setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data")
datos<-read.table("todos_phys.csv", header=T, sep=',')
datos$curva <- factor(datos$curva, levels = c("1", "2", "3"), 
                      labels = c("T3", "T1", "T2"))
datos$gen<-as.factor(datos$gen)
datos$curva<-as.factor(datos$curva)
datos$id<-as.factor(datos$id)
datos$muestra<-as.factor(datos$muestra)
datos$diam2<-as.factor(datos$diam2)
library(ggplot2)
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ tibble  3.2.1     ✔ purrr   1.0.1
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.1     ✔ forcats 1.0.0
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'stringr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::arrange()   masks plyr::arrange()
## ✖ purrr::compact()   masks plyr::compact()
## ✖ dplyr::count()     masks plyr::count()
## ✖ dplyr::desc()      masks plyr::desc()
## ✖ dplyr::failwith()  masks plyr::failwith()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::id()        masks plyr::id()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::mutate()    masks plyr::mutate()
## ✖ dplyr::rename()    masks plyr::rename()
## ✖ dplyr::summarise() masks plyr::summarise()
## ✖ dplyr::summarize() masks plyr::summarize()
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
library(emmeans)
##Summary statistics
summ<-datos %>%
  group_by(curva, gen, diam2) %>%
  get_summary_stats(ph.testa, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 7
##    curva diam2 gen   variable     n  mean    sd
##    <fct> <fct> <fct> <chr>    <dbl> <dbl> <dbl>
##  1 T3    0     CCN51 ph.testa     3  3.19 0.013
##  2 T3    1     CCN51 ph.testa     3  3.13 0.051
##  3 T3    2     CCN51 ph.testa     3  4.02 0.169
##  4 T3    3     CCN51 ph.testa     3  4.07 0.216
##  5 T3    4     CCN51 ph.testa     3  3.89 0.232
##  6 T3    5     CCN51 ph.testa     3  5.21 0.027
##  7 T3    6     CCN51 ph.testa     3  6.66 0.135
##  8 T3    0     ICS95 ph.testa     3  3.23 0.006
##  9 T3    1     ICS95 ph.testa     3  3.26 0.335
## 10 T3    2     ICS95 ph.testa     3  3.49 0.146
## 11 T3    3     ICS95 ph.testa     3  3.03 0.293
## 12 T3    4     ICS95 ph.testa     3  3.74 0.192
## 13 T3    5     ICS95 ph.testa     3  5.01 0.839
## 14 T3    6     ICS95 ph.testa     3  6.62 0.11 
## 15 T3    0     TCS01 ph.testa     3  3.62 0.064
## 16 T3    1     TCS01 ph.testa     3  3.32 0.108
## 17 T3    2     TCS01 ph.testa     3  3.68 0.024
## 18 T3    3     TCS01 ph.testa     3  3.51 0.03 
## 19 T3    4     TCS01 ph.testa     3  3.64 0.072
## 20 T3    5     TCS01 ph.testa     3  3.13 0.127
## 21 T3    6     TCS01 ph.testa     3  4.43 0.16 
## 22 T1    0     CCN51 ph.testa     3  2.96 0.091
## 23 T1    1     CCN51 ph.testa     3  2.77 0.092
## 24 T1    2     CCN51 ph.testa     3  2.56 0.021
## 25 T1    3     CCN51 ph.testa     3  3.29 0.103
## 26 T1    4     CCN51 ph.testa     3  4.63 1.05 
## 27 T1    5     CCN51 ph.testa     3  5.58 0.655
## 28 T1    6     CCN51 ph.testa     3  5.54 0.134
## 29 T1    0     ICS95 ph.testa     3  2.85 0.096
## 30 T1    1     ICS95 ph.testa     3  2.37 0.102
## 31 T1    2     ICS95 ph.testa     3  1.89 0.079
## 32 T1    3     ICS95 ph.testa     3  2.43 0.094
## 33 T1    4     ICS95 ph.testa     3  2.54 0.124
## 34 T1    5     ICS95 ph.testa     3  4.22 0.373
## 35 T1    6     ICS95 ph.testa     3  5.04 0.632
## 36 T1    0     TCS01 ph.testa     3  3.47 0.056
## 37 T1    1     TCS01 ph.testa     3  2.65 0.352
## 38 T1    2     TCS01 ph.testa     3  3.39 0.202
## 39 T1    3     TCS01 ph.testa     3  4.16 0.318
## 40 T1    4     TCS01 ph.testa     3  5.52 0.301
## 41 T1    5     TCS01 ph.testa     3  6.24 0.561
## 42 T1    6     TCS01 ph.testa     3  6.80 0.353
## 43 T2    0     CCN51 ph.testa     3  2.4  0.162
## 44 T2    1     CCN51 ph.testa     3  3.13 0.041
## 45 T2    2     CCN51 ph.testa     3  3.10 0.032
## 46 T2    3     CCN51 ph.testa     3  3.54 0.113
## 47 T2    4     CCN51 ph.testa     3  3.72 0.048
## 48 T2    5     CCN51 ph.testa     3  4.07 0.213
## 49 T2    6     CCN51 ph.testa     3  5.30 0.48 
## 50 T2    0     ICS95 ph.testa     3  3.43 0.544
## 51 T2    1     ICS95 ph.testa     3  2.91 0.063
## 52 T2    2     ICS95 ph.testa     3  2.95 0.052
## 53 T2    3     ICS95 ph.testa     3  3.22 0.067
## 54 T2    4     ICS95 ph.testa     3  3.36 0.086
## 55 T2    5     ICS95 ph.testa     3  3.69 0.025
## 56 T2    6     ICS95 ph.testa     3  4.66 0.18 
## 57 T2    0     TCS01 ph.testa     3  3.31 0.289
## 58 T2    1     TCS01 ph.testa     3  3.12 0.202
## 59 T2    2     TCS01 ph.testa     3  3.63 0.242
## 60 T2    3     TCS01 ph.testa     3  4.21 0.363
## 61 T2    4     TCS01 ph.testa     3  4.50 0.624
## 62 T2    5     TCS01 ph.testa     3  5.73 1.11 
## 63 T2    6     TCS01 ph.testa     3  6.54 1.06
##Visualization
bxp <- ggboxplot(
  datos, x = "curva", y = "ph.testa",
  color = "diam2", palette = "jco",
  facet.by =  "gen"
)
bxp

##Check assumptions
##Outliers

datos %>%
  group_by(curva, gen, diam2) %>%
  identify_outliers(ph.testa)
##  [1] curva        diam2        gen          time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm<-datos %>%
  group_by(curva, gen, diam2) %>%
  shapiro_test(ph.testa)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 6
