          3.37        0.49      5.10
##  73 T2    2     dos      CCN51 14          3.13        1.95      5.72
##  74 T2    2     dos      CCN51 25          3.07        2.27      5.32
##  75 T2    2     dos      CCN51 36          3.10        2.34      5.20
##  76 T2    2     dos      ICS95 14          2.91        1.7       5.99
##  77 T2    2     dos      ICS95 25          2.94        1.33      6.12
##  78 T2    2     dos      ICS95 36          3.01        1.26      6.04
##  79 T2    2     dos      TCS01 14          3.62        0.779     6.15
##  80 T2    2     dos      TCS01 25          3.39        1.19      4.39
##  81 T2    2     dos      TCS01 36          3.87        0.647     5.81
##  82 T3    3     tres     CCN51 14          3.97        0.31      4.69
##  83 T3    3     tres     CCN51 25          4.31        0.22      4.84
##  84 T3    3     tres     CCN51 36          3.92        0.33      4.56
##  85 T3    3     tres     ICS95 14          3.11        0.83      3.77
##  86 T3    3     tres     ICS95 25          3.28        0.47      3.91
##  87 T3    3     tres     ICS95 36          2.71        1.68      3.18
##  88 T3    3     tres     TCS01 14          3.54        2         3.78
##  89 T3    3     tres     TCS01 25          3.51        2.07      3.62
##  90 T3    3     tres     TCS01 36          3.48        2.33      3.56
##  91 T1    3     tres     CCN51 14          3.28        1.58      4.68
##  92 T1    3     tres     CCN51 25          3.40        1.03      5.01
##  93 T1    3     tres     CCN51 36          3.20        1.8       4.08
##  94 T1    3     tres     ICS95 14          2.53        1.14      4.95
##  95 T1    3     tres     ICS95 25          2.41        1.11      4.57
##  96 T1    3     tres     ICS95 36          2.34        1.19      4.45
##  97 T1    3     tres     TCS01 14          4.47        0.41      4.79
##  98 T1    3     tres     TCS01 25          4.18        0.48      4.82
##  99 T1    3     tres     TCS01 36          3.84        0.59      4.89
## 100 T2    3     tres     CCN51 14          3.41        3.26      4.64
## 101 T2    3     tres     CCN51 25          3.60        3.17      4.40
## 102 T2    3     tres     CCN51 36          3.61        2.46      4.50
## 103 T2    3     tres     ICS95 14          3.17        1.99      4.99
## 104 T2    3     tres     ICS95 25          3.3         1.69      6.38
## 105 T2    3     tres     ICS95 36          3.20        1.80      5.97
## 106 T2    3     tres     TCS01 14          4.59        0.575     5.77
## 107 T2    3     tres     TCS01 25          3.86        1.17      5.60
## 108 T2    3     tres     TCS01 36          4.17        0.899     6.01
## 109 T3    4     cuatro   CCN51 14          3.66        0.39      4.44
## 110 T3    4     cuatro   CCN51 25          4.12        0.34      4.22
## 111 T3    4     cuatro   CCN51 36          3.90        0.47      4.26
## 112 T3    4     cuatro   ICS95 14          3.83        0.74      4.19
## 113 T3    4     cuatro   ICS95 25          3.86        0.62      4.17
## 114 T3    4     cuatro   ICS95 36          3.51        1.26      3.56
## 115 T3    4     cuatro   TCS01 14          3.70        2.22      3.79
## 116 T3    4     cuatro   TCS01 25          3.65        1.89      3.70
## 117 T3    4     cuatro   TCS01 36          3.56        2.27      3.53
## 118 T1    4     cuatro   CCN51 14          3.46        1.29      3.81
## 119 T1    4     cuatro   CCN51 25          5.50        0.43      4.95
## 120 T1    4     cuatro   CCN51 36          4.92        0.7       3.74
## 121 T1    4     cuatro   ICS95 14          2.67        1.28      4.36
## 122 T1    4     cuatro   ICS95 25          2.51        1.21      4.08
## 123 T1    4     cuatro   ICS95 36          2.43        1.23      4.14
## 124 T1    4     cuatro   TCS01 14          5.85        0.41      5.32
## 125 T1    4     cuatro   TCS01 25          5.47        0.46      3.15
## 126 T1    4     cuatro   TCS01 36          5.25        0.36      4.88
## 127 T2    4     cuatro   CCN51 14          3.68        2.1       4.46
## 128 T2    4     cuatro   CCN51 25          3.71        1.93      4.47
## 129 T2    4     cuatro   CCN51 36          3.78        2.10      4.40
## 130 T2    4     cuatro   ICS95 14          3.31        2.04      4.71
## 131 T2    4     cuatro   ICS95 25          3.46        1.08      5.98
## 132 T2    4     cuatro   ICS95 36          3.31        1.53      5.32
## 133 T2    4     cuatro   TCS01 14          4.08        1.71      4.82
## 134 T2    4     cuatro   TCS01 25          4.20        0.93      4.58
## 135 T2    4     cuatro   TCS01 36          5.22        0.413     5.44
## 136 T3    5     cinco    CCN51 14          5.18        0.4       4.56
## 137 T3    5     cinco    CCN51 25          5.23        0.34      4.26
## 138 T3    5     cinco    CCN51 36          5.21        0.35      4.28
## 139 T3    5     cinco    ICS95 14          5.95        0.24      5.04
## 140 T3    5     cinco    ICS95 25          4.35        0.61      5.33
## 141 T3    5     cinco    ICS95 36          4.72        0.48      3.62
## 142 T3    5     cinco    TCS01 14          3.26        1.82      3.02
## 143 T3    5     cinco    TCS01 25          3.11        1.82      2.67
## 144 T3    5     cinco    TCS01 36          3.01        2.05      2.78
## 145 T1    5     cinco    CCN51 14          5.46        0.47      4.50
## 146 T1    5     cinco    CCN51 25          6.29        0.36      5.49
## 147 T1    5     cinco    CCN51 36          5.00        0.78      5.12
## 148 T1    5     cinco    ICS95 14          4.42        0.58      5.33
## 149 T1    5     cinco    ICS95 25          3.79        0.87      5.44
## 150 T1    5     cinco    ICS95 36          4.45        0.49      5.42
## 151 T1    5     cinco    TCS01 14          6.52        0.21      4.78
## 152 T1    5     cinco    TCS01 25          5.59        0.75      4.96
## 153 T1    5     cinco    TCS01 36          6.60        0.24      5.49
## 154 T2    5     cinco    CCN51 14          4.32        1.04      5.03
## 155 T2    5     cinco    CCN51 25          3.94        1.74      4.7 
## 156 T2    5     cinco    CCN51 36          3.96        1.59      4.73
## 157 T2    5     cinco    ICS95 14          3.72        1.30      5.01
## 158 T2    5     cinco    ICS95 25          3.68        1.23      5.88
## 159 T2    5     cinco    ICS95 36          3.68        1.25      5.66
## 160 T2    5     cinco    TCS01 14          7.00        0.144     5.73
## 161 T2    5     cinco    TCS01 25          4.89        0.67      4.89
## 162 T2    5     cinco    TCS01 36          5.32        0.605     4.94
## 163 T3    6     seis     CCN51 14          6.52        0.12      5.51
## 164 T3    6     seis     CCN51 25          6.66        0.12      4.16
## 165 T3    6     seis     CCN51 36          6.79        0.11      5.47
## 166 T3    6     seis     ICS95 14          6.74        0.17      5.15
## 167 T3    6     seis     ICS95 25          6.58        0.21      4.82
## 168 T3    6     seis     ICS95 36          6.53        0.13      4.36
## 169 T3    6     seis     TCS01 14          4.57        1.11      4.22
## 170 T3    6     seis     TCS01 25          4.26        1.07      3.85
## 171 T3    6     seis     TCS01 36          4.45        0.92      4.08
## 172 T1    6     seis     CCN51 14          5.38        0.96      4.96
## 173 T1    6     seis     CCN51 25          5.62        0.48      4.45
## 174 T1    6     seis     CCN51 36          5.60        0.29      5.62
## 175 T1    6     seis     ICS95 14          5.76        0.03      5.92
## 176 T1    6     seis     ICS95 25          4.60        0.61      5.21
## 177 T1    6     seis     ICS95 36          4.75        0.56      5.38
## 178 T1    6     seis     TCS01 14          7.05        0.12      5.73
## 179 T1    6     seis     TCS01 25          6.97        0.2       5.77
## 180 T1    6     seis     TCS01 36          6.40        0.44      5.89
## 181 T2    6     seis     CCN51 14          5.85        0.672     5.39
## 182 T2    6     seis     CCN51 25          5.02        0.714     5.00
## 183 T2    6     seis     CCN51 36          5.02        0.846     5.27
## 184 T2    6     seis     ICS95 14          4.52        0.899     5.44
## 185 T2    6     seis     ICS95 25          4.61        0.629     6.31
## 186 T2    6     seis     ICS95 36          4.87        0.551     5.87
## 187 T2    6     seis     TCS01 14          7.63        0.126     6.40
## 188 T2    6     seis     TCS01 25          5.51        0.534     5.14
## 189 T2    6     seis     TCS01 36          6.47        0.431     5.32
## # ℹ 2 more variables: acidez.grano <dbl>, id <fct>
##Create QQ plot for each cell of design:

ggqqplot(datos, "acidez.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev<-datos %>%
  group_by(diam2) %>%
  levene_test(acidez.grano ~ curva*gen)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         8    18     0.606 0.761
## 2 1         8    18     0.683 0.701
## 3 2         8    18     0.925 0.519
## 4 3         8    18     0.692 0.694
## 5 4         8    18     0.859 0.567
## 6 5         8    18     0.687 0.698
## 7 6         8    18     0.378 0.919
##Computation

res.aov <- anova_test(
  data = datos, dv = acidez.grano, wid = id,
  within = diam2, between = c(curva, gen)
)
res.aov
## ANOVA Table (type II tests)
## 
## $ANOVA
##            Effect DFn DFd      F        p p<.05   ges
## 1           curva   2  18 23.528 9.50e-06     * 0.453
## 2             gen   2  18  9.282 2.00e-03     * 0.246
## 3           diam2   6 108 64.315 2.12e-33     * 0.710
## 4       curva:gen   4  18 23.318 6.48e-07     * 0.621
## 5     curva:diam2  12 108  9.215 5.31e-12     * 0.412
## 6       gen:diam2  12 108  5.609 2.12e-07     * 0.299
## 7 curva:gen:diam2  24 108  8.569 9.55e-16     * 0.566
## 
## $`Mauchly's Test for Sphericity`
##            Effect     W        p p<.05
## 1           diam2 0.014 7.24e-07     *
## 2     curva:diam2 0.014 7.24e-07     *
## 3       gen:diam2 0.014 7.24e-07     *
## 4 curva:gen:diam2 0.014 7.24e-07     *
## 
## $`Sphericity Corrections`
##            Effect   GGe      DF[GG]    p[GG] p[GG]<.05   HFe      DF[HF]
## 1           diam2 0.408 2.45, 44.05 6.01e-15         * 0.477  2.86, 51.5
## 2     curva:diam2 0.408 4.89, 44.05 5.30e-06         * 0.477  5.72, 51.5
## 3       gen:diam2 0.408 4.89, 44.05 4.75e-04         * 0.477  5.72, 51.5
## 4 curva:gen:diam2 0.408 9.79, 44.05 1.67e-07         * 0.477 11.44, 51.5
##      p[HF] p[HF]<.05
## 1 4.18e-17         *
## 2 1.04e-06         *
## 3 1.90e-04         *
## 4 1.79e-08         *
get_anova_table(res.aov)
## ANOVA Table (type II tests)
## 
##            Effect  DFn   DFd      F        p p<.05   ges
## 1           curva 2.00 18.00 23.528 9.50e-06     * 0.453
## 2             gen 2.00 18.00  9.282 2.00e-03     * 0.246
## 3           diam2 2.45 44.05 64.315 6.01e-15     * 0.710
## 4       curva:gen 4.00 18.00 23.318 6.48e-07     * 0.621
## 5     curva:diam2 4.89 44.05  9.215 5.30e-06     * 0.412
## 6       gen:diam2 4.89 44.05  5.609 4.75e-04     * 0.299
## 7 curva:gen:diam2 9.79 44.05  8.569 1.67e-07     * 0.566
#Table by error
res.aov.error <- aov(acidez.grano ~ diam2*curva*gen + Error(id/diam2), datos)
res.aov.error
## 
## Call:
## aov(formula = acidez.grano ~ diam2 * curva * gen + Error(id/diam2), 
##     data = datos)
## 
## Grand Mean: 0.5751481
## 
## Stratum 1: id
## 
## Terms:
##                    curva      gen curva:gen Residuals
## Sum of Squares  2.446662 0.965281  4.849728  0.935919
## Deg. of Freedom        2        2         4        18
## 
## Residual standard error: 0.2280252
## 48 out of 56 effects not estimable
## Estimated effects may be unbalanced
## 
## Stratum 2: id:diam2
## 
## Terms:
##                    diam2 diam2:curva diam2:gen diam2:curva:gen Residuals
## Sum of Squares  7.228258    2.071277  1.260815        3.852067  2.022980
## Deg. of Freedom        6          12        12              24       108
## 
## Residual standard error: 0.1368623
## Estimated effects may be unbalanced
## Emmeans
emmip(res.aov.error, gen ~ diam2 | curva)
## Note: re-fitting model with sum-to-zero contrasts