##    curva diam2 gen   variable statistic       p
##    <fct> <fct> <fct> <chr>        <dbl>   <dbl>
##  1 T3    0     CCN51 ph.testa     0.995 0.868  
##  2 T3    1     CCN51 ph.testa     0.960 0.615  
##  3 T3    2     CCN51 ph.testa     0.963 0.633  
##  4 T3    3     CCN51 ph.testa     0.843 0.222  
##  5 T3    4     CCN51 ph.testa     1.00  0.962  
##  6 T3    5     CCN51 ph.testa     1     1.00   
##  7 T3    6     CCN51 ph.testa     0.999 0.947  
##  8 T3    0     ICS95 ph.testa     0.991 0.817  
##  9 T3    1     ICS95 ph.testa     0.843 0.223  
## 10 T3    2     ICS95 ph.testa     0.996 0.872  
## 11 T3    3     ICS95 ph.testa     0.944 0.546  
## 12 T3    4     ICS95 ph.testa     0.822 0.169  
## 13 T3    5     ICS95 ph.testa     0.914 0.431  
## 14 T3    6     ICS95 ph.testa     0.916 0.439  
## 15 T3    0     TCS01 ph.testa     0.872 0.301  
## 16 T3    1     TCS01 ph.testa     0.960 0.613  
## 17 T3    2     TCS01 ph.testa     0.958 0.607  
## 18 T3    3     TCS01 ph.testa     0.992 0.832  
## 19 T3    4     TCS01 ph.testa     0.988 0.786  
## 20 T3    5     TCS01 ph.testa     0.982 0.742  
## 21 T3    6     TCS01 ph.testa     0.983 0.748  
## 22 T1    0     CCN51 ph.testa     0.866 0.283  
## 23 T1    1     CCN51 ph.testa     0.950 0.570  
## 24 T1    2     CCN51 ph.testa     0.908 0.413  
## 25 T1    3     CCN51 ph.testa     0.983 0.749  
## 26 T1    4     CCN51 ph.testa     0.942 0.537  
## 27 T1    5     CCN51 ph.testa     0.976 0.701  
## 28 T1    6     CCN51 ph.testa     0.812 0.142  
## 29 T1    0     ICS95 ph.testa     0.910 0.419  
## 30 T1    1     ICS95 ph.testa     0.920 0.453  
## 31 T1    2     ICS95 ph.testa     0.947 0.554  
## 32 T1    3     ICS95 ph.testa     0.975 0.694  
## 33 T1    4     ICS95 ph.testa     0.970 0.669  
## 34 T1    5     ICS95 ph.testa     0.788 0.0870 
## 35 T1    6     ICS95 ph.testa     0.842 0.218  
## 36 T1    0     TCS01 ph.testa     0.968 0.656  
## 37 T1    1     TCS01 ph.testa     0.852 0.245  
## 38 T1    2     TCS01 ph.testa     0.997 0.896  
## 39 T1    3     TCS01 ph.testa     0.998 0.922  
## 40 T1    4     TCS01 ph.testa     0.974 0.691  
## 41 T1    5     TCS01 ph.testa     0.807 0.131  
## 42 T1    6     TCS01 ph.testa     0.841 0.217  
## 43 T2    0     CCN51 ph.testa     0.987 0.778  
## 44 T2    1     CCN51 ph.testa     1.00  0.959  
## 45 T2    2     CCN51 ph.testa     1.00  0.982  
## 46 T2    3     CCN51 ph.testa     0.787 0.0843 
## 47 T2    4     CCN51 ph.testa     0.939 0.524  
## 48 T2    5     CCN51 ph.testa     0.801 0.116  
## 49 T2    6     CCN51 ph.testa     0.754 0.00795
## 50 T2    0     ICS95 ph.testa     0.781 0.0703 
## 51 T2    1     ICS95 ph.testa     0.990 0.808  
## 52 T2    2     ICS95 ph.testa     0.957 0.602  
## 53 T2    3     ICS95 ph.testa     0.909 0.416  
## 54 T2    4     ICS95 ph.testa     0.775 0.0553 
## 55 T2    5     ICS95 ph.testa     0.800 0.114  
## 56 T2    6     ICS95 ph.testa     0.925 0.471  
## 57 T2    0     TCS01 ph.testa     0.935 0.508  
## 58 T2    1     TCS01 ph.testa     0.980 0.726  
## 59 T2    2     TCS01 ph.testa     1.00  0.975  
## 60 T2    3     TCS01 ph.testa     0.993 0.837  
## 61 T2    4     TCS01 ph.testa     0.825 0.175  
## 62 T2    5     TCS01 ph.testa     0.894 0.366  
## 63 T2    6     TCS01 ph.testa     0.997 0.897
##Create QQ plot for each cell of design:

ggqqplot(datos, "ph.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev<-datos %>%
  group_by(diam2) %>%
  levene_test(ph.testa ~ curva*gen)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         8    18     0.838 0.582
## 2 1         8    18     0.687 0.698
## 3 2         8    18     1.46  0.240
## 4 3         8    18     0.994 0.473
## 5 4         8    18     1.28  0.316
## 6 5         8    18     0.901 0.536
## 7 6         8    18     1.11  0.403
##Computation

res.aov <- anova_test(
  data = datos, dv = ph.testa, wid = id,
  within = diam2, between = c(curva, gen)
)
res.aov
## ANOVA Table (type II tests)
## 
## $ANOVA
##            Effect DFn DFd       F        p p<.05   ges
## 1           curva   2  18   1.872 1.83e-01       0.058
## 2             gen   2  18  29.962 1.87e-06     * 0.496
## 3           diam2   6 108 270.784 1.11e-62     * 0.914
## 4       curva:gen   4  18  25.822 3.03e-07     * 0.629
## 5     curva:diam2  12 108  11.529 1.38e-14     * 0.475
## 6       gen:diam2  12 108   5.605 2.15e-07     * 0.305
## 7 curva:gen:diam2  24 108   9.760 1.36e-17     * 0.605
## 
## $`Mauchly's Test for Sphericity`
##            Effect    W     p p<.05
## 1           diam2 0.06 0.002     *
## 2     curva:diam2 0.06 0.002     *
## 3       gen:diam2 0.06 0.002     *
## 4 curva:gen:diam2 0.06 0.002     *
## 
## $`Sphericity Corrections`
##            Effect   GGe       DF[GG]    p[GG] p[GG]<.05   HFe       DF[HF]
## 1           diam2 0.541  3.24, 58.39 5.75e-35         * 0.674  4.04, 72.75
## 2     curva:diam2 0.541  6.49, 58.39 8.79e-09         * 0.674  8.08, 72.75
## 3       gen:diam2 0.541  6.49, 58.39 8.26e-05         * 0.674  8.08, 72.75
## 4 curva:gen:diam2 0.541 12.98, 58.39 2.23e-10         * 0.674 16.17, 72.75
##      p[HF] p[HF]<.05
## 1 5.41e-43         *
## 2 1.81e-10         *
## 3 1.45e-05         *
## 4 1.79e-12         *
get_anova_table(res.aov)
## ANOVA Table (type II tests)
## 
##            Effect   DFn   DFd       F        p p<.05   ges
## 1           curva  2.00 18.00   1.872 1.83e-01       0.058
## 2             gen  2.00 18.00  29.962 1.87e-06     * 0.496
## 3           diam2  3.24 58.39 270.784 5.75e-35     * 0.914
## 4       curva:gen  4.00 18.00  25.822 3.03e-07     * 0.629
## 5     curva:diam2  6.49 58.39  11.529 8.79e-09     * 0.475
## 6       gen:diam2  6.49 58.39   5.605 8.26e-05     * 0.305
## 7 curva:gen:diam2 12.98 58.39   9.760 2.23e-10     * 0.605
#Table by error
res.aov.error <- aov(ph.testa ~ diam2*curva*gen + Error(id/diam2), datos)
res.aov.error
## 
## Call:
## aov(formula = ph.testa ~ diam2 * curva * gen + Error(id/diam2), 
##     data = datos)
## 
## Grand Mean: 3.892746
## 
## Stratum 1: id
## 
## Terms:
##                     curva       gen curva:gen Residuals
## Sum of Squares   0.967823 15.493617 26.705626  4.654032
## Deg. of Freedom         2         2         4        18
## 
## Residual standard error: 0.5084853
## 48 out of 56 effects not estimable
## Estimated effects may be unbalanced
## 
## Stratum 2: id:diam2
## 
## Terms:
##                     diam2 diam2:curva diam2:gen diam2:curva:gen Residuals
## Sum of Squares  167.28868    14.24536   6.92520        24.11885  11.12027
## Deg. of Freedom         6          12        12              24       108
## 
## Residual standard error: 0.3208823
## Estimated effects may be unbalanced
## Emmeans
emmip(res.aov.error, gen ~ diam2 | curva)
## Note: re-fitting model with sum-to-zero contrasts

emm_curva <- emmeans(res.aov.error, pairwise ~ curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_curva
## $emmeans
##  curva emmean     SE df lower.CL upper.CL
##  T3      3.99 0.0641 18     3.86     4.13
##  T1      3.85 0.0641 18     3.72     3.99
##  T2      3.83 0.0641 18     3.70     3.97
## 
## Results are averaged over the levels of: diam2, gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate     SE df t.ratio p.value
##  T3 - T1    0.1425 0.0906 18   1.573  0.2825
##  T3 - T2    0.1597 0.0906 18   1.762  0.2104
##  T1 - T2    0.0172 0.0906 18   0.189  0.9804
## 
## Results are averaged over the levels of: diam2, gen 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_curva <- emmeans(res.aov.error, pairwise ~ gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_gen_curva
## $emmeans
## curva = T3:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   4.31 0.111 18     4.08     4.54
##  ICS95   4.06 0.111 18     3.82     4.29
##  TCS01   3.62 0.111 18     3.38     3.85
## 
## curva = T1:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   3.90 0.111 18     3.67     4.14
##  ICS95   3.05 0.111 18     2.81     3.28
##  TCS01   4.60 0.111 18     4.37     4.84
## 
## curva = T2:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   3.61 0.111 18     3.37     3.84
##  ICS95   3.46 0.111 18     3.23     3.69
##  TCS01   4.43 0.111 18     4.20     4.67
## 
## Results are averaged over the levels of: diam2 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95    0.253 0.157 18   1.612  0.2662
##  CCN51 - TCS01    0.692 0.157 18   4.407  0.0009
##  ICS95 - TCS01    0.439 0.157 18   2.795  0.0306
## 
## curva = T1:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95    0.857 0.157 18   5.459  0.0001
##  CCN51 - TCS01   -0.700 0.157 18  -4.463  0.0008
##  ICS95 - TCS01   -1.557 0.157 18  -9.922  <.0001
## 
## curva = T2:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95    0.147 0.157 18   0.935  0.6259
##  CCN51 - TCS01   -0.825 0.157 18  -5.256  0.0002
##  ICS95 - TCS01   -0.971 0.157 18  -6.191  <.0001
## 
## Results are averaged over the levels of: diam2 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_diam2 <- emmeans(res.aov.error, pairwise ~ diam2 | curva*gen)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2
## $emmeans
## curva = T3, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.19 0.204 106     2.79     3.60
##  1       3.13 0.204 106     2.73     3.54
##  2       4.02 0.204 106     3.61     4.42
##  3       4.06 0.204 106     3.66     4.47
##  4       3.89 0.204 106     3.48     4.29
##  5       5.21 0.204 106     4.80     5.61
##  6       6.65 0.204 106     6.25     7.06
## 
## curva = T1, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       2.96 0.204 106     2.55     3.36
##  1       2.77 0.204 106     2.36     3.17
##  2       2.56 0.204 106     2.15     2.96
##  3       3.29 0.204 106     2.89     3.70
##  4       4.63 0.204 106     4.22     5.03
##  5       5.58 0.204 106     5.18     5.99
##  6       5.54 0.204 106     5.13     5.94
## 
## curva = T2, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       2.40 0.204 106     1.99     2.80
##  1       3.13 0.204 106     2.72     3.53
##  2       3.10 0.204 106     2.69     3.50
##  3       3.54 0.204 106     3.14     3.95
##  4       3.72 0.204 106     3.32     4.13
##  5       4.07 0.204 106     3.67     4.48
##  6       5.30 0.204 106     4.89     5.70
## 
## curva = T3, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.23 0.204 106     2.83     3.64
##  1       3.27 0.204 106     2.86     3.67
##  2       3.49 0.204 106     3.09     3.90
##  3       3.03 0.204 106     2.63     3.44
##  4       3.74 0.204 106     3.33     4.14
##  5       5.01 0.204 106     4.60     5.41
##  6       6.62 0.204 106     6.21     7.02
## 
## curva = T1, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       2.85 0.204 106     2.45     3.26
##  1       2.37 0.204 106     1.96     2.77
##  2       1.89 0.204 106     1.48     2.29
##  3       2.43 0.204 106     2.02     2.83
##  4       2.54 0.204 106     2.13     2.94
##  5       4.22 0.204 106     3.81     4.62
##  6       5.04 0.204 106     4.63     5.44
## 
## curva = T2, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.43 0.204 106     3.02     3.83
##  1       2.91 0.204 106     2.50     3.31
##  2       2.95 0.204 106     2.55     3.36
##  3       3.22 0.204 106     2.82     3.63
##  4       3.36 0.204 106     2.95     3.76
##  5       3.69 0.204 106     3.29     4.10
##  6       4.67 0.204 106     4.26     5.07
## 
## curva = T3, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.62 0.204 106     3.22     4.03
##  1       3.32 0.204 106     2.91     3.72
##  2       3.68 0.204 106     3.27     4.08
##  3       3.51 0.204 106     3.10     3.92
##  4       3.64 0.204 106     3.23     4.04
##  5       3.13 0.204 106     2.72     3.53
##  6       4.43 0.204 106     4.02     4.83
## 
## curva = T1, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.47 0.204 106     3.06     3.87
##  1       2.65 0.204 106     2.24     3.05
##  2       3.39 0.204 106     2.98     3.79
##  3       4.16 0.204 106     3.76     4.57
##  4       5.52 0.204 106     5.12     5.93
##  5       6.24 0.204 106     5.83     6.64
##  6       6.80 0.204 106     6.40     7.21
## 
## curva = T2, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.31 0.204 106     2.90     3.71
##  1       3.12 0.204 106     2.71     3.52
##  2       3.63 0.204 106     3.22     4.03
##  3       4.21 0.204 106     3.80     4.61
##  4       4.50 0.204 106     4.09     4.90
##  5       5.73 0.204 106     5.33     6.14
##  6       6.54 0.204 106     6.13     6.94
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      0.0613 0.262 108   0.234  1.0000