emm_curva <- emmeans(res.aov.error, pairwise ~ curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_curva
## $emmeans
##  curva emmean     SE df lower.CL upper.CL
##  T3     0.718 0.0287 18    0.658    0.779
##  T1     0.567 0.0287 18    0.507    0.628
##  T2     0.440 0.0287 18    0.380    0.500
## 
## Results are averaged over the levels of: diam2, gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate     SE df t.ratio p.value
##  T3 - T1     0.151 0.0406 18   3.715  0.0043
##  T3 - T2     0.278 0.0406 18   6.852  <.0001
##  T1 - T2     0.127 0.0406 18   3.136  0.0150
## 
## Results are averaged over the levels of: diam2, gen 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_curva <- emmeans(res.aov.error, pairwise ~ gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_gen_curva
## $emmeans
## curva = T3:
##  gen   emmean     SE df lower.CL upper.CL
##  CCN51  0.452 0.0498 18    0.347    0.556
##  ICS95  0.593 0.0498 18    0.488    0.697
##  TCS01  1.110 0.0498 18    1.005    1.215
## 
## curva = T1:
##  gen   emmean     SE df lower.CL upper.CL
##  CCN51  0.620 0.0498 18    0.515    0.724
##  ICS95  0.572 0.0498 18    0.467    0.676
##  TCS01  0.510 0.0498 18    0.406    0.615
## 
## curva = T2:
##  gen   emmean     SE df lower.CL upper.CL
##  CCN51  0.580 0.0498 18    0.475    0.684
##  ICS95  0.343 0.0498 18    0.239    0.448
##  TCS01  0.397 0.0498 18    0.292    0.501
## 
## Results are averaged over the levels of: diam2 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast      estimate     SE df t.ratio p.value
##  CCN51 - ICS95  -0.1410 0.0704 18  -2.003  0.1402
##  CCN51 - TCS01  -0.6581 0.0704 18  -9.352  <.0001
##  ICS95 - TCS01  -0.5171 0.0704 18  -7.349  <.0001
## 
## curva = T1:
##  contrast      estimate     SE df t.ratio p.value
##  CCN51 - ICS95   0.0476 0.0704 18   0.677  0.7798
##  CCN51 - TCS01   0.1090 0.0704 18   1.550  0.2924
##  ICS95 - TCS01   0.0614 0.0704 18   0.873  0.6637
## 
## curva = T2:
##  contrast      estimate     SE df t.ratio p.value
##  CCN51 - ICS95   0.2366 0.0704 18   3.362  0.0092
##  CCN51 - TCS01   0.1831 0.0704 18   2.603  0.0452
##  ICS95 - TCS01  -0.0535 0.0704 18  -0.760  0.7316
## 
## Results are averaged over the levels of: diam2 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_diam2 <- emmeans(res.aov.error, pairwise ~ diam2 | curva*gen)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2
## $emmeans
## curva = T3, gen = CCN51:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.393 0.0885 101   0.2178    0.569
##  1      0.363 0.0885 101   0.1878    0.539
##  2      0.300 0.0885 101   0.1245    0.476
##  3      0.577 0.0885 101   0.4012    0.752
##  4      0.567 0.0885 101   0.3912    0.742
##  5      0.643 0.0885 101   0.4678    0.819
##  6      0.320 0.0885 101   0.1445    0.496
## 
## curva = T1, gen = CCN51:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.290 0.0885 101   0.1145    0.466
##  1      0.230 0.0885 101   0.0545    0.406
##  2      0.780 0.0885 101   0.6045    0.956
##  3      0.643 0.0885 101   0.4678    0.819
##  4      0.953 0.0885 101   0.7778    1.129
##  5      0.713 0.0885 101   0.5378    0.889
##  6      0.727 0.0885 101   0.5512    0.902
## 
## curva = T2, gen = CCN51:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.376 0.0885 101   0.2002    0.551
##  1      0.190 0.0885 101   0.0145    0.366
##  2      0.310 0.0885 101   0.1342    0.485
##  3      0.931 0.0885 101   0.7558    1.107
##  4      1.036 0.0885 101   0.8602    1.211
##  5      0.703 0.0885 101   0.5275    0.879
##  6      0.513 0.0885 101   0.3378    0.689
## 
## curva = T3, gen = ICS95:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.370 0.0885 101   0.1945    0.546
##  1      0.333 0.0885 101   0.1578    0.509
##  2      0.457 0.0885 101   0.2812    0.632
##  3      0.927 0.0885 101   0.7512    1.102
##  4      0.800 0.0885 101   0.6245    0.976
##  5      0.623 0.0885 101   0.4478    0.799
##  6      0.640 0.0885 101   0.4645    0.816
## 
## curva = T1, gen = ICS95:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.510 0.0885 101   0.3345    0.686
##  1      0.260 0.0885 101   0.0845    0.436
##  2      0.820 0.0885 101   0.6445    0.996
##  3      0.667 0.0885 101   0.4912    0.842
##  4      0.793 0.0885 101   0.6178    0.969
##  5      0.447 0.0885 101   0.2712    0.622
##  6      0.507 0.0885 101   0.3312    0.682
## 
## curva = T2, gen = ICS95:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.340 0.0885 101   0.1645    0.516
##  1      0.188 0.0885 101   0.0125    0.364
##  2      0.200 0.0885 101   0.0245    0.376
##  3      0.388 0.0885 101   0.2125    0.564
##  4      0.493 0.0885 101   0.3178    0.669
##  5      0.457 0.0885 101   0.2818    0.633
##  6      0.336 0.0885 101   0.1602    0.511
## 
## curva = T3, gen = TCS01:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.377 0.0885 101   0.2012    0.552
##  1      0.387 0.0885 101   0.2112    0.562
##  2      0.457 0.0885 101   0.2812    0.632
##  3      1.547 0.0885 101   1.3712    1.722
##  4      1.823 0.0885 101   1.6478    1.999
##  5      1.867 0.0885 101   1.6912    2.042
##  6      1.313 0.0885 101   1.1378    1.489
## 
## curva = T1, gen = TCS01:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.467 0.0885 101   0.2912    0.642
##  1      0.360 0.0885 101   0.1845    0.536
##  2      0.530 0.0885 101   0.3545    0.706
##  3      0.603 0.0885 101   0.4278    0.779
##  4      0.493 0.0885 101   0.3178    0.669
##  5      0.630 0.0885 101   0.4545    0.806
##  6      0.490 0.0885 101   0.3145    0.666
## 
## curva = T2, gen = TCS01:
##  diam2 emmean     SE  df lower.CL upper.CL
##  0      0.226 0.0885 101   0.0502    0.401
##  1      0.190 0.0885 101   0.0142    0.365
##  2      0.330 0.0885 101   0.1545    0.506
##  3      0.335 0.0885 101   0.1598    0.511
##  4      0.611 0.0885 101   0.4358    0.787
##  5      0.633 0.0885 101   0.4578    0.809
##  6      0.451 0.0885 101   0.2758    0.627
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.03000 0.112 108   0.268  1.0000
##  0 - 2     0.09333 0.112 108   0.835  0.9807
##  0 - 3    -0.18333 0.112 108  -1.641  0.6565
##  0 - 4    -0.17333 0.112 108  -1.551  0.7133
##  0 - 5    -0.25000 0.112 108  -2.237  0.2848
##  0 - 6     0.07333 0.112 108   0.656  0.9946
##  1 - 2     0.06333 0.112 108   0.567  0.9976
##  1 - 3    -0.21333 0.112 108  -1.909  0.4789
##  1 - 4    -0.20333 0.112 108  -1.820  0.5380
##  1 - 5    -0.28000 0.112 108  -2.506  0.1676
##  1 - 6     0.04333 0.112 108   0.388  0.9997
##  2 - 3    -0.27667 0.112 108  -2.476  0.1786
##  2 - 4    -0.26667 0.112 108  -2.386  0.2145
##  2 - 5    -0.34333 0.112 108  -3.072  0.0416
##  2 - 6    -0.02000 0.112 108  -0.179  1.0000
##  3 - 4     0.01000 0.112 108   0.089  1.0000
##  3 - 5    -0.06667 0.112 108  -0.597  0.9968
##  3 - 6     0.25667 0.112 108   2.297  0.2551
##  4 - 5    -0.07667 0.112 108  -0.686  0.9931
##  4 - 6     0.24667 0.112 108   2.207  0.3003
##  5 - 6     0.32333 0.112 108   2.893  0.0670
## 
## curva = T1, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.06000 0.112 108   0.537  0.9982
##  0 - 2    -0.49000 0.112 108  -4.385  0.0005
##  0 - 3    -0.35333 0.112 108  -3.162  0.0323
##  0 - 4    -0.66333 0.112 108  -5.936  <.0001
##  0 - 5    -0.42333 0.112 108  -3.788  0.0045
##  0 - 6    -0.43667 0.112 108  -3.908  0.0030
##  1 - 2    -0.55000 0.112 108  -4.922  0.0001
##  1 - 3    -0.41333 0.112 108  -3.699  0.0061
##  1 - 4    -0.72333 0.112 108  -6.473  <.0001
##  1 - 5    -0.48333 0.112 108  -4.325  0.0007
##  1 - 6    -0.49667 0.112 108  -4.445  0.0004
##  2 - 3     0.13667 0.112 108   1.223  0.8838
##  2 - 4    -0.17333 0.112 108  -1.551  0.7133
##  2 - 5     0.06667 0.112 108   0.597  0.9968
##  2 - 6     0.05333 0.112 108   0.477  0.9991
##  3 - 4    -0.31000 0.112 108  -2.774  0.0905
##  3 - 5    -0.07000 0.112 108  -0.626  0.9958
##  3 - 6    -0.08333 0.112 108  -0.746  0.9893
##  4 - 5     0.24000 0.112 108   2.148  0.3329
##  4 - 6     0.22667 0.112 108   2.028  0.4031
##  5 - 6    -0.01333 0.112 108  -0.119  1.0000
## 
## curva = T2, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.18567 0.112 108   1.661  0.6429
##  0 - 2     0.06600 0.112 108   0.591  0.9970
##  0 - 3    -0.55567 0.112 108  -4.973  0.0001
##  0 - 4    -0.66000 0.112 108  -5.906  <.0001
##  0 - 5    -0.32733 0.112 108  -2.929  0.0611
##  0 - 6    -0.13767 0.112 108  -1.232  0.8801
##  1 - 2    -0.11967 0.112 108  -1.071  0.9353
##  1 - 3    -0.74133 0.112 108  -6.634  <.0001
##  1 - 4    -0.84567 0.112 108  -7.568  <.0001
##  1 - 5    -0.51300 0.112 108  -4.591  0.0002
##  1 - 6    -0.32333 0.112 108  -2.893  0.0670
##  2 - 3    -0.62167 0.112 108  -5.563  <.0001
##  2 - 4    -0.72600 0.112 108  -6.497  <.0001
##  2 - 5    -0.39333 0.112 108  -3.520  0.0110
##  2 - 6    -0.20367 0.112 108  -1.823  0.5360
##  3 - 4    -0.10433 0.112 108  -0.934  0.9662
##  3 - 5     0.22833 0.112 108   2.043  0.3940
##  3 - 6     0.41800 0.112 108   3.741  0.0053
##  4 - 5     0.33267 0.112 108   2.977  0.0539
##  4 - 6     0.52233 0.112 108   4.674  0.0002
##  5 - 6     0.18967 0.112 108   1.697  0.6193
## 
## curva = T3, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.03667 0.112 108   0.328  0.9999
##  0 - 2    -0.08667 0.112 108  -0.776  0.9868
##  0 - 3    -0.55667 0.112 108  -4.981  <.0001
##  0 - 4    -0.43000 0.112 108  -3.848  0.0037
##  0 - 5    -0.25333 0.112 108  -2.267  0.2697
##  0 - 6    -0.27000 0.112 108  -2.416  0.2020
##  1 - 2    -0.12333 0.112 108  -1.104  0.9257
##  1 - 3    -0.59333 0.112 108  -5.310  <.0001
##  1 - 4    -0.46667 0.112 108  -4.176  0.0012
##  1 - 5    -0.29000 0.112 108  -2.595  0.1378
##  1 - 6    -0.30667 0.112 108  -2.744  0.0973
##  2 - 3    -0.47000 0.112 108  -4.206  0.0010
##  2 - 4    -0.34333 0.112 108  -3.072  0.0416
##  2 - 5    -0.16667 0.112 108  -1.491  0.7493
##  2 - 6    -0.18333 0.112 108  -1.641  0.6565
##  3 - 4     0.12667 0.112 108   1.134  0.9163
##  3 - 5     0.30333 0.112 108   2.714  0.1045
##  3 - 6     0.28667 0.112 108   2.565  0.1472
##  4 - 5     0.17667 0.112 108   1.581  0.6947
##  4 - 6     0.16000 0.112 108   1.432  0.7834
##  5 - 6    -0.01667 0.112 108  -0.149  1.0000
## 
## curva = T1, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.25000 0.112 108   2.237  0.2848
##  0 - 2    -0.31000 0.112 108  -2.774  0.0905
##  0 - 3    -0.15667 0.112 108  -1.402  0.7997
##  0 - 4    -0.28333 0.112 108  -2.535  0.1572
##  0 - 5     0.06333 0.112 108   0.567  0.9976
##  0 - 6     0.00333 0.112 108   0.030  1.0000
##  1 - 2    -0.56000 0.112 108  -5.011  <.0001
##  1 - 3    -0.40667 0.112 108  -3.639  0.0075
##  1 - 4    -0.53333 0.112 108  -4.773  0.0001
##  1 - 5    -0.18667 0.112 108  -1.670  0.6370
##  1 - 6    -0.24667 0.112 108  -2.207  0.3003
##  2 - 3     0.15333 0.112 108   1.372  0.8153
##  2 - 4     0.02667 0.112 108   0.239  1.0000
##  2 - 5     0.37333 0.112 108   3.341  0.0191
##  2 - 6     0.31333 0.112 108   2.804  0.0841
##  3 - 4    -0.12667 0.112 108  -1.134  0.9163
##  3 - 5     0.22000 0.112 108   1.969  0.4405
##  3 - 6     0.16000 0.112 108   1.432  0.7834
##  4 - 5     0.34667 0.112 108   3.102  0.0383
##  4 - 6     0.28667 0.112 108   2.565  0.1472
##  5 - 6    -0.06000 0.112 108  -0.537  0.9982
## 
## curva = T2, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.15200 0.112 108   1.360  0.8214
##  0 - 2     0.14000 0.112 108   1.253  0.8715
##  0 - 3    -0.04800 0.112 108  -0.430  0.9995
##  0 - 4    -0.15333 0.112 108  -1.372  0.8153
##  0 - 5    -0.11733 0.112 108  -1.050  0.9409
##  0 - 6     0.00433 0.112 108   0.039  1.0000
##  1 - 2    -0.01200 0.112 108  -0.107  1.0000
##  1 - 3    -0.20000 0.112 108  -1.790  0.5578
##  1 - 4    -0.30533 0.112 108  -2.732  0.1001
##  1 - 5    -0.26933 0.112 108  -2.410  0.2045
##  1 - 6    -0.14767 0.112 108  -1.321  0.8405
##  2 - 3    -0.18800 0.112 108  -1.682  0.6292
##  2 - 4    -0.29333 0.112 108  -2.625  0.1288
##  2 - 5    -0.25733 0.112 108  -2.303  0.2523
##  2 - 6    -0.13567 0.112 108  -1.214  0.8873
##  3 - 4    -0.10533 0.112 108  -0.943  0.9646
##  3 - 5    -0.06933 0.112 108  -0.620  0.9960
##  3 - 6     0.05233 0.112 108   0.468  0.9992
##  4 - 5     0.03600 0.112 108   0.322  0.9999
##  4 - 6     0.15767 0.112 108   1.411  0.7949
##  5 - 6     0.12167 0.112 108   1.089  0.9302
## 
## curva = T3, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -0.01000 0.112 108  -0.089  1.0000
##  0 - 2    -0.08000 0.112 108  -0.716  0.9914
##  0 - 3    -1.17000 0.112 108 -10.470  <.0001
##  0 - 4    -1.44667 0.112 108 -12.946  <.0001
##  0 - 5    -1.49000 0.112 108 -13.334  <.0001
##  0 - 6    -0.93667 0.112 108  -8.382  <.0001
##  1 - 2    -0.07000 0.112 108  -0.626  0.9958
##  1 - 3    -1.16000 0.112 108 -10.381  <.0001
##  1 - 4    -1.43667 0.112 108 -12.856  <.0001
##  1 - 5    -1.48000 0.112 108 -13.244  <.0001
##  1 - 6    -0.92667 0.112 108  -8.292  <.0001
##  2 - 3    -1.09000 0.112 108  -9.754  <.0001
##  2 - 4    -1.36667 0.112 108 -12.230  <.0001
##  2 - 5    -1.41000 0.112 108 -12.618  <.0001
##  2 - 6    -0.85667 0.112 108  -7.666  <.0001
##  3 - 4    -0.27667 0.112 108  -2.476  0.1786
##  3 - 5    -0.32000 0.112 108  -2.864  0.0724
##  3 - 6     0.23333 0.112 108   2.088  0.3672
##  4 - 5    -0.04333 0.112 108  -0.388  0.9997
##  4 - 6     0.51000 0.112 108   4.564  0.0003
##  5 - 6     0.55333 0.112 108   4.952  0.0001
## 
## curva = T1, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.10667 0.112 108   0.955  0.9624
##  0 - 2    -0.06333 0.112 108  -0.567  0.9976
##  0 - 3    -0.13667 0.112 108  -1.223  0.8838
##  0 - 4    -0.02667 0.112 108  -0.239  1.0000
##  0 - 5    -0.16333 0.112 108  -1.462  0.7666
##  0 - 6    -0.02333 0.112 108  -0.209  1.0000
##  1 - 2    -0.17000 0.112 108  -1.521  0.7315
##  1 - 3    -0.24333 0.112 108  -2.178  0.3164
##  1 - 4    -0.13333 0.112 108  -1.193  0.8953
##  1 - 5    -0.27000 0.112 108  -2.416  0.2020
##  1 - 6    -0.13000 0.112 108  -1.163  0.9062
##  2 - 3    -0.07333 0.112 108  -0.656  0.9946
##  2 - 4     0.03667 0.112 108   0.328  0.9999
##  2 - 5    -0.10000 0.112 108  -0.895  0.9726
##  2 - 6     0.04000 0.112 108   0.358  0.9998
##  3 - 4     0.11000 0.112 108   0.984  0.9564
##  3 - 5    -0.02667 0.112 108  -0.239  1.0000
##  3 - 6     0.11333 0.112 108   1.014  0.9497
##  4 - 5    -0.13667 0.112 108  -1.223  0.8838
##  4 - 6     0.00333 0.112 108   0.030  1.0000
##  5 - 6     0.14000 0.112 108   1.253  0.8715
## 
## curva = T2, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.03600 0.112 108   0.322  0.9999
##  0 - 2    -0.10433 0.112 108  -0.934  0.9662
##  0 - 3    -0.10967 0.112 108  -0.981  0.9570
##  0 - 4    -0.38567 0.112 108  -3.451  0.0136
##  0 - 5    -0.40767 0.112 108  -3.648  0.0073
##  0 - 6    -0.22567 0.112 108  -2.019  0.4087
##  1 - 2    -0.14033 0.112 108  -1.256  0.8702
##  1 - 3    -0.14567 0.112 108  -1.304  0.8489
##  1 - 4    -0.42167 0.112 108  -3.773  0.0048
##  1 - 5    -0.44367 0.112 108  -3.970  0.0024
##  1 - 6    -0.26167 0.112 108  -2.342  0.2342
##  2 - 3    -0.00533 0.112 108  -0.048  1.0000
##  2 - 4    -0.28133 0.112 108  -2.518  0.1634
##  2 - 5    -0.30333 0.112 108  -2.714  0.1045
##  2 - 6    -0.12133 0.112 108  -1.086  0.9310
##  3 - 4    -0.27600 0.112 108  -2.470  0.1808
##  3 - 5    -0.29800 0.112 108  -2.667  0.1170
##  3 - 6    -0.11600 0.112 108  -1.038  0.9439
##  4 - 5    -0.02200 0.112 108  -0.197  1.0000
##  4 - 6     0.16000 0.112 108   1.432  0.7834
##  5 - 6     0.18200 0.112 108   1.629  0.6642
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
emm_gen_diam2_trend <- emmeans(res.aov.error, pairwise ~ diam2*gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2_trend
## $emmeans
## curva = T3:
##  diam2 gen   emmean     SE  df lower.CL upper.CL
##  0     CCN51  0.393 0.0885 101   0.2178    0.569
##  1     CCN51  0.363 0.0885 101   0.1878    0.539
##  2     CCN51  0.300 0.0885 101   0.1245    0.476
##  3     CCN51  0.577 0.0885 101   0.4012    0.752
##  4     CCN51  0.567 0.0885 101   0.3912    0.742
##  5     CCN51  0.643 0.0885 101   0.4678    0.819
##  6     CCN51  0.320 0.0885 101   0.1445    0.496
##  0     ICS95  0.370 0.0885 101   0.1945    0.546
##  1     ICS95  0.333 0.0885 101   0.1578    0.509
##  2     ICS95  0.457 0.0885 101   0.2812    0.632
##  3     ICS95  0.927 0.0885 101   0.7512    1.102
##  4     ICS95  0.800 0.0885 101   0.6245    0.976
##  5     ICS95  0.623 0.0885 101   0.4478    0.799
##  6     ICS95  0.640 0.0885 101   0.4645    0.816
##  0     TCS01  0.377 0.0885 101   0.2012    0.552
##  1     TCS01  0.387 0.0885 101   0.2112    0.562
##  2     TCS01  0.457 0.0885 101   0.2812    0.632
##  3     TCS01  1.547 0.0885 101   1.3712    1.722
##  4     TCS01  1.823 0.0885 101   1.6478    1.999
##  5     TCS01  1.867 0.0885 101   1.6912    2.042
##  6     TCS01  1.313 0.0885 101   1.1378    1.489
## 
## curva = T1:
##  diam2 gen   emmean     SE  df lower.CL upper.CL
##  0     CCN51  0.290 0.0885 101   0.1145    0.466
##  1     CCN51  0.230 0.0885 101   0.0545    0.406
##  2     CCN51  0.780 0.0885 101   0.6045    0.956
##  3     CCN51  0.643 0.0885 101   0.4678    0.819
##  4     CCN51  0.953 0.0885 101   0.7778    1.129
##  5     CCN51  0.713 0.0885 101   0.5378    0.889
##  6     CCN51  0.727 0.0885 101   0.5512    0.902
##  0     ICS95  0.510 0.0885 101   0.3345    0.686
##  1     ICS95  0.260 0.0885 101   0.0845    0.436
##  2     ICS95  0.820 0.0885 101   0.6445    0.996
##  3     ICS95  0.667 0.0885 101   0.4912    0.842
##  4     ICS95  0.793 0.0885 101   0.6178    0.969
##  5     ICS95  0.447 0.0885 101   0.2712    0.622
##  6     ICS95  0.507 0.0885 101   0.3312    0.682
##  0     TCS01  0.467 0.0885 101   0.2912    0.642
##  1     TCS01  0.360 0.0885 101   0.1845    0.536
##  2     TCS01  0.530 0.0885 101   0.3545    0.706
##  3     TCS01  0.603 0.0885 101   0.4278    0.779
##  4     TCS01  0.493 0.0885 101   0.3178    0.669
##  5     TCS01  0.630 0.0885 101   0.4545    0.806
##  6     TCS01  0.490 0.0885 101   0.3145    0.666
## 
## curva = T2:
##  diam2 gen   emmean     SE  df lower.CL upper.CL
##  0     CCN51  0.376 0.0885 101   0.2002    0.551
##  1     CCN51  0.190 0.0885 101   0.0145    0.366
##  2     CCN51  0.310 0.0885 101   0.1342    0.485
##  3     CCN51  0.931 0.0885 101   0.7558    1.107
##  4     CCN51  1.036 0.0885 101   0.8602    1.211
##  5     CCN51  0.703 0.0885 101   0.5275    0.879
##  6     CCN51  0.513 0.0885 101   0.3378    0.689
##  0     ICS95  0.340 0.0885 101   0.1645    0.516
##  1     ICS95  0.188 0.0885 101   0.0125    0.364
##  2     ICS95  0.200 0.0885 101   0.0245    0.376
##  3     ICS95  0.388 0.0885 101   0.2125    0.564
##  4     ICS95  0.493 0.0885 101   0.3178    0.669
##  5     ICS95  0.457 0.0885 101   0.2818    0.633
##  6     ICS95  0.336 0.0885 101   0.1602    0.511
##  0     TCS01  0.226 0.0885 101   0.0502    0.401
##  1     TCS01  0.190 0.0885 101   0.0142    0.365
##  2     TCS01  0.330 0.0885 101   0.1545    0.506
##  3     TCS01  0.335 0.0885 101   0.1598    0.511
##  4     TCS01  0.611 0.0885 101   0.4358    0.787
##  5     TCS01  0.633 0.0885 101   0.4578    0.809
##  6     TCS01  0.451 0.0885 101   0.2758    0.627
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast           estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51  0.030000 0.112 108   0.268  1.0000