##  0 - 2     -0.8277 0.262 108  -3.159  0.0326
##  0 - 3     -0.8727 0.262 108  -3.331  0.0197
##  0 - 4     -0.6977 0.262 108  -2.663  0.1180
##  0 - 5     -2.0150 0.262 108  -7.691  <.0001
##  0 - 6     -3.4627 0.262 108 -13.216  <.0001
##  1 - 2     -0.8890 0.262 108  -3.393  0.0163
##  1 - 3     -0.9340 0.262 108  -3.565  0.0095
##  1 - 4     -0.7590 0.262 108  -2.897  0.0664
##  1 - 5     -2.0763 0.262 108  -7.925  <.0001
##  1 - 6     -3.5240 0.262 108 -13.450  <.0001
##  2 - 3     -0.0450 0.262 108  -0.172  1.0000
##  2 - 4      0.1300 0.262 108   0.496  0.9989
##  2 - 5     -1.1873 0.262 108  -4.532  0.0003
##  2 - 6     -2.6350 0.262 108 -10.057  <.0001
##  3 - 4      0.1750 0.262 108   0.668  0.9941
##  3 - 5     -1.1423 0.262 108  -4.360  0.0006
##  3 - 6     -2.5900 0.262 108  -9.886  <.0001
##  4 - 5     -1.3173 0.262 108  -5.028  <.0001
##  4 - 6     -2.7650 0.262 108 -10.553  <.0001
##  5 - 6     -1.4477 0.262 108  -5.525  <.0001
## 
## curva = T1, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      0.1863 0.262 108   0.711  0.9917
##  0 - 2      0.3990 0.262 108   1.523  0.7305
##  0 - 3     -0.3360 0.262 108  -1.282  0.8585
##  0 - 4     -1.6720 0.262 108  -6.382  <.0001
##  0 - 5     -2.6273 0.262 108 -10.028  <.0001
##  0 - 6     -2.5820 0.262 108  -9.855  <.0001
##  1 - 2      0.2127 0.262 108   0.812  0.9833
##  1 - 3     -0.5223 0.262 108  -1.994  0.4247
##  1 - 4     -1.8583 0.262 108  -7.093  <.0001
##  1 - 5     -2.8137 0.262 108 -10.739  <.0001
##  1 - 6     -2.7683 0.262 108 -10.566  <.0001
##  2 - 3     -0.7350 0.262 108  -2.805  0.0838
##  2 - 4     -2.0710 0.262 108  -7.905  <.0001
##  2 - 5     -3.0263 0.262 108 -11.551  <.0001
##  2 - 6     -2.9810 0.262 108 -11.378  <.0001
##  3 - 4     -1.3360 0.262 108  -5.099  <.0001
##  3 - 5     -2.2913 0.262 108  -8.746  <.0001
##  3 - 6     -2.2460 0.262 108  -8.573  <.0001
##  4 - 5     -0.9553 0.262 108  -3.646  0.0073
##  4 - 6     -0.9100 0.262 108  -3.473  0.0127
##  5 - 6      0.0453 0.262 108   0.173  1.0000
## 
## curva = T2, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     -0.7263 0.262 108  -2.772  0.0909
##  0 - 2     -0.6987 0.262 108  -2.667  0.1170
##  0 - 3     -1.1410 0.262 108  -4.355  0.0006
##  0 - 4     -1.3230 0.262 108  -5.050  <.0001
##  0 - 5     -1.6723 0.262 108  -6.383  <.0001
##  0 - 6     -2.8957 0.262 108 -11.052  <.0001
##  1 - 2      0.0277 0.262 108   0.106  1.0000
##  1 - 3     -0.4147 0.262 108  -1.583  0.6936
##  1 - 4     -0.5967 0.262 108  -2.277  0.2646
##  1 - 5     -0.9460 0.262 108  -3.611  0.0082
##  1 - 6     -2.1693 0.262 108  -8.280  <.0001
##  2 - 3     -0.4423 0.262 108  -1.688  0.6253
##  2 - 4     -0.6243 0.262 108  -2.383  0.2160
##  2 - 5     -0.9737 0.262 108  -3.716  0.0058
##  2 - 6     -2.1970 0.262 108  -8.386  <.0001
##  3 - 4     -0.1820 0.262 108  -0.695  0.9927
##  3 - 5     -0.5313 0.262 108  -2.028  0.4034
##  3 - 6     -1.7547 0.262 108  -6.697  <.0001
##  4 - 5     -0.3493 0.262 108  -1.333  0.8348
##  4 - 6     -1.5727 0.262 108  -6.003  <.0001
##  5 - 6     -1.2233 0.262 108  -4.669  0.0002
## 
## curva = T3, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     -0.0307 0.262 108  -0.117  1.0000
##  0 - 2     -0.2560 0.262 108  -0.977  0.9579
##  0 - 3      0.2010 0.262 108   0.767  0.9876
##  0 - 4     -0.5010 0.262 108  -1.912  0.4769
##  0 - 5     -1.7750 0.262 108  -6.775  <.0001
##  0 - 6     -3.3853 0.262 108 -12.921  <.0001
##  1 - 2     -0.2253 0.262 108  -0.860  0.9776
##  1 - 3      0.2317 0.262 108   0.884  0.9742
##  1 - 4     -0.4703 0.262 108  -1.795  0.5542
##  1 - 5     -1.7443 0.262 108  -6.658  <.0001
##  1 - 6     -3.3547 0.262 108 -12.804  <.0001
##  2 - 3      0.4570 0.262 108   1.744  0.5881
##  2 - 4     -0.2450 0.262 108  -0.935  0.9660
##  2 - 5     -1.5190 0.262 108  -5.798  <.0001
##  2 - 6     -3.1293 0.262 108 -11.944  <.0001
##  3 - 4     -0.7020 0.262 108  -2.679  0.1136
##  3 - 5     -1.9760 0.262 108  -7.542  <.0001
##  3 - 6     -3.5863 0.262 108 -13.688  <.0001
##  4 - 5     -1.2740 0.262 108  -4.863  0.0001
##  4 - 6     -2.8843 0.262 108 -11.009  <.0001
##  5 - 6     -1.6103 0.262 108  -6.146  <.0001
## 
## curva = T1, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      0.4837 0.262 108   1.846  0.5204
##  0 - 2      0.9633 0.262 108   3.677  0.0066
##  0 - 3      0.4240 0.262 108   1.618  0.6709
##  0 - 4      0.3147 0.262 108   1.201  0.8924
##  0 - 5     -1.3663 0.262 108  -5.215  <.0001
##  0 - 6     -2.1850 0.262 108  -8.340  <.0001
##  1 - 2      0.4797 0.262 108   1.831  0.5305
##  1 - 3     -0.0597 0.262 108  -0.228  1.0000
##  1 - 4     -0.1690 0.262 108  -0.645  0.9951
##  1 - 5     -1.8500 0.262 108  -7.061  <.0001
##  1 - 6     -2.6687 0.262 108 -10.186  <.0001
##  2 - 3     -0.5393 0.262 108  -2.059  0.3848
##  2 - 4     -0.6487 0.262 108  -2.476  0.1786
##  2 - 5     -2.3297 0.262 108  -8.892  <.0001
##  2 - 6     -3.1483 0.262 108 -12.017  <.0001
##  3 - 4     -0.1093 0.262 108  -0.417  0.9996
##  3 - 5     -1.7903 0.262 108  -6.833  <.0001
##  3 - 6     -2.6090 0.262 108  -9.958  <.0001
##  4 - 5     -1.6810 0.262 108  -6.416  <.0001
##  4 - 6     -2.4997 0.262 108  -9.541  <.0001
##  5 - 6     -0.8187 0.262 108  -3.125  0.0359
## 
## curva = T2, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      0.5190 0.262 108   1.981  0.4327
##  0 - 2      0.4780 0.262 108   1.824  0.5347
##  0 - 3      0.2040 0.262 108   0.779  0.9866
##  0 - 4      0.0690 0.262 108   0.263  1.0000
##  0 - 5     -0.2627 0.262 108  -1.003  0.9524
##  0 - 6     -1.2367 0.262 108  -4.720  0.0001
##  1 - 2     -0.0410 0.262 108  -0.156  1.0000
##  1 - 3     -0.3150 0.262 108  -1.202  0.8919
##  1 - 4     -0.4500 0.262 108  -1.718  0.6059
##  1 - 5     -0.7817 0.262 108  -2.983  0.0529
##  1 - 6     -1.7557 0.262 108  -6.701  <.0001
##  2 - 3     -0.2740 0.262 108  -1.046  0.9420
##  2 - 4     -0.4090 0.262 108  -1.561  0.7071
##  2 - 5     -0.7407 0.262 108  -2.827  0.0794
##  2 - 6     -1.7147 0.262 108  -6.545  <.0001
##  3 - 4     -0.1350 0.262 108  -0.515  0.9986
##  3 - 5     -0.4667 0.262 108  -1.781  0.5635
##  3 - 6     -1.4407 0.262 108  -5.499  <.0001
##  4 - 5     -0.3317 0.262 108  -1.266  0.8658
##  4 - 6     -1.3057 0.262 108  -4.983  <.0001
##  5 - 6     -0.9740 0.262 108  -3.718  0.0058
## 
## curva = T3, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      0.3023 0.262 108   1.154  0.9095
##  0 - 2     -0.0553 0.262 108  -0.211  1.0000
##  0 - 3      0.1113 0.262 108   0.425  0.9995
##  0 - 4     -0.0163 0.262 108  -0.062  1.0000
##  0 - 5      0.4957 0.262 108   1.892  0.4902
##  0 - 