##  0 CCN51 - 2 CCN51  0.093333 0.112 108   0.835  1.0000
##  0 CCN51 - 3 CCN51 -0.183333 0.112 108  -1.641  0.9867
##  0 CCN51 - 4 CCN51 -0.173333 0.112 108  -1.551  0.9930
##  0 CCN51 - 5 CCN51 -0.250000 0.112 108  -2.237  0.7913
##  0 CCN51 - 6 CCN51  0.073333 0.112 108   0.656  1.0000
##  0 CCN51 - 0 ICS95  0.023333 0.125 101   0.186  1.0000
##  0 CCN51 - 1 ICS95  0.060000 0.125 101   0.480  1.0000
##  0 CCN51 - 2 ICS95 -0.063333 0.125 101  -0.506  1.0000
##  0 CCN51 - 3 ICS95 -0.533333 0.125 101  -4.263  0.0073
##  0 CCN51 - 4 ICS95 -0.406667 0.125 101  -3.250  0.1532
##  0 CCN51 - 5 ICS95 -0.230000 0.125 101  -1.838  0.9565
##  0 CCN51 - 6 ICS95 -0.246667 0.125 101  -1.971  0.9185
##  0 CCN51 - 0 TCS01  0.016667 0.125 101   0.133  1.0000
##  0 CCN51 - 1 TCS01  0.006667 0.125 101   0.053  1.0000
##  0 CCN51 - 2 TCS01 -0.063333 0.125 101  -0.506  1.0000
##  0 CCN51 - 3 TCS01 -1.153333 0.125 101  -9.218  <.0001
##  0 CCN51 - 4 TCS01 -1.430000 0.125 101 -11.429  <.0001
##  0 CCN51 - 5 TCS01 -1.473333 0.125 101 -11.775  <.0001
##  0 CCN51 - 6 TCS01 -0.920000 0.125 101  -7.353  <.0001
##  1 CCN51 - 2 CCN51  0.063333 0.112 108   0.567  1.0000
##  1 CCN51 - 3 CCN51 -0.213333 0.112 108  -1.909  0.9388
##  1 CCN51 - 4 CCN51 -0.203333 0.112 108  -1.820  0.9609
##  1 CCN51 - 5 CCN51 -0.280000 0.112 108  -2.506  0.6058
##  1 CCN51 - 6 CCN51  0.043333 0.112 108   0.388  1.0000
##  1 CCN51 - 0 ICS95 -0.006667 0.125 101  -0.053  1.0000
##  1 CCN51 - 1 ICS95  0.030000 0.125 101   0.240  1.0000
##  1 CCN51 - 2 ICS95 -0.093333 0.125 101  -0.746  1.0000
##  1 CCN51 - 3 ICS95 -0.563333 0.125 101  -4.502  0.0031
##  1 CCN51 - 4 ICS95 -0.436667 0.125 101  -3.490  0.0826
##  1 CCN51 - 5 ICS95 -0.260000 0.125 101  -2.078  0.8757
##  1 CCN51 - 6 ICS95 -0.276667 0.125 101  -2.211  0.8063
##  1 CCN51 - 0 TCS01 -0.013333 0.125 101  -0.107  1.0000
##  1 CCN51 - 1 TCS01 -0.023333 0.125 101  -0.186  1.0000
##  1 CCN51 - 2 TCS01 -0.093333 0.125 101  -0.746  1.0000
##  1 CCN51 - 3 TCS01 -1.183333 0.125 101  -9.457  <.0001
##  1 CCN51 - 4 TCS01 -1.460000 0.125 101 -11.669  <.0001
##  1 CCN51 - 5 TCS01 -1.503333 0.125 101 -12.015  <.0001
##  1 CCN51 - 6 TCS01 -0.950000 0.125 101  -7.593  <.0001
##  2 CCN51 - 3 CCN51 -0.276667 0.112 108  -2.476  0.6279
##  2 CCN51 - 4 CCN51 -0.266667 0.112 108  -2.386  0.6928
##  2 CCN51 - 5 CCN51 -0.343333 0.112 108  -3.072  0.2290
##  2 CCN51 - 6 CCN51 -0.020000 0.112 108  -0.179  1.0000
##  2 CCN51 - 0 ICS95 -0.070000 0.125 101  -0.559  1.0000
##  2 CCN51 - 1 ICS95 -0.033333 0.125 101  -0.266  1.0000
##  2 CCN51 - 2 ICS95 -0.156667 0.125 101  -1.252  0.9996
##  2 CCN51 - 3 ICS95 -0.626667 0.125 101  -5.008  0.0004
##  2 CCN51 - 4 ICS95 -0.500000 0.125 101  -3.996  0.0179
##  2 CCN51 - 5 ICS95 -0.323333 0.125 101  -2.584  0.5474
##  2 CCN51 - 6 ICS95 -0.340000 0.125 101  -2.717  0.4496
##  2 CCN51 - 0 TCS01 -0.076667 0.125 101  -0.613  1.0000
##  2 CCN51 - 1 TCS01 -0.086667 0.125 101  -0.693  1.0000
##  2 CCN51 - 2 TCS01 -0.156667 0.125 101  -1.252  0.9996
##  2 CCN51 - 3 TCS01 -1.246667 0.125 101  -9.964  <.0001
##  2 CCN51 - 4 TCS01 -1.523333 0.125 101 -12.175  <.0001
##  2 CCN51 - 5 TCS01 -1.566667 0.125 101 -12.521  <.0001
##  2 CCN51 - 6 TCS01 -1.013333 0.125 101  -8.099  <.0001
##  3 CCN51 - 4 CCN51  0.010000 0.112 108   0.089  1.0000
##  3 CCN51 - 5 CCN51 -0.066667 0.112 108  -0.597  1.0000
##  3 CCN51 - 6 CCN51  0.256667 0.112 108   2.297  0.7537
##  3 CCN51 - 0 ICS95  0.206667 0.125 101   1.652  0.9854
##  3 CCN51 - 1 ICS95  0.243333 0.125 101   1.945  0.9275
##  3 CCN51 - 2 ICS95  0.120000 0.125 101   0.959  1.0000
##  3 CCN51 - 3 ICS95 -0.350000 0.125 101  -2.797  0.3938
##  3 CCN51 - 4 ICS95 -0.223333 0.125 101  -1.785  0.9673
##  3 CCN51 - 5 ICS95 -0.046667 0.125 101  -0.373  1.0000
##  3 CCN51 - 6 ICS95 -0.063333 0.125 101  -0.506  1.0000
##  3 CCN51 - 0 TCS01  0.200000 0.125 101   1.598  0.9899
##  3 CCN51 - 1 TCS01  0.190000 0.125 101   1.519  0.9945
##  3 CCN51 - 2 TCS01  0.120000 0.125 101   0.959  1.0000
##  3 CCN51 - 3 TCS01 -0.970000 0.125 101  -7.752  <.0001
##  3 CCN51 - 4 TCS01 -1.246667 0.125 101  -9.964  <.0001
##  3 CCN51 - 5 TCS01 -1.290000 0.125 101 -10.310  <.0001
##  3 CCN51 - 6 TCS01 -0.736667 0.125 101  -5.888  <.0001
##  4 CCN51 - 5 CCN51 -0.076667 0.112 108  -0.686  1.0000
##  4 CCN51 - 6 CCN51  0.246667 0.112 108   2.207  0.8090
##  4 CCN51 - 0 ICS95  0.196667 0.125 101   1.572  0.9917
##  4 CCN51 - 1 ICS95  0.233333 0.125 101   1.865  0.9502
##  4 CCN51 - 2 ICS95  0.110000 0.125 101   0.879  1.0000
##  4 CCN51 - 3 ICS95 -0.360000 0.125 101  -2.877  0.3412
##  4 CCN51 - 4 ICS95 -0.233333 0.125 101  -1.865  0.9502
##  4 CCN51 - 5 ICS95 -0.056667 0.125 101  -0.453  1.0000
##  4 CCN51 - 6 ICS95 -0.073333 0.125 101  -0.586  1.0000
##  4 CCN51 - 0 TCS01  0.190000 0.125 101   1.519  0.9945
##  4 CCN51 - 1 TCS01  0.180000 0.125 101   1.439  0.9972
##  4 CCN51 - 2 TCS01  0.110000 0.125 101   0.879  1.0000
##  4 CCN51 - 3 TCS01 -0.980000 0.125 101  -7.832  <.0001
##  4 CCN51 - 4 TCS01 -1.256667 0.125 101 -10.044  <.0001
##  4 CCN51 - 5 TCS01 -1.300000 0.125 101 -10.390  <.0001
##  4 CCN51 - 6 TCS01 -0.746667 0.125 101  -5.968  <.0001
##  5 CCN51 - 6 CCN51  0.323333 0.112 108   2.893  0.3299
##  5 CCN51 - 0 ICS95  0.273333 0.125 101   2.185  0.8215
##  5 CCN51 - 1 ICS95  0.310000 0.125 101   2.478  0.6267
##  5 CCN51 - 2 ICS95  0.186667 0.125 101   1.492  0.9955
##  5 CCN51 - 3 ICS95 -0.283333 0.125 101  -2.264  0.7740
##  5 CCN51 - 4 ICS95 -0.156667 0.125 101  -1.252  0.9996
##  5 CCN51 - 5 ICS95  0.020000 0.125 101   0.160  1.0000
##  5 CCN51 - 6 ICS95  0.003333 0.125 101   0.027  1.0000
##  5 CCN51 - 0 TCS01  0.266667 0.125 101   2.131  0.8500
##  5 CCN51 - 1 TCS01  0.256667 0.125 101   2.051  0.8875
##  5 CCN51 - 2 TCS01  0.186667 0.125 101   1.492  0.9955
##  5 CCN51 - 3 TCS01 -0.903333 0.125 101  -7.220  <.0001
##  5 CCN51 - 4 TCS01 -1.180000 0.125 101  -9.431  <.0001
##  5 CCN51 - 5 TCS01 -1.223333 0.125 101  -9.777  <.0001
##  5 CCN51 - 6 TCS01 -0.670000 0.125 101  -5.355  0.0001
##  6 CCN51 - 0 ICS95 -0.050000 0.125 101  -0.400  1.0000
##  6 CCN51 - 1 ICS95 -0.013333 0.125 101  -0.107  1.0000
##  6 CCN51 - 2 ICS95 -0.136667 0.125 101  -1.092  0.9999
##  6 CCN51 - 3 ICS95 -0.606667 0.125 101  -4.849  0.0008
##  6 CCN51 - 4 ICS95 -0.480000 0.125 101  -3.836  0.0299
##  6 CCN51 - 5 ICS95 -0.303333 0.125 101  -2.424  0.6655
##  6 CCN51 - 6 ICS95 -0.320000 0.125 101  -2.558  0.5673
##  6 CCN51 - 0 TCS01 -0.056667 0.125 101  -0.453  1.0000
##  6 CCN51 - 1 TCS01 -0.066667 0.125 101  -0.533  1.0000
##  6 CCN51 - 2 TCS01 -0.136667 0.125 101  -1.092  0.9999
##  6 CCN51 - 3 TCS01 -1.226667 0.125 101  -9.804  <.0001
##  6 CCN51 - 4 TCS01 -1.503333 0.125 101 -12.015  <.0001
##  6 CCN51 - 5 TCS01 -1.546667 0.125 101 -12.361  <.0001
##  6 CCN51 - 6 TCS01 -0.993333 0.125 101  -7.939  <.0001
##  0 ICS95 - 1 ICS95  0.036667 0.112 108   0.328  1.0000
##  0 ICS95 - 2 ICS95 -0.086667 0.112 108  -0.776  1.0000
##  0 ICS95 - 3 ICS95 -0.556667 0.112 108  -4.981  0.0004
##  0 ICS95 - 4 ICS95 -0.430000 0.112 108  -3.848  0.0282
##  0 ICS95 - 5 ICS95 -0.253333 0.112 108  -2.267  0.7728
##  0 ICS95 - 6 ICS95 -0.270000 0.112 108  -2.416  0.6715
##  0 ICS95 - 0 TCS01 -0.006667 0.125 101  -0.053  1.0000
##  0 ICS95 - 1 TCS01 -0.016667 0.125 101  -0.133  1.0000
##  0 ICS95 - 2 TCS01 -0.086667 0.125 101  -0.693  1.0000
##  0 ICS95 - 3 TCS01 -1.176667 0.125 101  -9.404  <.0001
##  0 ICS95 - 4 TCS01 -1.453333 0.125 101 -11.615  <.0001
##  0 ICS95 - 5 TCS01 -1.496667 0.125 101 -11.962  <.0001
##  0 ICS95 - 6 TCS01 -0.943333 0.125 101  -7.539  <.0001
##  1 ICS95 - 2 ICS95 -0.123333 0.112 108  -1.104  0.9999
##  1 ICS95 - 3 ICS95 -0.593333 0.112 108  -5.310  0.0001
##  1 ICS95 - 4 ICS95 -0.466667 0.112 108  -4.176  0.0095
##  1 ICS95 - 5 ICS95 -0.290000 0.112 108  -2.595  0.5389
##  1 ICS95 - 6 ICS95 -0.306667 0.112 108  -2.744  0.4297
##  1 ICS95 - 0 TCS01 -0.043333 0.125 101  -0.346  1.0000
##  1 ICS95 - 1 TCS01 -0.053333 0.125 101  -0.426  1.0000
##  1 ICS95 - 2 TCS01 -0.123333 0.125 101  -0.986  1.0000
##  1 ICS95 - 3 TCS01 -1.213333 0.125 101  -9.697  <.0001
##  1 ICS95 - 4 TCS01 -1.490000 0.125 101 -11.908  <.0001
##  1 ICS95 - 5 TCS01 -1.533333 0.125 101 -12.255  <.0001
##  1 ICS95 - 6 TCS01 -0.980000 0.125 101  -7.832  <.0001
##  2 ICS95 - 3 ICS95 -0.470000 0.112 108  -4.206  0.0085
##  2 ICS95 - 4 ICS95 -0.343333 0.112 108  -3.072  0.2290
##  2 ICS95 - 5 ICS95 -0.166667 0.112 108  -1.491  0.9956
##  2 ICS95 - 6 ICS95 -0.183333 0.112 108  -1.641  0.9867
##  2 ICS95 - 0 TCS01  0.080000 0.125 101   0.639  1.0000
##  2 ICS95 - 1 TCS01  0.070000 0.125 101   0.559  1.0000
##  2 ICS95 - 2 TCS01  0.000000 0.125 101   0.000  1.0000
##  2 ICS95 - 3 TCS01 -1.090000 0.125 101  -8.711  <.0001
##  2 ICS95 - 4 TCS01 -1.366667 0.125 101 -10.923  <.0001
##  2 ICS95 - 5 TCS01 -1.410000 0.125 101 -11.269  <.0001
##  2 ICS95 - 6 TCS01 -0.856667 0.125 101  -6.847  <.0001
##  3 ICS95 - 4 ICS95  0.126667 0.112 108   1.134  0.9999
##  3 ICS95 - 5 ICS95  0.303333 0.112 108   2.714  0.4510
##  3 ICS95 - 6 ICS95  0.286667 0.112 108   2.565  0.5612
##  3 ICS95 - 0 TCS01  0.550000 0.125 101   4.396  0.0045
##  3 ICS95 - 1 TCS01  0.540000 0.125 101   4.316  0.0060
##  3 ICS95 - 2 TCS01  0.470000 0.125 101   3.756  0.0383
##  3 ICS95 - 3 TCS01 -0.620000 0.125 101  -4.955  0.0005
##  3 ICS95 - 4 TCS01 -0.896667 0.125 101  -7.166  <.0001
##  3 ICS95 - 5 TCS01 -0.940000 0.125 101  -7.513  <.0001
##  3 ICS95 - 6 TCS01 -0.386667 0.125 101  -3.090  0.2215
##  4 ICS95 - 5 ICS95  0.176667 0.112 108   1.581  0.9912
##  4 ICS95 - 6 ICS95  0.160000 0.112 108   1.432  0.9974
##  4 ICS95 - 0 TCS01  0.423333 0.125 101   3.383  0.1097
##  4 ICS95 - 1 TCS01  0.413333 0.125 101   3.303  0.1344
##  4 ICS95 - 2 TCS01  0.343333 0.125 101   2.744  0.4307
##  4 ICS95 - 3 TCS01 -0.746667 0.125 101  -5.968  <.0001
##  4 ICS95 - 4 TCS01 -1.023333 0.125 101  -8.179  <.0001
##  4 ICS95 - 5 TCS01 -1.066667 0.125 101  -8.525  <.0001
##  4 ICS95 - 6 TCS01 -0.513333 0.125 101  -4.103  0.0126
##  5 ICS95 - 6 ICS95 -0.016667 0.112 108  -0.149  1.0000
##  5 ICS95 - 0 TCS01  0.246667 0.125 101   1.971  0.9185
##  5 ICS95 - 1 TCS01  0.236667 0.125 101   1.891  0.9433
##  5 ICS95 - 2 TCS01  0.166667 0.125 101   1.332  0.9990
##  5 ICS95 - 3 TCS01 -0.923333 0.125 101  -7.379  <.0001
##  5 ICS95 - 4 TCS01 -1.200000 0.125 101  -9.591  <.0001
##  5 ICS95 - 5 TCS01 -1.243333 0.125 101  -9.937  <.0001
##  5 ICS95 - 6 TCS01 -0.690000 0.125 101  -5.515  0.0001
##  6 ICS95 - 0 TCS01  0.263333 0.125 101   2.105  0.8632
##  6 ICS95 - 1 TCS01  0.253333 0.125 101   2.025  0.8985
##  6 ICS95 - 2 TCS01  0.183333 0.125 101   1.465  0.9964
##  6 ICS95 - 3 TCS01 -0.906667 0.125 101  -7.246  <.0001
##  6 ICS95 - 4 TCS01 -1.183333 0.125 101  -9.457  <.0001
##  6 ICS95 - 5 TCS01 -1.226667 0.125 101  -9.804  <.0001
##  6 ICS95 - 6 TCS01 -0.673333 0.125 101  -5.381  0.0001
##  0 TCS01 - 1 TCS01 -0.010000 0.112 108  -0.089  1.0000
##  0 TCS01 - 2 TCS01 -0.080000 0.112 108  -0.716  1.0000
##  0 TCS01 - 3 TCS01 -1.170000 0.112 108 -10.470  <.0001
##  0 TCS01 - 4 TCS01 -1.446667 0.112 108 -12.946  <.0001
##  0 TCS01 - 5 TCS01 -1.490000 0.112 108 -13.334  <.0001
##  0 TCS01 - 6 TCS01 -0.936667 0.112 108  -8.382  <.0001
##  1 TCS01 - 2 TCS01 -0.070000 0.112 108  -0.626  1.0000
##  1 TCS01 - 3 TCS01 -1.160000 0.112 108 -10.381  <.0001
##  1 TCS01 - 4 TCS01 -1.436667 0.112 108 -12.856  <.0001
##  1 TCS01 - 5 TCS01 -1.480000 0.112 108 -13.244  <.0001
##  1 TCS01 - 6 TCS01 -0.926667 0.112 108  -8.292  <.0001
##  2 TCS01 - 3 TCS01 -1.090000 0.112 108  -9.754  <.0001
##  2 TCS01 - 4 TCS01 -1.366667 0.112 108 -12.230  <.0001
##  2 TCS01 - 5 TCS01 -1.410000 0.112 108 -12.618  <.0001
##  2 TCS01 - 6 TCS01 -0.856667 0.112 108  -7.666  <.0001
##  3 TCS01 - 4 TCS01 -0.276667 0.112 108  -2.476  0.6279
##  3 TCS01 - 5 TCS01 -0.320000 0.112 108  -2.864  0.3488
##  3 TCS01 - 6 TCS01  0.233333 0.112 108   2.088  0.8716
##  4 TCS01 - 5 TCS01 -0.043333 0.112 108  -0.388  1.0000
##  4 TCS01 - 6 TCS01  0.510000 0.112 108   4.564  0.0023
##  5 TCS01 - 6 TCS01  0.553333 0.112 108   4.952  0.0005
## 
## curva = T1:
##  contrast           estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51  0.060000 0.112 108   0.537  1.0000
##  0 CCN51 - 2 CCN51 -0.490000 0.112 108  -4.385  0.0045
##  0 CCN51 - 3 CCN51 -0.353333 0.112 108  -3.162  0.1873
##  0 CCN51 - 4 CCN51 -0.663333 0.112 108  -5.936  <.0001
##  0 CCN51 - 5 CCN51 -0.423333 0.112 108  -3.788  0.0340
##  0 CCN51 - 6 CCN51 -0.436667 0.112 108  -3.908  0.0233
##  0 CCN51 - 0 ICS95 -0.220000 0.125 101  -1.758  0.9718
##  0 CCN51 - 1 ICS95  0.030000 0.125 101   0.240  1.0000
##  0 CCN51 - 2 ICS95 -0.530000 0.125 101  -4.236  0.0080
##  0 CCN51 - 3 ICS95 -0.376667 0.125 101  -3.010  0.2626
##  0 CCN51 - 4 ICS95 -0.503333 0.125 101  -4.023  0.0164
##  0 CCN51 - 5 ICS95 -0.156667 0.125 101  -1.252  0.9996
##  0 CCN51 - 6 ICS95 -0.216667 0.125 101  -1.732  0.9759
##  0 CCN51 - 0 TCS01 -0.176667 0.125 101  -1.412  0.9978
##  0 CCN51 - 1 TCS01 -0.070000 0.125 101  -0.559  1.0000
##  0 CCN51 - 2 TCS01 -0.240000 0.125 101  -1.918  0.9357
##  0 CCN51 - 3 TCS01 -0.313333 0.125 101  -2.504  0.6070
##  0 CCN51 - 4 TCS01 -0.203333 0.125 101  -1.625  0.9878
##  0 CCN51 - 5 TCS01 -0.340000 0.125 101  -2.717  0.4496
##  0 CCN51 - 6 TCS01 -0.200000 0.125 101  -1.598  0.9899
##  1 CCN51 - 2 CCN51 -0.550000 0.112 108  -4.922  0.0006
##  1 CCN51 - 3 CCN51 -0.413333 0.112 108  -3.699  0.0446
##  1 CCN51 - 4 CCN51 -0.723333 0.112 108  -6.473  <.0001
##  1 CCN51 - 5 CCN51 -0.483333 0.112 108  -4.325  0.0056
##  1 CCN51 - 6 CCN51 -0.496667 0.112 108  -4.445  0.0036
##  1 CCN51 - 0 ICS95 -0.280000 0.125 101  -2.238  0.7904
##  1 CCN51 - 1 ICS95 -0.030000 0.125 101  -0.240  1.0000
##  1 CCN51 - 2 ICS95 -0.590000 0.125 101  -4.715  0.0014
##  1 CCN51 - 3 ICS95 -0.436667 0.125 101  -3.490  0.0826
##  1 CCN51 - 4 ICS95 -0.563333 0.125 101  -4.502  0.0031
##  1 CCN51 - 5 ICS95 -0.216667 0.125 101  -1.732  0.9759
##  1 CCN51 - 6 ICS95 -0.276667 0.125 101  -2.211  0.8063
##  1 CCN51 - 0 TCS01 -0.236667 0.125 101  -1.891  0.9433
##  1 CCN51 - 1 TCS01 -0.130000 0.125 101  -1.039  1.0000
##  1 CCN51 - 2 TCS01 -0.300000 0.125 101  -2.398  0.6846
##  1 CCN51 - 3 TCS01 -0.373333 0.125 101  -2.984  0.2774
##  1 CCN51 - 4 TCS01 -0.263333 0.125 101  -2.105  0.8632
##  1 CCN51 - 5 TCS01 -0.400000 0.125 101  -3.197  0.1739
##  1 CCN51 - 6 TCS01 -0.260000 0.125 101  -2.078  0.8757
##  2 CCN51 - 3 CCN51  0.136667 0.112 108   1.223  0.9997
##  2 CCN51 - 4 CCN51 -0.173333 0.112 108  -1.551  0.9930
##  2 CCN51 - 5 CCN51  0.066667 0.112 108   0.597  1.0000
##  2 CCN51 - 6 CCN51  0.053333 0.112 108   0.477  1.0000
##  2 CCN51 - 0 ICS95  0.270000 0.125 101   2.158  0.8361
##  2 CCN51 - 1 ICS95  0.520000 0.125 101   4.156  0.0105
##  2 CCN51 - 2 ICS95 -0.040000 0.125 101  -0.320  1.0000
##  2 CCN51 - 3 ICS95  0.113333 0.125 101   0.906  1.0000
##  2 CCN51 - 4 ICS95 -0.013333 0.125 101  -0.107  1.0000
##  2 CCN51 - 5 ICS95  0.333333 0.125 101   2.664  0.4882
##  2 CCN51 - 6 ICS95  0.273333 0.125 101   2.185  0.8215
##  2 CCN51 - 0 TCS01  0.313333 0.125 101   2.504  0.6070
##  2 CCN51 - 1 TCS01  0.420000 0.125 101   3.357  0.1175
##  2 CCN51 - 2 TCS01  0.250000 0.125 101   1.998  0.9089
##  2 CCN51 - 3 TCS01  0.176667 0.125 101   1.412  0.9978
##  2 CCN51 - 4 TCS01  0.286667 0.125 101   2.291  0.7570
##  2 CCN51 - 5 TCS01  0.150000 0.125 101   1.199  0.9998
##  2 CCN51 - 6 TCS01  0.290000 0.125 101   2.318  0.7396
##  3 CCN51 - 4 CCN51 -0.310000 0.112 108  -2.774  0.4088
##  3 CCN51 - 5 CCN51 -0.070000 0.112 108  -0.626  1.0000
##  3 CCN51 - 6 CCN51 -0.083333 0.112 108  -0.746  1.0000
##  3 CCN51 - 0 ICS95  0.133333 0.125 101   1.066  1.0000
##  3 CCN51 - 1 ICS95  0.383333 0.125 101   3.064  0.2347
##  3 CCN51 - 2 ICS95 -0.176667 0.125 101  -1.412  0.9978
##  3 CCN51 - 3 ICS95 -0.023333 0.125 101  -0.186  1.0000
##  3 CCN51 - 4 ICS95 -0.150000 0.125 101  -1.199  0.9998
##  3 CCN51 - 5 ICS95  0.196667 0.125 101   1.572  0.9917
##  3 CCN51 - 6 ICS95  0.136667 0.125 101   1.092  0.9999
##  3 CCN51 - 0 TCS01  0.176667 0.125 101   1.412  0.9978
##  3 CCN51 - 1 TCS01  0.283333 0.125 101   2.264  0.7740
##  3 CCN51 - 2 TCS01  0.113333 0.125 101   0.906  1.0000
##  3 CCN51 - 3 TCS01  0.040000 0.125 101   0.320  1.0000
##  3 CCN51 - 4 TCS01  0.150000 0.125 101   1.199  0.9998
##  3 CCN51 - 5 TCS01  0.013333 0.125 101   0.107  1.0000
##  3 CCN51 - 6 TCS01  0.153333 0.125 101   1.225  0.9997
##  4 CCN51 - 5 CCN51  0.240000 0.112 108   2.148  0.8420
##  4 CCN51 - 6 CCN51  0.226667 0.112 108   2.028  0.8976
##  4 CCN51 - 0 ICS95  0.443333 0.125 101   3.543  0.0713
##  4 CCN51 - 1 ICS95  0.693333 0.125 101   5.541  <.0001
##  4 CCN51 - 2 ICS95  0.133333 0.125 101   1.066  1.0000
##  4 CCN51 - 3 ICS95  0.286667 0.125 101   2.291  0.7570
##  4 CCN51 - 4 ICS95  0.160000 0.125 101   1.279  0.9994
##  4 CCN51 - 5 ICS95  0.506667 0.125 101   4.049  0.0151
##  4 CCN51 - 6 ICS95  0.446667 0.125 101   3.570  0.0661
##  4 CCN51 - 0 TCS01  0.486667 0.125 101   3.890  0.0253
##  4 CCN51 - 1 TCS01  0.593333 0.125 101   4.742  0.0012
##  4 CCN51 - 2 TCS01  0.423333 0.125 101   3.383  0.1097
##  4 CCN51 - 3 TCS01  0.350000 0.125 101   2.797  0.3938
##  4 CCN51 - 4 TCS01  0.460000 0.125 101   3.676  0.0486
##  4 CCN51 - 5 TCS01  0.323333 0.125 101   2.584  0.5474
##  4 CCN51 - 6 TCS01  0.463333 0.125 101   3.703  0.0449
##  5 CCN51 - 6 CCN51 -0.013333 0.112 108  -0.119  1.0000
##  5 CCN51 - 0 ICS95  0.203333 0.125 101   1.625  0.9878
##  5 CCN51 - 1 ICS95  0.453333 0.125 101   3.623  0.0568
##  5 CCN51 - 2 ICS95 -0.106667 0.125 101  -0.853  1.0000
##  5 CCN51 - 3 ICS95  0.046667 0.125 101   0.373  1.0000
##  5 CCN51 - 4 ICS95 -0.080000 0.125 101  -0.639  1.0000
##  5 CCN51 - 5 ICS95  0.266667 0.125 101   2.131  0.8500
##  5 CCN51 - 6 ICS95  0.206667 0.125 101   1.652  0.9854
##  5 CCN51 - 0 TCS01  0.246667 0.125 101   1.971  0.9185
##  5 CCN51 - 1 TCS01  0.353333 0.125 101   2.824  0.3758
##  5 CCN51 - 2 TCS01  0.183333 0.125 101   1.465  0.9964
##  5 