6     -0.8053 0.262 108  -3.074  0.0414
##  1 - 2     -0.3577 0.262 108  -1.365  0.8189
##  1 - 3     -0.1910 0.262 108  -0.729  0.9905
##  1 - 4     -0.3187 0.262 108  -1.216  0.8864
##  1 - 5      0.1933 0.262 108   0.738  0.9899
##  1 - 6     -1.1077 0.262 108  -4.228  0.0010
##  2 - 3      0.1667 0.262 108   0.636  0.9954
##  2 - 4      0.0390 0.262 108   0.149  1.0000
##  2 - 5      0.5510 0.262 108   2.103  0.3584
##  2 - 6     -0.7500 0.262 108  -2.863  0.0725
##  3 - 4     -0.1277 0.262 108  -0.487  0.9990
##  3 - 5      0.3843 0.262 108   1.467  0.7636
##  3 - 6     -0.9167 0.262 108  -3.499  0.0117
##  4 - 5      0.5120 0.262 108   1.954  0.4497
##  4 - 6     -0.7890 0.262 108  -3.011  0.0491
##  5 - 6     -1.3010 0.262 108  -4.966  0.0001
## 
## curva = T1, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      0.8190 0.262 108   3.126  0.0358
##  0 - 2      0.0800 0.262 108   0.305  0.9999
##  0 - 3     -0.6953 0.262 108  -2.654  0.1205
##  0 - 4     -2.0563 0.262 108  -7.849  <.0001
##  0 - 5     -2.7737 0.262 108 -10.587  <.0001
##  0 - 6     -3.3377 0.262 108 -12.739  <.0001
##  1 - 2     -0.7390 0.262 108  -2.821  0.0807
##  1 - 3     -1.5143 0.262 108  -5.780  <.0001
##  1 - 4     -2.8753 0.262 108 -10.975  <.0001
##  1 - 5     -3.5927 0.262 108 -13.713  <.0001
##  1 - 6     -4.1567 0.262 108 -15.865  <.0001
##  2 - 3     -0.7753 0.262 108  -2.959  0.0564
##  2 - 4     -2.1363 0.262 108  -8.154  <.0001
##  2 - 5     -2.8537 0.262 108 -10.892  <.0001
##  2 - 6     -3.4177 0.262 108 -13.045  <.0001
##  3 - 4     -1.3610 0.262 108  -5.195  <.0001
##  3 - 5     -2.0783 0.262 108  -7.933  <.0001
##  3 - 6     -2.6423 0.262 108 -10.085  <.0001
##  4 - 5     -0.7173 0.262 108  -2.738  0.0988
##  4 - 6     -1.2813 0.262 108  -4.891  0.0001
##  5 - 6     -0.5640 0.262 108  -2.153  0.3301
## 
## curva = T2, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      0.1877 0.262 108   0.716  0.9913
##  0 - 2     -0.3207 0.262 108  -1.224  0.8834
##  0 - 3     -0.8997 0.262 108  -3.434  0.0144
##  0 - 4     -1.1907 0.262 108  -4.545  0.0003
##  0 - 5     -2.4267 0.262 108  -9.262  <.0001
##  0 - 6     -3.2287 0.262 108 -12.323  <.0001
##  1 - 2     -0.5083 0.262 108  -1.940  0.4587
##  1 - 3     -1.0873 0.262 108  -4.150  0.0013
##  1 - 4     -1.3783 0.262 108  -5.261  <.0001
##  1 - 5     -2.6143 0.262 108  -9.978  <.0001
##  1 - 6     -3.4163 0.262 108 -13.039  <.0001
##  2 - 3     -0.5790 0.262 108  -2.210  0.2990
##  2 - 4     -0.8700 0.262 108  -3.321  0.0203
##  2 - 5     -2.1060 0.262 108  -8.038  <.0001
##  2 - 6     -2.9080 0.262 108 -11.099  <.0001
##  3 - 4     -0.2910 0.262 108  -1.111  0.9236
##  3 - 5     -1.5270 0.262 108  -5.828  <.0001
##  3 - 6     -2.3290 0.262 108  -8.889  <.0001
##  4 - 5     -1.2360 0.262 108  -4.718  0.0001
##  4 - 6     -2.0380 0.262 108  -7.779  <.0001
##  5 - 6     -0.8020 0.262 108  -3.061  0.0429
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
emm_gen_diam2_trend <- emmeans(res.aov.error, pairwise ~ diam2*gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2_trend
## $emmeans
## curva = T3:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51   3.19 0.204 106     2.79     3.60
##  1     CCN51   3.13 0.204 106     2.73     3.54
##  2     CCN51   4.02 0.204 106     3.61     4.42
##  3     CCN51   4.06 0.204 106     3.66     4.47
##  4     CCN51   3.89 0.204 106     3.48     4.29
##  5     CCN51   5.21 0.204 106     4.80     5.61
##  6     CCN51   6.65 0.204 106     6.25     7.06
##  0     ICS95   3.23 0.204 106     2.83     3.64
##  1     ICS95   3.27 0.204 106     2.86     3.67
##  2     ICS95   3.49 0.204 106     3.09     3.90
##  3     ICS95   3.03 0.204 106     2.63     3.44
##  4     ICS95   3.74 0.204 106     3.33     4.14
##  5     ICS95   5.01 0.204 106     4.60     5.41
##  6     ICS95   6.62 0.204 106     6.21     7.02
##  0     TCS01   3.62 0.204 106     3.22     4.03
##  1     TCS01   3.32 0.204 106     2.91     3.72
##  2     TCS01   3.68 0.204 106     3.27     4.08
##  3     TCS01   3.51 0.204 106     3.10     3.92
##  4     TCS01   3.64 0.204 106     3.23     4.04
##  5     TCS01   3.13 0.204 106     2.72     3.53
##  6     TCS01   4.43 0.204 106     4.02     4.83
## 
## curva = T1:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51   2.96 0.204 106     2.55     3.36
##  1     CCN51   2.77 0.204 106     2.36     3.17
##  2     CCN51   2.56 0.204 106     2.15     2.96
##  3     CCN51   3.29 0.204 106     2.89     3.70
##  4     CCN51   4.63 0.204 106     4.22     5.03
##  5     CCN51   5.58 0.204 106     5.18     5.99
##  6     CCN51   5.54 0.204 106     5.13     5.94
##  0     ICS95   2.85 0.204 106     2.45     3.26
##  1     ICS95   2.37 0.204 106     1.96     2.77
##  2     ICS95   1.89 0.204 106     1.48     2.29
##  3     ICS95   2.43 0.204 106     2.02     2.83
##  4     ICS95   2.54 0.204 106     2.13     2.94
##  5     ICS95   4.22 0.204 106     3.81     4.62
##  6     ICS95   5.04 0.204 106     4.63     5.44
##  0     TCS01   3.47 0.204 106     3.06     3.87
##  1     TCS01   2.65 0.204 106     2.24     3.05
##  2     TCS01   3.39 0.204 106     2.98     3.79
##  3     TCS01   4.16 0.204 106     3.76     4.57
##  4     TCS01   5.52 0.204 106     5.12     5.93
##  5     TCS01   6.24 0.204 106     5.83     6.64
##  6     TCS01   6.80 0.204 106     6.40     7.21
## 
## curva = T2:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51   2.40 0.204 106     1.99     2.80
##  1     CCN51   3.13 0.204 106     2.72     3.53
##  2     CCN51   3.10 0.204 106     2.69     3.50
##  3     CCN51   3.54 0.204 106     3.14     3.95
##  4     CCN51   3.72 0.204 106     3.32     4.13
##  5     CCN51   4.07 0.204 106     3.67     4.48
##  6     CCN51   5.30 0.204 106     4.89     5.70
##  0     ICS95   3.43 0.204 106     3.02     3.83
##  1     ICS95   2.91 0.204 106     2.50     3.31
##  2     ICS95   2.95 0.204 106     2.55     3.36
##  3     ICS95   3.22 0.204 106     2.82     3.63
##  4     ICS95   3.36 0.204 106     2.95     3.76
##  5     ICS95   3.69 0.204 106     3.29     4.10
##  6     ICS95   4.67 0.204 106     4.26     5.07
##  0     TCS01   3.31 0.204 106     2.90     3.71
##  1     TCS01   3.12 0.204 106     2.71     3.52
##  2     TCS01   3.63 0.204 106     3.22     4.03
##  3     TCS01   4.21 0.204 106     3.80     4.61
##  4     TCS01   4.50 0.204 106     4.09     4.90
##  5     TCS01   5.73 0.204 106     5.33     6.14
##  6     TCS01   6.54 0.204 106     6.13     6.94
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast          estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51  0.06133 0.262 108   0.234  1.0000