CCN51 - 3 TCS01  0.110000 0.125 101   0.879  1.0000
##  5 CCN51 - 4 TCS01  0.220000 0.125 101   1.758  0.9718
##  5 CCN51 - 5 TCS01  0.083333 0.125 101   0.666  1.0000
##  5 CCN51 - 6 TCS01  0.223333 0.125 101   1.785  0.9673
##  6 CCN51 - 0 ICS95  0.216667 0.125 101   1.732  0.9759
##  6 CCN51 - 1 ICS95  0.466667 0.125 101   3.730  0.0415
##  6 CCN51 - 2 ICS95 -0.093333 0.125 101  -0.746  1.0000
##  6 CCN51 - 3 ICS95  0.060000 0.125 101   0.480  1.0000
##  6 CCN51 - 4 ICS95 -0.066667 0.125 101  -0.533  1.0000
##  6 CCN51 - 5 ICS95  0.280000 0.125 101   2.238  0.7904
##  6 CCN51 - 6 ICS95  0.220000 0.125 101   1.758  0.9718
##  6 CCN51 - 0 TCS01  0.260000 0.125 101   2.078  0.8757
##  6 CCN51 - 1 TCS01  0.366667 0.125 101   2.930  0.3083
##  6 CCN51 - 2 TCS01  0.196667 0.125 101   1.572  0.9917
##  6 CCN51 - 3 TCS01  0.123333 0.125 101   0.986  1.0000
##  6 CCN51 - 4 TCS01  0.233333 0.125 101   1.865  0.9502
##  6 CCN51 - 5 TCS01  0.096667 0.125 101   0.773  1.0000
##  6 CCN51 - 6 TCS01  0.236667 0.125 101   1.891  0.9433
##  0 ICS95 - 1 ICS95  0.250000 0.112 108   2.237  0.7913
##  0 ICS95 - 2 ICS95 -0.310000 0.112 108  -2.774  0.4088
##  0 ICS95 - 3 ICS95 -0.156667 0.112 108  -1.402  0.9980
##  0 ICS95 - 4 ICS95 -0.283333 0.112 108  -2.535  0.5835
##  0 ICS95 - 5 ICS95  0.063333 0.112 108   0.567  1.0000
##  0 ICS95 - 6 ICS95  0.003333 0.112 108   0.030  1.0000
##  0 ICS95 - 0 TCS01  0.043333 0.125 101   0.346  1.0000
##  0 ICS95 - 1 TCS01  0.150000 0.125 101   1.199  0.9998
##  0 ICS95 - 2 TCS01 -0.020000 0.125 101  -0.160  1.0000
##  0 ICS95 - 3 TCS01 -0.093333 0.125 101  -0.746  1.0000
##  0 ICS95 - 4 TCS01  0.016667 0.125 101   0.133  1.0000
##  0 ICS95 - 5 TCS01 -0.120000 0.125 101  -0.959  1.0000
##  0 ICS95 - 6 TCS01  0.020000 0.125 101   0.160  1.0000
##  1 ICS95 - 2 ICS95 -0.560000 0.112 108  -5.011  0.0004
##  1 ICS95 - 3 ICS95 -0.406667 0.112 108  -3.639  0.0532
##  1 ICS95 - 4 ICS95 -0.533333 0.112 108  -4.773  0.0010
##  1 ICS95 - 5 ICS95 -0.186667 0.112 108  -1.670  0.9837
##  1 ICS95 - 6 ICS95 -0.246667 0.112 108  -2.207  0.8090
##  1 ICS95 - 0 TCS01 -0.206667 0.125 101  -1.652  0.9854
##  1 ICS95 - 1 TCS01 -0.100000 0.125 101  -0.799  1.0000
##  1 ICS95 - 2 TCS01 -0.270000 0.125 101  -2.158  0.8361
##  1 ICS95 - 3 TCS01 -0.343333 0.125 101  -2.744  0.4307
##  1 ICS95 - 4 TCS01 -0.233333 0.125 101  -1.865  0.9502
##  1 ICS95 - 5 TCS01 -0.370000 0.125 101  -2.957  0.2926
##  1 ICS95 - 6 TCS01 -0.230000 0.125 101  -1.838  0.9565
##  2 ICS95 - 3 ICS95  0.153333 0.112 108   1.372  0.9985
##  2 ICS95 - 4 ICS95  0.026667 0.112 108   0.239  1.0000
##  2 ICS95 - 5 ICS95  0.373333 0.112 108   3.341  0.1210
##  2 ICS95 - 6 ICS95  0.313333 0.112 108   2.804  0.3883
##  2 ICS95 - 0 TCS01  0.353333 0.125 101   2.824  0.3758
##  2 ICS95 - 1 TCS01  0.460000 0.125 101   3.676  0.0486
##  2 ICS95 - 2 TCS01  0.290000 0.125 101   2.318  0.7396
##  2 ICS95 - 3 TCS01  0.216667 0.125 101   1.732  0.9759
##  2 ICS95 - 4 TCS01  0.326667 0.125 101   2.611  0.5276
##  2 ICS95 - 5 TCS01  0.190000 0.125 101   1.519  0.9945
##  2 ICS95 - 6 TCS01  0.330000 0.125 101   2.637  0.5078
##  3 ICS95 - 4 ICS95 -0.126667 0.112 108  -1.134  0.9999
##  3 ICS95 - 5 ICS95  0.220000 0.112 108   1.969  0.9200
##  3 ICS95 - 6 ICS95  0.160000 0.112 108   1.432  0.9974
##  3 ICS95 - 0 TCS01  0.200000 0.125 101   1.598  0.9899
##  3 ICS95 - 1 TCS01  0.306667 0.125 101   2.451  0.6462
##  3 ICS95 - 2 TCS01  0.136667 0.125 101   1.092  0.9999
##  3 ICS95 - 3 TCS01  0.063333 0.125 101   0.506  1.0000
##  3 ICS95 - 4 TCS01  0.173333 0.125 101   1.385  0.9983
##  3 ICS95 - 5 TCS01  0.036667 0.125 101   0.293  1.0000
##  3 ICS95 - 6 TCS01  0.176667 0.125 101   1.412  0.9978
##  4 ICS95 - 5 ICS95  0.346667 0.112 108   3.102  0.2144
##  4 ICS95 - 6 ICS95  0.286667 0.112 108   2.565  0.5612
##  4 ICS95 - 0 TCS01  0.326667 0.125 101   2.611  0.5276
##  4 ICS95 - 1 TCS01  0.433333 0.125 101   3.463  0.0887
##  4 ICS95 - 2 TCS01  0.263333 0.125 101   2.105  0.8632
##  4 ICS95 - 3 TCS01  0.190000 0.125 101   1.519  0.9945
##  4 ICS95 - 4 TCS01  0.300000 0.125 101   2.398  0.6846
##  4 ICS95 - 5 TCS01  0.163333 0.125 101   1.305  0.9992
##  4 ICS95 - 6 TCS01  0.303333 0.125 101   2.424  0.6655
##  5 ICS95 - 6 ICS95 -0.060000 0.112 108  -0.537  1.0000
##  5 ICS95 - 0 TCS01 -0.020000 0.125 101  -0.160  1.0000
##  5 ICS95 - 1 TCS01  0.086667 0.125 101   0.693  1.0000
##  5 ICS95 - 2 TCS01 -0.083333 0.125 101  -0.666  1.0000
##  5 ICS95 - 3 TCS01 -0.156667 0.125 101  -1.252  0.9996
##  5 ICS95 - 4 TCS01 -0.046667 0.125 101  -0.373  1.0000
##  5 ICS95 - 5 TCS01 -0.183333 0.125 101  -1.465  0.9964
##  5 ICS95 - 6 TCS01 -0.043333 0.125 101  -0.346  1.0000
##  6 ICS95 - 0 TCS01  0.040000 0.125 101   0.320  1.0000
##  6 ICS95 - 1 TCS01  0.146667 0.125 101   1.172  0.9998
##  6 ICS95 - 2 TCS01 -0.023333 0.125 101  -0.186  1.0000
##  6 ICS95 - 3 TCS01 -0.096667 0.125 101  -0.773  1.0000
##  6 ICS95 - 4 TCS01  0.013333 0.125 101   0.107  1.0000
##  6 ICS95 - 5 TCS01 -0.123333 0.125 101  -0.986  1.0000
##  6 ICS95 - 6 TCS01  0.016667 0.125 101   0.133  1.0000
##  0 TCS01 - 1 TCS01  0.106667 0.112 108   0.955  1.0000
##  0 TCS01 - 2 TCS01 -0.063333 0.112 108  -0.567  1.0000
##  0 TCS01 - 3 TCS01 -0.136667 0.112 108  -1.223  0.9997
##  0 TCS01 - 4 TCS01 -0.026667 0.112 108  -0.239  1.0000
##  0 TCS01 - 5 TCS01 -0.163333 0.112 108  -1.462  0.9966
##  0 TCS01 - 6 TCS01 -0.023333 0.112 108  -0.209  1.0000
##  1 TCS01 - 2 TCS01 -0.170000 0.112 108  -1.521  0.9944
##  1 TCS01 - 3 TCS01 -0.243333 0.112 108  -2.178  0.8259
##  1 TCS01 - 4 TCS01 -0.133333 0.112 108  -1.193  0.9998
##  1 TCS01 - 5 TCS01 -0.270000 0.112 108  -2.416  0.6715
##  1 TCS01 - 6 TCS01 -0.130000 0.112 108  -1.163  0.9999
##  2 TCS01 - 3 TCS01 -0.073333 0.112 108  -0.656  1.0000
##  2 TCS01 - 4 TCS01  0.036667 0.112 108   0.328  1.0000
##  2 TCS01 - 5 TCS01 -0.100000 0.112 108  -0.895  1.0000
##  2 TCS01 - 6 TCS01  0.040000 0.112 108   0.358  1.0000
##  3 TCS01 - 4 TCS01  0.110000 0.112 108   0.984  1.0000
##  3 TCS01 - 5 TCS01 -0.026667 0.112 108  -0.239  1.0000
##  3 TCS01 - 6 TCS01  0.113333 0.112 108   1.014  1.0000
##  4 TCS01 - 5 TCS01 -0.136667 0.112 108  -1.223  0.9997
##  4 TCS01 - 6 TCS01  0.003333 0.112 108   0.030  1.0000
##  5 TCS01 - 6 TCS01  0.140000 0.112 108   1.253  0.9996
## 
## curva = T2:
##  contrast           estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51  0.185667 0.112 108   1.661  0.9847
##  0 CCN51 - 2 CCN51  0.066000 0.112 108   0.591  1.0000
##  0 CCN51 - 3 CCN51 -0.555667 0.112 108  -4.973  0.0005
##  0 CCN51 - 4 CCN51 -0.660000 0.112 108  -5.906  <.0001
##  0 CCN51 - 5 CCN51 -0.327333 0.112 108  -2.929  0.3079
##  0 CCN51 - 6 CCN51 -0.137667 0.112 108  -1.232  0.9997
##  0 CCN51 - 0 ICS95  0.035667 0.125 101   0.285  1.0000
##  0 CCN51 - 1 ICS95  0.187667 0.125 101   1.500  0.9952
##  0 CCN51 - 2 ICS95  0.175667 0.125 101   1.404  0.9979
##  0 CCN51 - 3 ICS95 -0.012333 0.125 101  -0.099  1.0000
##  0 CCN51 - 4 ICS95 -0.117667 0.125 101  -0.940  1.0000
##  0 CCN51 - 5 ICS95 -0.081667 0.125 101  -0.653  1.0000
##  0 CCN51 - 6 ICS95  0.040000 0.125 101   0.320  1.0000
##  0 CCN51 - 0 TCS01  0.150000 0.125 101   1.199  0.9998
##  0 CCN51 - 1 TCS01  0.186000 0.125 101   1.487  0.9957
##  0 CCN51 - 2 TCS01  0.045667 0.125 101   0.365  1.0000
##  0 CCN51 - 3 TCS01  0.040333 0.125 101   0.322  1.0000
##  0 CCN51 - 4 TCS01 -0.235667 0.125 101  -1.883  0.9454
##  0 CCN51 - 5 TCS01 -0.257667 0.125 101  -2.059  0.8840
##  0 CCN51 - 6 TCS01 -0.075667 0.125 101  -0.605  1.0000
##  1 CCN51 - 2 CCN51 -0.119667 0.112 108  -1.071  1.0000
##  1 CCN51 - 3 CCN51 -0.741333 0.112 108  -6.634  <.0001
##  1 CCN51 - 4 CCN51 -0.845667 0.112 108  -7.568  <.0001
##  1 CCN51 - 5 CCN51 -0.513000 0.112 108  -4.591  0.0021
##  1 CCN51 - 6 CCN51 -0.323333 0.112 108  -2.893  0.3299
##  1 CCN51 - 0 ICS95 -0.150000 0.125 101  -1.199  0.9998
##  1 CCN51 - 1 ICS95  0.002000 0.125 101   0.016  1.0000
##  1 CCN51 - 2 ICS95 -0.010000 0.125 101  -0.080  1.0000
##  1 CCN51 - 3 ICS95 -0.198000 0.125 101  -1.582  0.9910
##  1 CCN51 - 4 ICS95 -0.303333 0.125 101  -2.424  0.6655
##  1 CCN51 - 5 ICS95 -0.267333 0.125 101  -2.137  0.8472
##  1 CCN51 - 6 ICS95 -0.145667 0.125 101  -1.164  0.9998
##  1 CCN51 - 0 TCS01 -0.035667 0.125 101  -0.285  1.0000
##  1 CCN51 - 1 TCS01  0.000333 0.125 101   0.003  1.0000
##  1 CCN51 - 2 TCS01 -0.140000 0.125 101  -1.119  0.9999
##  1 CCN51 - 3 TCS01 -0.145333 0.125 101  -1.162  0.9999
##  1 CCN51 - 4 TCS01 -0.421333 0.125 101  -3.367  0.1143
##  1 CCN51 - 5 TCS01 -0.443333 0.125 101  -3.543  0.0713
##  1 CCN51 - 6 TCS01 -0.261333 0.125 101  -2.089  0.8708
##  2 CCN51 - 3 CCN51 -0.621667 0.112 108  -5.563  <.0001
##  2 CCN51 - 4 CCN51 -0.726000 0.112 108  -6.497  <.0001
##  2 CCN51 - 5 CCN51 -0.393333 0.112 108  -3.520  0.0749
##  2 CCN51 - 6 CCN51 -0.203667 0.112 108  -1.823  0.9602
##  2 CCN51 - 0 ICS95 -0.030333 0.125 101  -0.242  1.0000
##  2 CCN51 - 1 ICS95  0.121667 0.125 101   0.972  1.0000
##  2 CCN51 - 2 ICS95  0.109667 0.125 101   0.876  1.0000
##  2 CCN51 - 3 ICS95 -0.078333 0.125 101  -0.626  1.0000
##  2 CCN51 - 4 ICS95 -0.183667 0.125 101  -1.468  0.9964
##  2 CCN51 - 5 ICS95 -0.147667 0.125 101  -1.180  0.9998
##  2 CCN51 - 6 ICS95 -0.026000 0.125 101  -0.208  1.0000
##  2 CCN51 - 0 TCS01  0.084000 0.125 101   0.671  1.0000
##  2 CCN51 - 1 TCS01  0.120000 0.125 101   0.959  1.0000
##  2 CCN51 - 2 TCS01 -0.020333 0.125 101  -0.163  1.0000
##  2 CCN51 - 3 TCS01 -0.025667 0.125 101  -0.205  1.0000
##  2 CCN51 - 4 TCS01 -0.301667 0.125 101  -2.411  0.6751
##  2 CCN51 - 5 TCS01 -0.323667 0.125 101  -2.587  0.5454
##  2 CCN51 - 6 TCS01 -0.141667 0.125 101  -1.132  0.9999
##  3 CCN51 - 4 CCN51 -0.104333 0.112 108  -0.934  1.0000
##  3 CCN51 - 5 CCN51  0.228333 0.112 108   2.043  0.8914
##  3 CCN51 - 6 CCN51  0.418000 0.112 108   3.741  0.0393
##  3 CCN51 - 0 ICS95  0.591333 0.125 101   4.726  0.0013
##  3 CCN51 - 1 ICS95  0.743333 0.125 101   5.941  <.0001
##  3 CCN51 - 2 ICS95  0.731333 0.125 101   5.845  <.0001
##  3 CCN51 - 3 ICS95  0.543333 0.125 101   4.342  0.0055
##  3 CCN51 - 4 ICS95  0.438000 0.125 101   3.501  0.0802
##  3 CCN51 - 5 ICS95  0.474000 0.125 101   3.788  0.0347
##  3 CCN51 - 6 ICS95  0.595667 0.125 101   4.761  0.0011
##  3 CCN51 - 0 TCS01  0.705667 0.125 101   5.640  <.0001
##  3 CCN51 - 1 TCS01  0.741667 0.125 101   5.928  <.0001
##  3 CCN51 - 2 TCS01  0.601333 0.125 101   4.806  0.0010
##  3 CCN51 - 3 TCS01  0.596000 0.125 101   4.763  0.0011
##  3 CCN51 - 4 TCS01  0.320000 0.125 101   2.558  0.5673
##  3 CCN51 - 5 TCS01  0.298000 0.125 101   2.382  0.6958
##  3 CCN51 - 6 TCS01  0.480000 0.125 101   3.836  0.0299
##  4 CCN51 - 5 CCN51  0.332667 0.112 108   2.977  0.2800
##  4 CCN51 - 6 CCN51  0.522333 0.112 108   4.674  0.0015
##  4 CCN51 - 0 ICS95  0.695667 0.125 101   5.560  <.0001
##  4 CCN51 - 1 ICS95  0.847667 0.125 101   6.775  <.0001
##  4 CCN51 - 2 ICS95  0.835667 0.125 101   6.679  <.0001
##  4 CCN51 - 3 ICS95  0.647667 0.125 101   5.176  0.0002
##  4 CCN51 - 4 ICS95  0.542333 0.125 101   4.334  0.0056
##  4 CCN51 - 5 ICS95  0.578333 0.125 101   4.622  0.0020
##  4 CCN51 - 6 ICS95  0.700000 0.125 101   5.595  <.0001
##  4 CCN51 - 0 TCS01  0.810000 0.125 101   6.474  <.0001
##  4 CCN51 - 1 TCS01  0.846000 0.125 101   6.761  <.0001
##  4 CCN51 - 2 TCS01  0.705667 0.125 101   5.640  <.0001
##  4 CCN51 - 3 TCS01  0.700333 0.125 101   5.597  <.0001
##  4 CCN51 - 4 TCS01  0.424333 0.125 101   3.391  0.1074
##  4 CCN51 - 5 TCS01  0.402333 0.125 101   3.216  0.1665
##  4 CCN51 - 6 TCS01  0.584333 0.125 101   4.670  0.0016
##  5 CCN51 - 6 CCN51  0.189667 0.112 108   1.697  0.9807
##  5 CCN51 - 0 ICS95  0.363000 0.125 101   2.901  0.3262
##  5 CCN51 - 1 ICS95  0.515000 0.125 101   4.116  0.0120
##  5 CCN51 - 2 ICS95  0.503000 0.125 101   4.020  0.0166
##  5 CCN51 - 3 ICS95  0.315000 0.125 101   2.518  0.5971
##  5 CCN51 - 4 ICS95  0.209667 0.125 101   1.676  0.9830
##  5 CCN51 - 5 ICS95  0.245667 0.125 101   1.963  0.9213
##  5 CCN51 - 6 ICS95  0.367333 0.125 101   2.936  0.3051
##  5 CCN51 - 0 TCS01  0.477333 0.125 101   3.815  0.0320
##  5 CCN51 - 1 TCS01  0.513333 0.125 101   4.103  0.0126
##  5 CCN51 - 2 TCS01  0.373000 0.125 101   2.981  0.2789
##  5 CCN51 - 3 TCS01  0.367667 0.125 101   2.938  0.3035
##  5 CCN51 - 4 TCS01  0.091667 0.125 101   0.733  1.0000
##  5 CCN51 - 5 TCS01  0.069667 0.125 101   0.557  1.0000
##  5 CCN51 - 6 TCS01  0.251667 0.125 101   2.011  0.9038
##  6 CCN51 - 0 ICS95  0.173333 0.125 101   1.385  0.9983
##  6 CCN51 - 1 ICS95  0.325333 0.125 101   2.600  0.5355
##  6 CCN51 - 2 ICS95  0.313333 0.125 101   2.504  0.6070
##  6 CCN51 - 3 ICS95  0.125333 0.125 101   1.002  1.0000
##  6 CCN51 - 4 ICS95  0.020000 0.125 101   0.160  1.0000
##  6 CCN51 - 5 ICS95  0.056000 0.125 101   0.448  1.0000
##  6 CCN51 - 6 ICS95  0.177667 0.125 101   1.420  0.9976
##  6 CCN51 - 0 TCS01  0.287667 0.125 101   2.299  0.7519
##  6 CCN51 - 1 TCS01  0.323667 0.125 101   2.587  0.5454
##  6 CCN51 - 2 TCS01  0.183333 0.125 101   1.465  0.9964
##  6 CCN51 - 3 TCS01  0.178000 0.125 101   1.423  0.9976
##  6 CCN51 - 4 TCS01 -0.098000 0.125 101  -0.783  1.0000
##  6 CCN51 - 5 TCS01 -0.120000 0.125 101  -0.959  1.0000
##  6 CCN51 - 6 TCS01  0.062000 0.125 101   0.496  1.0000
##  0 ICS95 - 1 ICS95  0.152000 0.112 108   1.360  0.9987
##  0 ICS95 - 2 ICS95  0.140000 0.112 108   1.253  0.9996
##  0 ICS95 - 3 ICS95 -0.048000 0.112 108  -0.430  1.0000
##  0 ICS95 - 4 ICS95 -0.153333 0.112 108  -1.372  0.9985
##  0 ICS95 - 5 ICS95 -0.117333 0.112 108  -1.050  1.0000
##  0 ICS95 - 6 ICS95  0.004333 0.112 108   0.039  1.0000
##  0 ICS95 - 0 TCS01  0.114333 0.125 101   0.914  1.0000
##  0 ICS95 - 1 TCS01  0.150333 0.125 101   1.201  0.9998
##  0 ICS95 - 2 TCS01  0.010000 0.125 101   0.080  1.0000
##  0 ICS95 - 3 TCS01  0.004667 0.125 101   0.037  1.0000
##  0 ICS95 - 4 TCS01 -0.271333 0.125 101  -2.169  0.8303
##  0 ICS95 - 5 TCS01 -0.293333 0.125 101  -2.344  0.7216
##  0 ICS95 - 6 TCS01 -0.111333 0.125 101  -0.890  1.0000
##  1 ICS95 - 2 ICS95 -0.012000 0.112 108  -0.107  1.0000
##  1 ICS95 - 3 ICS95 -0.200000 0.112 108  -1.790  0.9667
##  1 ICS95 - 4 ICS95 -0.305333 0.112 108  -2.732  0.4382
##  1 ICS95 - 5 ICS95 -0.269333 0.112 108  -2.410  0.6758
##  1 ICS95 - 6 ICS95 -0.147667 0.112 108  -1.321  0.9991
##  1 ICS95 - 0 TCS01 -0.037667 0.125 101  -0.301  1.0000
##  1 ICS95 - 1 TCS01 -0.001667 0.125 101  -0.013  1.0000
##  1 ICS95 - 2 TCS01 -0.142000 0.125 101  -1.135  0.9999
##  1 ICS95 - 3 TCS01 -0.147333 0.125 101  -1.178  0.9998
##  1 ICS95 - 4 TCS01 -0.423333 0.125 101  -3.383  0.1097
##  1 ICS95 - 5 TCS01 -0.445333 0.125 101  -3.559  0.0681
##  1 ICS95 - 6 TCS01 -0.263333 0.125 101  -2.105  0.8632
##  2 ICS95 - 3 ICS95 -0.188000 0.112 108  -1.682  0.9824
##  2 ICS95 - 4 ICS95 -0.293333 0.112 108  -2.625  0.5166
##  2 ICS95 - 5 ICS95 -0.257333 0.112 108  -2.303  0.7498
##  2 ICS95 - 6 ICS95 -0.135667 0.112 108  -1.214  0.9997
##  2 ICS95 - 0 TCS01 -0.025667 0.125 101  -0.205  1.0000
##  2 ICS95 - 1 TCS01  0.010333 0.125 101   0.083  1.0000
##  2 ICS95 - 2 TCS01 -0.130000 0.125 101  -1.039  1.0000
##  2 ICS95 - 3 TCS01 -0.135333 0.125 101  -1.082  1.0000
##  2 ICS95 - 4 TCS01 -0.411333 0.125 101  -3.287  0.1398
##  2 ICS95 - 5 TCS01 -0.433333 0.125 101  -3.463  0.0887
##  2 ICS95 - 6 TCS01 -0.251333 0.125 101  -2.009  0.9048
##  3 ICS95 - 4 ICS95 -0.105333 0.112 108  -0.943  1.0000
##  3 ICS95 - 5 ICS95 -0.069333 0.112 108  -0.620  1.0000
##  3 ICS95 - 6 ICS95  0.052333 0.112 108   0.468  1.0000
##  3 ICS95 - 0 TCS01  0.162333 0.125 101   1.297  0.9993
##  3 ICS95 - 1 TCS01  0.198333 0.125 101   1.585  0.9908
##  3 ICS95 - 2 TCS01  0.058000 0.125 101   0.464  1.0000
##  3 ICS95 - 3 TCS01  0.052667 0.125 101   0.421  1.0000
##  3 ICS95 - 4 TCS01 -0.223333 0.125 101  -1.785  0.9673
##  3 ICS95 - 5 TCS01 -0.245333 0.125 101  -1.961  0.9222
##  3 ICS95 - 6 TCS01 -0.063333 0.125 101  -0.506  1.0000
##  4 ICS95 - 5 ICS95  0.036000 0.112 108   0.322  1.0000
##  4 ICS95 - 6 ICS95  0.157667 0.112 108   1.411  0.9978
##  4 ICS95 - 0 TCS01  0.267667 0.125 101   2.139  0.8459
##  4 ICS95 - 1 TCS01  0.303667 0.125 101   2.427  0.6636
##  4 ICS95 - 2 TCS01  0.163333 0.125 101   1.305  0.9992
##  4 ICS95 - 3 TCS01  0.158000 0.125 101   1.263  0.9995
##  4 ICS95 - 4 TCS01 -0.118000 0.125 101  -0.943  1.0000
##  4 ICS95 - 5 TCS01 -0.140000 0.125 101  -1.119  0.9999
##  4 ICS95 - 6 TCS01  0.042000 0.125 101   0.336  1.0000
##  5 ICS95 - 6 ICS95  0.121667 0.112 108   1.089  0.9999
##  5 ICS95 - 0 TCS01  0.231667 0.125 101   1.852  0.9534
##  5 ICS95 - 1 TCS01  0.267667 0.125 101   2.139  0.8459
##  5 ICS95 - 2 TCS01  0.127333 0.125 101   1.018  1.0000
##  5 ICS95 - 3 TCS01  0.122000 0.125 101   0.975  1.0000
##  5 ICS95 - 4 TCS01 -0.154000 0.125 101  -1.231  0.9997
##  5 ICS95 - 5 TCS01 -0.176000 0.125 101  -1.407  0.9979
##  5 ICS95 - 6 TCS01  0.006000 0.125 101   0.048  1.0000
##  6 ICS95 - 0 TCS01  0.110000 0.125 101   0.879  1.0000
##  6 ICS95 - 1 TCS01  0.146000 0.125 101   1.167  0.9998
##  6 ICS95 - 2 TCS01  0.005667 0.125 101   0.045  1.0000
##  6 ICS95 - 3 TCS01  0.000333 0.125 101   0.003  1.0000
##  6 ICS95 - 4 TCS01 -0.275667 0.125 101  -2.203  0.8109
##  6 ICS95 - 5 TCS01 -0.297667 0.125 101  -2.379  0.6977
##  6 ICS95 - 6 TCS01 -0.115667 0.125 101  -0.924  1.0000
##  0 TCS01 - 1 TCS01  0.036000 0.112 108   0.322  1.0000
##  0 TCS01 - 2 TCS01 -0.104333 0.112 108  -0.934  1.0000
##  0 TCS01 - 3 TCS01 -0.109667 0.112 108  -0.981  1.0000
##  0 TCS01 - 4 TCS01 -0.385667 0.112 108  -3.451  0.0905
##  0 TCS01 - 5 TCS01 -0.407667 0.112 108  -3.648  0.0519
##  0 TCS01 - 6 TCS01 -0.225667 0.112 108  -2.019  0.9012
##  1 TCS01 - 2 TCS01 -0.140333 0.112 108  -1.256  0.9996
##  1 TCS01 - 3 TCS01 -0.145667 0.112 108  -1.304  0.9993
##  1 TCS01 - 4 TCS01 -0.421667 0.112 108  -3.773  0.0356
##  1 TCS01 - 5 TCS01 -0.443667 0.112 108  -3.970  0.0190
##  1 TCS01 - 6 TCS01 -0.261667 0.112 108  -2.342  0.7238
##  2 TCS01 - 3 TCS01 -0.005333 0.112 108  -0.048  1.0000
##  2 TCS01 - 4 TCS01 -0.281333 0.112 108  -2.518  0.5969
##  2 TCS01 - 5 TCS01 -0.303333 0.112 108  -2.714  0.4510
##  2 TCS01 - 6 TCS01 -0.121333 0.112 108  -1.086  0.9999
##  3 TCS01 - 4 TCS01 -0.276000 0.112 108  -2.470  0.6323
##  3 TCS01 - 5 TCS01 -0.298000 0.112 108  -2.667  0.4857
##  3 TCS01 - 6 TCS01 -0.116000 0.112 108  -1.038  1.0000
##  4 TCS01 - 5 TCS01 -0.022000 0.112 108  -0.197  1.0000
##  4 TCS01 - 6 TCS01  0.160000 0.112 108   1.432  0.9974
##  5 TCS01 - 6 TCS01  0.182000 0.112 108   1.629  0.9877
## 
## P value adjustment: tukey method for comparing a family of 21 estimates
##Splitting dataframe by temperature ramp
## Protocol 3 (T3)