##  0 CCN51 - 2 CCN51 -0.82767 0.262 108  -3.159  0.1885
##  0 CCN51 - 3 CCN51 -0.87267 0.262 108  -3.331  0.1242
##  0 CCN51 - 4 CCN51 -0.69767 0.262 108  -2.663  0.4886
##  0 CCN51 - 5 CCN51 -2.01500 0.262 108  -7.691  <.0001
##  0 CCN51 - 6 CCN51 -3.46267 0.262 108 -13.216  <.0001
##  0 CCN51 - 0 ICS95 -0.04233 0.289 106  -0.147  1.0000
##  0 CCN51 - 1 ICS95 -0.07300 0.289 106  -0.253  1.0000
##  0 CCN51 - 2 ICS95 -0.29833 0.289 106  -1.033  1.0000
##  0 CCN51 - 3 ICS95  0.15867 0.289 106   0.549  1.0000
##  0 CCN51 - 4 ICS95 -0.54333 0.289 106  -1.881  0.9464
##  0 CCN51 - 5 ICS95 -1.81733 0.289 106  -6.291  <.0001
##  0 CCN51 - 6 ICS95 -3.42767 0.289 106 -11.865  <.0001
##  0 CCN51 - 0 TCS01 -0.42933 0.289 106  -1.486  0.9958
##  0 CCN51 - 1 TCS01 -0.12700 0.289 106  -0.440  1.0000
##  0 CCN51 - 2 TCS01 -0.48467 0.289 106  -1.678  0.9829
##  0 CCN51 - 3 TCS01 -0.31800 0.289 106  -1.101  0.9999
##  0 CCN51 - 4 TCS01 -0.44567 0.289 106  -1.543  0.9934
##  0 CCN51 - 5 TCS01  0.06633 0.289 106   0.230  1.0000
##  0 CCN51 - 6 TCS01 -1.23467 0.289 106  -4.274  0.0068
##  1 CCN51 - 2 CCN51 -0.88900 0.262 108  -3.393  0.1057
##  1 CCN51 - 3 CCN51 -0.93400 0.262 108  -3.565  0.0660
##  1 CCN51 - 4 CCN51 -0.75900 0.262 108  -2.897  0.3277
##  1 CCN51 - 5 CCN51 -2.07633 0.262 108  -7.925  <.0001
##  1 CCN51 - 6 CCN51 -3.52400 0.262 108 -13.450  <.0001
##  1 CCN51 - 0 ICS95 -0.10367 0.289 106  -0.359  1.0000
##  1 CCN51 - 1 ICS95 -0.13433 0.289 106  -0.465  1.0000
##  1 CCN51 - 2 ICS95 -0.35967 0.289 106  -1.245  0.9996
##  1 CCN51 - 3 ICS95  0.09733 0.289 106   0.337  1.0000
##  1 CCN51 - 4 ICS95 -0.60467 0.289 106  -2.093  0.8691
##  1 CCN51 - 5 ICS95 -1.87867 0.289 106  -6.503  <.0001
##  1 CCN51 - 6 ICS95 -3.48900 0.289 106 -12.077  <.0001
##  1 CCN51 - 0 TCS01 -0.49067 0.289 106  -1.698  0.9805
##  1 CCN51 - 1 TCS01 -0.18833 0.289 106  -0.652  1.0000
##  1 CCN51 - 2 TCS01 -0.54600 0.289 106  -1.890  0.9440
##  1 CCN51 - 3 TCS01 -0.37933 0.289 106  -1.313  0.9992
##  1 CCN51 - 4 TCS01 -0.50700 0.289 106  -1.755  0.9726
##  1 CCN51 - 5 TCS01  0.00500 0.289 106   0.017  1.0000
##  1 CCN51 - 6 TCS01 -1.29600 0.289 106  -4.486  0.0031
##  2 CCN51 - 3 CCN51 -0.04500 0.262 108  -0.172  1.0000
##  2 CCN51 - 4 CCN51  0.13000 0.262 108   0.496  1.0000
##  2 CCN51 - 5 CCN51 -1.18733 0.262 108  -4.532  0.0026
##  2 CCN51 - 6 CCN51 -2.63500 0.262 108 -10.057  <.0001
##  2 CCN51 - 0 ICS95  0.78533 0.289 106   2.718  0.4484
##  2 CCN51 - 1 ICS95  0.75467 0.289 106   2.612  0.5262
##  2 CCN51 - 2 ICS95  0.52933 0.289 106   1.832  0.9580
##  2 CCN51 - 3 ICS95  0.98633 0.289 106   3.414  0.1003
##  2 CCN51 - 4 ICS95  0.28433 0.289 106   0.984  1.0000
##  2 CCN51 - 5 ICS95 -0.98967 0.289 106  -3.426  0.0973
##  2 CCN51 - 6 ICS95 -2.60000 0.289 106  -9.000  <.0001
##  2 CCN51 - 0 TCS01  0.39833 0.289 106   1.379  0.9984
##  2 CCN51 - 1 TCS01  0.70067 0.289 106   2.425  0.6649
##  2 CCN51 - 2 TCS01  0.34300 0.289 106   1.187  0.9998
##  2 CCN51 - 3 TCS01  0.50967 0.289 106   1.764  0.9711
##  2 CCN51 - 4 TCS01  0.38200 0.289 106   1.322  0.9991
##  2 CCN51 - 5 TCS01  0.89400 0.289 106   3.095  0.2185
##  2 CCN51 - 6 TCS01 -0.40700 0.289 106  -1.409  0.9979
##  3 CCN51 - 4 CCN51  0.17500 0.262 108   0.668  1.0000
##  3 CCN51 - 5 CCN51 -1.14233 0.262 108  -4.360  0.0049
##  3 CCN51 - 6 CCN51 -2.59000 0.262 108  -9.886  <.0001
##  3 CCN51 - 0 ICS95  0.83033 0.289 106   2.874  0.3424
##  3 CCN51 - 1 ICS95  0.79967 0.289 106   2.768  0.4133
##  3 CCN51 - 2 ICS95  0.57433 0.289 106   1.988  0.9130
##  3 CCN51 - 3 ICS95  1.03133 0.289 106   3.570  0.0654
##  3 CCN51 - 4 ICS95  0.32933 0.289 106   1.140  0.9999
##  3 CCN51 - 5 ICS95 -0.94467 0.289 106  -3.270  0.1451
##  3 CCN51 - 6 ICS95 -2.55500 0.289 106  -8.844  <.0001
##  3 CCN51 - 0 TCS01  0.44333 0.289 106   1.535  0.9938
##  3 CCN51 - 1 TCS01  0.74567 0.289 106   2.581  0.5495
##  3 CCN51 - 2 TCS01  0.38800 0.289 106   1.343  0.9989
##  3 CCN51 - 3 TCS01  0.55467 0.289 106   1.920  0.9355
##  3 CCN51 - 4 TCS01  0.42700 0.289 106   1.478  0.9961
##  3 CCN51 - 5 TCS01  0.93900 0.289 106   3.250  0.1522
##  3 CCN51 - 6 TCS01 -0.36200 0.289 106  -1.253  0.9996
##  4 CCN51 - 5 CCN51 -1.31733 0.262 108  -5.028  0.0004
##  4 CCN51 - 6 CCN51 -2.76500 0.262 108 -10.553  <.0001
##  4 CCN51 - 0 ICS95  0.65533 0.289 106   2.268  0.7718
##  4 CCN51 - 1 ICS95  0.62467 0.289 106   2.162  0.8341
##  4 CCN51 - 2 ICS95  0.39933 0.289 106   1.382  0.9983
##  4 CCN51 - 3 ICS95  0.85633 0.289 106   2.964  0.2877
##  4 CCN51 - 4 ICS95  0.15433 0.289 106   0.534  1.0000
##  4 CCN51 - 5 ICS95 -1.11967 0.289 106  -3.876  0.0260
##  4 CCN51 - 6 ICS95 -2.73000 0.289 106  -9.450  <.0001
##  4 CCN51 - 0 TCS01  0.26833 0.289 106   0.929  1.0000
##  4 CCN51 - 1 TCS01  0.57067 0.289 106   1.975  0.9175
##  4 CCN51 - 2 TCS01  0.21300 0.289 106   0.737  1.0000
##  4 CCN51 - 3 TCS01  0.37967 0.289 106   1.314  0.9992
##  4 CCN51 - 4 TCS01  0.25200 0.289 106   0.872  1.0000
##  4 CCN51 - 5 TCS01  0.76400 0.289 106   2.645  0.5022
##  4 CCN51 - 6 TCS01 -0.53700 0.289 106  -1.859  0.9519
##  5 CCN51 - 6 CCN51 -1.44767 0.262 108  -5.525  <.0001
##  5 CCN51 - 0 ICS95  1.97267 0.289 106   6.828  <.0001
##  5 CCN51 - 1 ICS95  1.94200 0.289 106   6.722  <.0001
##  5 CCN51 - 2 ICS95  1.71667 0.289 106   5.942  <.0001
##  5 CCN51 - 3 ICS95  2.17367 0.289 106   7.524  <.0001
##  5 CCN51 - 4 ICS95  1.47167 0.289 106   5.094  0.0003
##  5 CCN51 - 5 ICS95  0.19767 0.289 106   0.684  1.0000
##  5 CCN51 - 6 ICS95 -1.41267 0.289 106  -4.890  0.0007
##  5 CCN51 - 0 TCS01  1.58567 0.289 106   5.489  0.0001
##  5 CCN51 - 1 TCS01  1.88800 0.289 106   6.535  <.0001
##  5 CCN51 - 2 TCS01  1.53033 0.289 106   5.297  0.0001
##  5 CCN51 - 3 TCS01  1.69700 0.289 106   5.874  <.0001
##  5 CCN51 - 4 TCS01  1.56933 0.289 106   5.432  0.0001
##  5 CCN51 - 5 TCS01  2.08133 0.289 106   7.204  <.0001
##  5 CCN51 - 6 TCS01  0.78033 0.289 106   2.701  0.4609
##  6 CCN51 - 0 ICS95  3.42033 0.289 106  11.839  <.0001
##  6 CCN51 - 1 ICS95  3.38967 0.289 106  11.733  <.0001
##  6 CCN51 - 2 ICS95  3.16433 0.289 106  10.953  <.0001
##  6 CCN51 - 3 ICS95  3.62133 0.289 106  12.535  <.0001
##  6 CCN51 - 4 ICS95  2.91933 0.289 106  10.105  <.0001
##  6 CCN51 - 5 ICS95  1.64533 0.289 106   5.695  <.0001
##  6 CCN51 - 6 ICS95  0.03500 0.289 106   0.121  1.0000
##  6 CCN51 - 0 TCS01  3.03333 0.289 106  10.500  <.0001
##  6 CCN51 - 1 TCS01  3.33567 0.289 106  11.546  <.0001
##  6 CCN51 - 2 TCS01  2.97800 0.289 106  10.308  <.0001
##  6 CCN51 - 3 TCS01  3.14467 0.289 106  10.885  <.0001
##  6 CCN51 - 4 TCS01  3.01700 0.289 106  10.443  <.0001
##  6 CCN51 - 5 TCS01  3.52900 0.289 106  12.215  <.0001
##  6 CCN51 - 6 TCS01  2.22800 0.289 106   7.712  <.0001
##  0 ICS95 - 1 ICS95 -0.03067 0.262 108  -0.117  1.0000
##  0 ICS95 - 2 ICS95 -0.25600 0.262 108  -0.977  1.0000
##  0 ICS95 - 3 ICS95  0.20100 0.262 108   0.767  1.0000
##  0 ICS95 - 4 ICS95 -0.50100 0.262 108  -1.912  0.9379
##  0 ICS95 - 5 ICS95 -1.77500 0.262 108  -6.775  <.0001
##  0 ICS95 - 6 ICS95 -3.38533 0.262 108 -12.921  <.0001
##  0 ICS95 - 0 TCS01 -0.38700 0.289 106  -1.340  0.9989
##  0 ICS95 - 1 TCS01 -0.08467 0.289 106  -0.293  1.0000
##  0 ICS95 - 2 TCS01 -0.44233 0.289 106  -1.531  0.9940
##  0 ICS95 - 3 TCS01 -0.27567 0.289 106  -0.954  1.0000
##  0 ICS95 - 4 TCS01 -0.40333 0.289 106  -1.396  0.9981
##  0 ICS95 - 5 TCS01  0.10867 0.289 106   0.376  1.0000
##  0 ICS95 - 6 TCS01 -1.19233 0.289 106  -4.127  0.0113
##  1 ICS95 - 2 ICS95 -0.22533 0.262 108  -0.860  1.0000
##  1 ICS95 - 3 ICS95  0.23167 0.262 108   0.884  1.0000
##  1 ICS95 - 4 ICS95 -0.47033 0.262 108  -1.795  0.9657
##  1 ICS95 - 5 ICS95 -1.74433 0.262 108  -6.658  <.0001
##  1 ICS95 - 6 ICS95 -3.35467 0.262 108 -12.804  <.0001
##  1 ICS95 - 0 TCS01 -0.35633 0.289 106  -1.233  0.9997
##  1 ICS95 - 1 TCS01 -0.05400 0.289 106  -0.187  1.0000
##  1 ICS95 - 2 TCS01 -0.41167 0.289 106  -1.425  0.9975
##  1 ICS95 - 3 TCS01 -0.24500 0.289 106  -0.848  1.0000
##  1 ICS95 - 4 TCS01 -0.37267 0.289 106  -1.290  0.9993
##  1 ICS95 - 5 TCS01  0.13933 0.289 106   0.482  1.0000
##  1 ICS95 - 6 TCS01 -1.16167 0.289 106  -4.021  0.0162
##  2 ICS95 - 3 ICS95  0.45700 0.262 108   1.744  0.9743
##  2 ICS95 - 4 ICS95 -0.24500 0.262 108  -0.935  1.0000
##  2 ICS95 - 5 ICS95 -1.51900 0.262 108  -5.798  <.0001
##  2 ICS95 - 6 ICS95 -3.12933 0.262 108 -11.944  <.0001
##  2 ICS95 - 0 TCS01 -0.13100 0.289 106  -0.453  1.0000
##  2 ICS95 - 1 TCS01  0.17133 0.289 106   0.593  1.0000
##  2 ICS95 - 2 TCS01 -0.18633 0.289 106  -0.645  1.0000
##  2 ICS95 - 3 TCS01 -0.01967 0.289 106  -0.068  1.0000
##  2 ICS95 - 4 TCS01 -0.14733 0.289 106  -0.510  1.0000
##  2 ICS95 - 5 TCS01  0.36467 0.289 106   1.262  0.9995
##  2 ICS95 - 6 TCS01 -0.93633 0.289 106  -3.241  0.1556
##  3 ICS95 - 4 ICS95 -0.70200 0.262 108  -2.679  0.4764
##  3 ICS95 - 5 ICS95 -1.97600 0.262 108  -7.542  <.0001
##  3 ICS95 - 6 ICS95 -3.58633 0.262 108 -13.688  <.0001
##  3 ICS95 - 0 TCS01 -0.58800 0.289 106  -2.035  0.8946
##  3 ICS95 - 1 TCS01 -0.28567 0.289 106  -0.989  1.0000
##  3 ICS95 - 2 TCS01 -0.64333 0.289 106  -2.227  0.7974
##  3 ICS95 - 3 TCS01 -0.47667 0.289 106  -1.650  0.9857
##  3 ICS95 - 4 TCS01 -0.60433 0.289 106  -2.092  0.8696
##  3 ICS95 - 5 TCS01 -0.09233 0.289 106  -0.320  1.0000
##  3 ICS95 - 6 TCS01 -1.39333 0.289 106  -4.823  0.0009
##  4 ICS95 - 5 ICS95 -1.27400 0.262 108  -4.863  0.0007
##  4 ICS95 - 6 ICS95 -2.88433 0.262 108 -11.009  <.0001
##  4 ICS95 - 0 TCS01  0.11400 0.289 106   0.395  1.0000
##  4 ICS95 - 1 TCS01  0.41633 0.289 106   1.441  0.9971
##  4 ICS95 - 2 TCS01  0.05867 0.289 106   0.203  1.0000
##  4 ICS95 - 3 TCS01  0.22533 0.289 106   0.780  1.0000
##  4 ICS95 - 4 TCS01  0.09767 0.289 106   0.338  1.0000
##  4 ICS95 - 5 TCS01  0.60967 0.289 106   2.110  0.8608
##  4 ICS95 - 6 TCS01 -0.69133 0.289 106  -2.393  0.6880
##  5 ICS95 - 6 ICS95 -1.61033 0.262 108  -6.146  <.0001
##  5 ICS95 - 0 TCS01  1.38800 0.289 106   4.804  0.0009
##  5 ICS95 - 1 TCS01  1.69033 0.289 106   5.851  <.0001
##  5 ICS95 - 2 TCS01  1.33267 0.289 106   4.613  0.0019
##  5 ICS95 - 3 TCS01  1.49933 0.289 106   5.190  0.0002
##  5 ICS95 - 4 TCS01  1.37167 0.289 106   4.748  0.0012
##  5 ICS95 - 5 TCS01  1.88367 0.289 106   6.520  <.0001
##  5 ICS95 - 6 TCS01  0.58267 0.289 106   2.017  0.9020
##  6 ICS95 - 0 TCS01  2.99833 0.289 106  10.379  <.0001
##  6 ICS95 - 1 TCS01  3.30067 0.289 106  11.425  <.0001
##  6 ICS95 - 2 TCS01  2.94300 0.289 106  10.187  <.0001
##  6 ICS95 - 3 TCS01  3.10967 0.289 106  10.764  <.0001
##  6 ICS95 - 4 TCS01  2.98200 0.289 106  10.322  <.0001
##  6 ICS95 - 5 TCS01  3.49400 0.289 106  12.094  <.0001
##  6 ICS95 - 6 TCS01  2.19300 0.289 106   7.591  <.0001
##  0 TCS01 - 1 TCS01  0.30233 0.262 108   1.154  0.9999
##  0 TCS01 - 2 TCS01 -0.05533 0.262 108  -0.211  1.0000
##  0 TCS01 - 3 TCS01  0.11133 0.262 108   0.425  1.0000
##  0 TCS01 - 4 TCS01 -0.01633 0.262 108  -0.062  1.0000
##  0 TCS01 - 5 TCS01  0.49567 0.262 108   1.892  0.9436
##  0 TCS01 - 6 TCS01 -0.80533 0.262 108  -3.074  0.2283
##  1 TCS01 - 2 TCS01 -0.35767 0.262 108  -1.365  0.9986
##  1 TCS01 - 3 TCS01 -0.19100 0.262 108  -0.729  1.0000
##  1 TCS01 - 4 TCS01 -0.31867 0.262 108  -1.216  0.9997
##  1 TCS01 - 5 TCS01  0.19333 0.262 108   0.738  1.0000
##  1 TCS01 - 6 TCS01 -1.10767 0.262 108  -4.228  0.0079
##  2 TCS01 - 3 TCS01  0.16667 0.262 108   0.636  1.0000
##  2 TCS01 - 4 TCS01  0.03900 0.262 108   0.149  1.0000
##  2 TCS01 - 5 TCS01  0.55100 0.262 108   2.103  0.8644
##  2 TCS01 - 6 TCS01 -0.75000 0.262 108  -2.863  0.3495
##  3 TCS01 - 4 TCS01 -0.12767 0.262 108  -0.487  1.0000
##  3 TCS01 - 5 TCS01  0.38433 0.262 108   1.467  0.9965
##  3 TCS01 - 6 