datos.curve1<-filter(datos, curva=="T3")

##Check assumptions
##Outliers

datos.curve1 %>%
  group_by(gen, diam2) %>%
  identify_outliers(acidez.grano)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm1<-datos.curve1 %>%
  group_by(gen, diam2) #%>%
  #shapiro_test(acidez.grano)
norm1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 10
##    curva diam2 time.let gen   muestra ph.testa acidez.testa ph.grano
##    <fct> <fct> <chr>    <fct> <fct>      <dbl>        <dbl>    <dbl>
##  1 T3    0     cero     CCN51 14          3.19         0.79     5.58
##  2 T3    0     cero     CCN51 25          3.18         0.93     5.63
##  3 T3    0     cero     CCN51 36          3.20         0.67     5.59
##  4 T3    0     cero     ICS95 14          3.24         1.07     5.66
##  5 T3    0     cero     ICS95 25          3.24         0.85     5.60
##  6 T3    0     cero     ICS95 36          3.23         0.93     5.55
##  7 T3    0     cero     TCS01 14          3.69         0.69     5.67
##  8 T3    0     cero     TCS01 25          3.58         0.69     5.70
##  9 T3    0     cero     TCS01 36          3.60         0.8      5.70
## 10 T3    1     uno      CCN51 14          3.19         0.83     5.60
## 11 T3    1     uno      CCN51 25          3.12         0.92     5.52
## 12 T3    1     uno      CCN51 36          3.09         1.12     5.46
## 13 T3    1     uno      ICS95 14          3.11         0.9      5.45
## 14 T3    1     uno      ICS95 25          3.65         1.1      5.48
## 15 T3    1     uno      ICS95 36          3.03         1.18     5.57
## 16 T3    1     uno      TCS01 14          3.29         0.76     5.36
## 17 T3    1     uno      TCS01 25          3.44         0.82     5.55
## 18 T3    1     uno      TCS01 36          3.23         1.1      4.79
## 19 T3    2     dos      CCN51 14          3.84         0.24     5.36
## 20 T3    2     dos      CCN51 25          4.17         0.2      5.46
## 21 T3    2     dos      CCN51 36          4.06         0.22     5.54
## 22 T3    2     dos      ICS95 14          3.35         0.28     5.16
## 23 T3    2     dos      ICS95 25          3.48         0.49     4.51
## 24 T3    2     dos      ICS95 36          3.64         0.34     5.13
## 25 T3    2     dos      TCS01 14          3.67         0.79     5.17
## 26 T3    2     dos      TCS01 25          3.66         0.65     4.46
## 27 T3    2     dos      TCS01 36          3.70         0.89     4.67
## 28 T3    3     tres     CCN51 14          3.97         0.31     4.69
## 29 T3    3     tres     CCN51 25          4.31         0.22     4.84
## 30 T3    3     tres     CCN51 36          3.92         0.33     4.56
## 31 T3    3     tres     ICS95 14          3.11         0.83     3.77
## 32 T3    3     tres     ICS95 25          3.28         0.47     3.91
## 33 T3    3     tres     ICS95 36          2.71         1.68     3.18
## 34 T3    3     tres     TCS01 14          3.54         2        3.78
## 35 T3    3     tres     TCS01 25          3.51         2.07     3.62
## 36 T3    3     tres     TCS01 36          3.48         2.33     3.56
## 37 T3    4     cuatro   CCN51 14          3.66         0.39     4.44
## 38 T3    4     cuatro   CCN51 25          4.12         0.34     4.22
## 39 T3    4     cuatro   CCN51 36          3.90         0.47     4.26
## 40 T3    4     cuatro   ICS95 14          3.83         0.74     4.19
## 41 T3    4     cuatro   ICS95 25          3.86         0.62     4.17
## 42 T3    4     cuatro   ICS95 36          3.51         1.26     3.56
## 43 T3    4     cuatro   TCS01 14          3.70         2.22     3.79
## 44 T3    4     cuatro   TCS01 25          3.65         1.89     3.70
## 45 T3    4     cuatro   TCS01 36          3.56         2.27     3.53
## 46 T3    5     cinco    CCN51 14          5.18         0.4      4.56
## 47 T3    5     cinco    CCN51 25          5.23         0.34     4.26
## 48 T3    5     cinco    CCN51 36          5.21         0.35     4.28
## 49 T3    5     cinco    ICS95 14          5.95         0.24     5.04
## 50 T3    5     cinco    ICS95 25          4.35         0.61     5.33
## 51 T3    5     cinco    ICS95 36          4.72         0.48     3.62
## 52 T3    5     cinco    TCS01 14          3.26         1.82     3.02
## 53 T3    5     cinco    TCS01 25          3.11         1.82     2.67
## 54 T3    5     cinco    TCS01 36          3.01         2.05     2.78
## 55 T3    6     seis     CCN51 14          6.52         0.12     5.51
## 56 T3    6     seis     CCN51 25          6.66         0.12     4.16
## 57 T3    6     seis     CCN51 36          6.79         0.11     5.47
## 58 T3    6     seis     ICS95 14          6.74         0.17     5.15
## 59 T3    6     seis     ICS95 25          6.58         0.21     4.82
## 60 T3    6     seis     ICS95 36          6.53         0.13     4.36
## 61 T3    6     seis     TCS01 14          4.57         1.11     4.22
## 62 T3    6     seis     TCS01 25          4.26         1.07     3.85
## 63 T3    6     seis     TCS01 36          4.45         0.92     4.08
## # ℹ 2 more variables: acidez.grano <dbl>, id <fct>
##Create QQ plot for each cell of design:

ggqqplot(datos.curve1, "acidez.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev1<-datos.curve1 %>%
  group_by(diam2) %>%
  levene_test(acidez.grano ~ gen)
lev1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6    1.06   0.403
## 2 1         2     6    0.646  0.557
## 3 2         2     6    2.72   0.145
## 4 3         2     6    0.0196 0.981
## 5 4         2     6    1.01   0.418
## 6 5         2     6    0.750  0.512
## 7 6         2     6    0.329  0.732
##Computation

res.aov1 <- anova_test(
  data = datos.curve1, dv = acidez.grano, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov1)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd      F        p p<.05   ges
## 1       gen 2.00  6.00 38.530 3.77e-04     * 0.784
## 2     diam2 1.71 10.28 35.709 3.37e-05     * 0.810
## 3 gen:diam2 3.43 10.28 11.257 1.00e-03     * 0.729
#CCN51
datos.ccn<-filter(datos.curve1, gen=="CCN51")
res.aov.ccn1 <- anova_test(
  data = datos.ccn, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F        p p<.05   ges
## 1  diam2   6  12 9.611 0.000532     * 0.788
#ICS95
datos.ics<-filter(datos.curve1, gen=="ICS95")
res.aov.ics1 <- anova_test(
  data = datos.ics, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 2.721 0.066       0.493
#TCS01
datos.tcs<-filter(datos.curve1, gen=="TCS01")
res.aov.tcs1 <- anova_test(
  data = datos.tcs, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F       p p<.05   ges
## 1  diam2   6  12 61.467 2.6e-08     * 0.956
## Protocol 1 (T1)

datos.curve2<-filter(datos, curva=="T1")

##Check assumptions
##Outliers

datos.curve2 %>%
  group_by(gen, diam2) %>%
  identify_outliers(acidez.grano)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve2 %>%
  group_by(gen, diam2) %>%
  shapiro_test(acidez.grano)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable     statistic     p
##    <fct> <fct> <chr>            <dbl> <dbl>
##  1 0     CCN51 acidez.grano     0.942 0.537
##  2 1     CCN51 acidez.grano     0.862 0.274
##  3 2     CCN51 acidez.grano     0.942 0.537
##  4 3     CCN51 acidez.grano     0.954 0.587
##  5 4     CCN51 acidez.grano     0.996 0.884
##  6 5     CCN51 acidez.grano     0.990 0.809
##  7 6     CCN51 acidez.grano     0.987 0.780
##  8 0     ICS95 acidez.grano     0.990 0.806
##  9 1     ICS95 acidez.grano     1     1.00 
## 10 2     ICS95 acidez.grano     0.942 0.537
## 11 3     ICS95 acidez.grano     0.829 0.187
## 12 4     ICS95 acidez.grano     0.987 0.780
## 13 5     ICS95 acidez.grano     0.964 0.637
## 14 6     ICS95 acidez.grano     0.855 0.253
## 15 0     TCS01 acidez.grano     0.832 0.194
## 16 1     TCS01 acidez.grano     0.942 0.537
## 17 2     TCS01 acidez.grano     0.842 0.220
## 18 3     TCS01 acidez.grano     0.75  0    
## 19 4     TCS01 acidez.grano     0.824 0.174
## 20 5     TCS01 acidez.grano     0.75  0    
## 21 6     TCS01 acidez.grano     0.862 0.274
##Create QQ plot for each cell of design:

ggqqplot(datos.curve2, "acidez.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve2 %>%
  group_by(diam2) %>%
  levene_test(acidez.grano ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6    0.542  0.608
## 2 1         2     6    0.497  0.631
## 3 2         2     6    0.0123 0.988
## 4 3         2     6    0.860  0.469
## 5 4         2     6    2.06   0.208
## 6 5         2     6    2.56   0.157
## 7 6         2     6    0.812  0.487
##Computation

res.aov2 <- anova_test(
  data = datos.curve2, dv = acidez.grano, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect DFn   DFd      F        p p<.05   ges
## 1       gen 2.0  6.00  2.737 0.143000       0.149
## 2     diam2 2.4 14.41 14.959 0.000189     * 0.668
## 3 gen:diam2 4.8 14.41  3.539 0.028000     * 0.488
#CCN51
datos.ccn<-filter(datos.curve2, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd   F     p p<.05   ges
## 1  diam2   6  12 5.5 0.006     * 0.689
#ICS95
datos.ics<-filter(datos.curve2, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 16.787 3.37e-05     * 0.867
#TCS01
datos.tcs<-filter(datos.curve2, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd   F     p p<.05   ges
## 1  diam2   6  12 8.2 0.001     * 0.789
## Protocol 2 (T2)

datos.curve3<-filter(datos, curva=="T2")

##Check assumptions
##Outliers

datos.curve3 %>%
  group_by(gen, diam2) %>%
  identify_outliers(acidez.grano)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve3 %>%
  group_by(gen, diam2) %>%
  shapiro_test(acidez.grano)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable     statistic     p
##    <fct> <fct> <chr>            <dbl> <dbl>
##  1 0     CCN51 acidez.grano     0.957 0.600
##  2 1     CCN51 acidez.grano     0.936 0.510
##  3 2     CCN51 acidez.grano     0.994 0.856
##  4 3     CCN51 acidez.grano     0.812 0.144
##  5 4     CCN51 acidez.grano     0.953 0.585
##  6 5     CCN51 acidez.grano     0.885 0.340
##  7 6     CCN51 acidez.grano     0.948 0.561
##  8 0     ICS95 acidez.grano     0.837 0.206
##  9 1     ICS95 acidez.grano     0.75  0    
## 10 2     ICS95 acidez.grano     0.878 0.317
## 11 3     ICS95 acidez.grano     0.909 0.416
## 12 4     ICS95 acidez.grano     0.913 0.430
## 13 5     ICS95 acidez.grano     0.942 0.537
## 14 6     ICS95 acidez.grano     0.994 0.847
## 15 0     TCS01 acidez.grano     0.903 0.397
## 16 1     TCS01 acidez.grano     0.825 0.177
## 17 2     TCS01 acidez.grano     0.850 0.241
## 18 3     TCS01 acidez.grano     0.898 0.380
## 19 4     TCS01 acidez.grano     0.943 0.539
## 20 5     TCS01 acidez.grano     0.998 0.913
## 21 6     TCS01 acidez.grano     0.941 0.533
##Create QQ plot for each cell of design:

ggqqplot(datos.curve3, "acidez.grano", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve3 %>%
  group_by(diam2) %>%
  levene_test(acidez.grano ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.532 0.613
## 2 1         2     6     0.583 0.587
## 3 2         2     6     0.583 0.587
## 4 3         2     6     0.942 0.441
## 5 4         2     6     0.295 0.755
## 6 5         2     6     0.338 0.726
## 7 6         2     6     0.589 0.584
##Computation

res.aov2 <- anova_test(
  data = datos.curve3, dv = acidez.grano, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd      F       p p<.05   ges
## 1       gen 2.00  6.00  4.783 5.7e-02       0.430
## 2     diam2 2.36 14.17 25.870 1.1e-05     * 0.694
## 3 gen:diam2 4.72 14.17  4.682 1.1e-02     * 0.451
#CCN51
datos.ccn<-filter(datos.curve3, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F       p p<.05   ges
## 1  diam2   6  12 49.577 8.9e-08     * 0.941
#ICS95
datos.ics<-filter(datos.curve3, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1  diam2   6  12 2.602 0.075       0.399
#TCS01
datos.tcs<-filter(datos.curve3, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = acidez.grano, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05 ges
## 1  diam2   6  12 5.921 0.004     * 0.6
## Gráficas por réplica y genotipo
datos$diam2<-as.numeric(as.character(datos$diam2))
##Gráfica por réplica compuesta
pht<- ggplot(datos, aes(x = diam2)) +
  facet_grid(curva~gen*muestra) +
  geom_line(aes(y=acidez.grano)) +
  geom_point(aes(y=acidez.grano)) +
  scale_y_continuous(name = expression("Nib acidity")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 linewidth = 0.25)) +
  theme(text = element_text(size = 12))

pht

## Gráfica por genotipo

datos2<-summarySE (datos, measurevar = "acidez.grano", groupvars = c("curva", "gen","diam2"))
write.csv(datos2, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data_out/acidity_mean_grano.csv")

pht2<- ggplot(datos2, aes(x = diam2)) +
  facet_grid(curva~gen) +
  geom_errorbar(aes(ymin=acidez.grano-ci, ymax=acidez.grano+ci), width=.1) +
  geom_line(aes(y=acidez.grano)) +
  geom_point(aes(y=acidez.grano)) +
  scale_y_continuous(name = expression("Nib acidity")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 linewidth = 0.25)) +
  theme(text = element_text(size = 15))  
pht2