TCS01 -0.91667 0.262 108  -3.499  0.0795
##  4 TCS01 - 5 TCS01  0.51200 0.262 108   1.954  0.9249
##  4 TCS01 - 6 TCS01 -0.78900 0.262 108  -3.011  0.2608
##  5 TCS01 - 6 TCS01 -1.30100 0.262 108  -4.966  0.0005
## 
## curva = T1:
##  contrast          estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51  0.18633 0.262 108   0.711  1.0000
##  0 CCN51 - 2 CCN51  0.39900 0.262 108   1.523  0.9944
##  0 CCN51 - 3 CCN51 -0.33600 0.262 108  -1.282  0.9994
##  0 CCN51 - 4 CCN51 -1.67200 0.262 108  -6.382  <.0001
##  0 CCN51 - 5 CCN51 -2.62733 0.262 108 -10.028  <.0001
##  0 CCN51 - 6 CCN51 -2.58200 0.262 108  -9.855  <.0001
##  0 CCN51 - 0 ICS95  0.10433 0.289 106   0.361  1.0000
##  0 CCN51 - 1 ICS95  0.58800 0.289 106   2.035  0.8946
##  0 CCN51 - 2 ICS95  1.06767 0.289 106   3.696  0.0453
##  0 CCN51 - 3 ICS95  0.52833 0.289 106   1.829  0.9588
##  0 CCN51 - 4 ICS95  0.41900 0.289 106   1.450  0.9969
##  0 CCN51 - 5 ICS95 -1.26200 0.289 106  -4.368  0.0048
##  0 CCN51 - 6 ICS95 -2.08067 0.289 106  -7.202  <.0001
##  0 CCN51 - 0 TCS01 -0.51000 0.289 106  -1.765  0.9709
##  0 CCN51 - 1 TCS01  0.30900 0.289 106   1.070  1.0000
##  0 CCN51 - 2 TCS01 -0.43000 0.289 106  -1.488  0.9957
##  0 CCN51 - 3 TCS01 -1.20533 0.289 106  -4.172  0.0097
##  0 CCN51 - 4 TCS01 -2.56633 0.289 106  -8.883  <.0001
##  0 CCN51 - 5 TCS01 -3.28367 0.289 106 -11.366  <.0001
##  0 CCN51 - 6 TCS01 -3.84767 0.289 106 -13.318  <.0001
##  1 CCN51 - 2 CCN51  0.21267 0.262 108   0.812  1.0000
##  1 CCN51 - 3 CCN51 -0.52233 0.262 108  -1.994  0.9110
##  1 CCN51 - 4 CCN51 -1.85833 0.262 108  -7.093  <.0001
##  1 CCN51 - 5 CCN51 -2.81367 0.262 108 -10.739  <.0001
##  1 CCN51 - 6 CCN51 -2.76833 0.262 108 -10.566  <.0001
##  1 CCN51 - 0 ICS95 -0.08200 0.289 106  -0.284  1.0000
##  1 CCN51 - 1 ICS95  0.40167 0.289 106   1.390  0.9982
##  1 CCN51 - 2 ICS95  0.88133 0.289 106   3.051  0.2404
##  1 CCN51 - 3 ICS95  0.34200 0.289 106   1.184  0.9998
##  1 CCN51 - 4 ICS95  0.23267 0.289 106   0.805  1.0000
##  1 CCN51 - 5 ICS95 -1.44833 0.289 106  -5.013  0.0004
##  1 CCN51 - 6 ICS95 -2.26700 0.289 106  -7.847  <.0001
##  1 CCN51 - 0 TCS01 -0.69633 0.289 106  -2.410  0.6757
##  1 CCN51 - 1 TCS01  0.12267 0.289 106   0.425  1.0000
##  1 CCN51 - 2 TCS01 -0.61633 0.289 106  -2.133  0.8492
##  1 CCN51 - 3 TCS01 -1.39167 0.289 106  -4.817  0.0009
##  1 CCN51 - 4 TCS01 -2.75267 0.289 106  -9.528  <.0001
##  1 CCN51 - 5 TCS01 -3.47000 0.289 106 -12.011  <.0001
##  1 CCN51 - 6 TCS01 -4.03400 0.289 106 -13.963  <.0001
##  2 CCN51 - 3 CCN51 -0.73500 0.262 108  -2.805  0.3874
##  2 CCN51 - 4 CCN51 -2.07100 0.262 108  -7.905  <.0001
##  2 CCN51 - 5 CCN51 -3.02633 0.262 108 -11.551  <.0001
##  2 CCN51 - 6 CCN51 -2.98100 0.262 108 -11.378  <.0001
##  2 CCN51 - 0 ICS95 -0.29467 0.289 106  -1.020  1.0000
##  2 CCN51 - 1 ICS95  0.18900 0.289 106   0.654  1.0000
##  2 CCN51 - 2 ICS95  0.66867 0.289 106   2.315  0.7419
##  2 CCN51 - 3 ICS95  0.12933 0.289 106   0.448  1.0000
##  2 CCN51 - 4 ICS95  0.02000 0.289 106   0.069  1.0000
##  2 CCN51 - 5 ICS95 -1.66100 0.289 106  -5.749  <.0001
##  2 CCN51 - 6 ICS95 -2.47967 0.289 106  -8.583  <.0001
##  2 CCN51 - 0 TCS01 -0.90900 0.289 106  -3.146  0.1945
##  2 CCN51 - 1 TCS01 -0.09000 0.289 106  -0.312  1.0000
##  2 CCN51 - 2 TCS01 -0.82900 0.289 106  -2.870  0.3453
##  2 CCN51 - 3 TCS01 -1.60433 0.289 106  -5.553  <.0001
##  2 CCN51 - 4 TCS01 -2.96533 0.289 106 -10.264  <.0001
##  2 CCN51 - 5 TCS01 -3.68267 0.289 106 -12.747  <.0001
##  2 CCN51 - 6 TCS01 -4.24667 0.289 106 -14.700  <.0001
##  3 CCN51 - 4 CCN51 -1.33600 0.262 108  -5.099  0.0003
##  3 CCN51 - 5 CCN51 -2.29133 0.262 108  -8.746  <.0001
##  3 CCN51 - 6 CCN51 -2.24600 0.262 108  -8.573  <.0001
##  3 CCN51 - 0 ICS95  0.44033 0.289 106   1.524  0.9943
##  3 CCN51 - 1 ICS95  0.92400 0.289 106   3.198  0.1724
##  3 CCN51 - 2 ICS95  1.40367 0.289 106   4.859  0.0007
##  3 CCN51 - 3 ICS95  0.86433 0.289 106   2.992  0.2719
##  3 CCN51 - 4 ICS95  0.75500 0.289 106   2.613  0.5254
##  3 CCN51 - 5 ICS95 -0.92600 0.289 106  -3.205  0.1696
##  3 CCN51 - 6 ICS95 -1.74467 0.289 106  -6.039  <.0001
##  3 CCN51 - 0 TCS01 -0.17400 0.289 106  -0.602  1.0000
##  3 CCN51 - 1 TCS01  0.64500 0.289 106   2.233  0.7939
##  3 CCN51 - 2 TCS01 -0.09400 0.289 106  -0.325  1.0000
##  3 CCN51 - 3 TCS01 -0.86933 0.289 106  -3.009  0.2624
##  3 CCN51 - 4 TCS01 -2.23033 0.289 106  -7.720  <.0001
##  3 CCN51 - 5 TCS01 -2.94767 0.289 106 -10.203  <.0001
##  3 CCN51 - 6 TCS01 -3.51167 0.289 106 -12.155  <.0001
##  4 CCN51 - 5 CCN51 -0.95533 0.262 108  -3.646  0.0521
##  4 CCN51 - 6 CCN51 -0.91000 0.262 108  -3.473  0.0852
##  4 CCN51 - 0 ICS95  1.77633 0.289 106   6.149  <.0001
##  4 CCN51 - 1 ICS95  2.26000 0.289 106   7.823  <.0001
##  4 CCN51 - 2 ICS95  2.73967 0.289 106   9.483  <.0001
##  4 CCN51 - 3 ICS95  2.20033 0.289 106   7.616  <.0001
##  4 CCN51 - 4 ICS95  2.09100 0.289 106   7.238  <.0001
##  4 CCN51 - 5 ICS95  0.41000 0.289 106   1.419  0.9977
##  4 CCN51 - 6 ICS95 -0.40867 0.289 106  -1.415  0.9978
##  4 CCN51 - 0 TCS01  1.16200 0.289 106   4.022  0.0161
##  4 CCN51 - 1 TCS01  1.98100 0.289 106   6.857  <.0001
##  4 CCN51 - 2 TCS01  1.24200 0.289 106   4.299  0.0062
##  4 CCN51 - 3 TCS01  0.46667 0.289 106   1.615  0.9887
##  4 CCN51 - 4 TCS01 -0.89433 0.289 106  -3.096  0.2180
##  4 CCN51 - 5 TCS01 -1.61167 0.289 106  -5.579  <.0001
##  4 CCN51 - 6 TCS01 -2.17567 0.289 106  -7.531  <.0001
##  5 CCN51 - 6 CCN51  0.04533 0.262 108   0.173  1.0000
##  5 CCN51 - 0 ICS95  2.73167 0.289 106   9.455  <.0001
##  5 CCN51 - 1 ICS95  3.21533 0.289 106  11.130  <.0001
##  5 CCN51 - 2 ICS95  3.69500 0.289 106  12.790  <.0001
##  5 CCN51 - 3 ICS95  3.15567 0.289 106  10.923  <.0001
##  5 CCN51 - 4 ICS95  3.04633 0.289 106  10.545  <.0001
##  5 CCN51 - 5 ICS95  1.36533 0.289 106   4.726  0.0013
##  5 CCN51 - 6 ICS95  0.54667 0.289 106   1.892  0.9434
##  5 CCN51 - 0 TCS01  2.11733 0.289 106   7.329  <.0001
##  5 CCN51 - 1 TCS01  2.93633 0.289 106  10.164  <.0001
##  5 CCN51 - 2 TCS01  2.19733 0.289 106   7.606  <.0001
##  5 CCN51 - 3 TCS01  1.42200 0.289 106   4.922  0.0006
##  5 CCN51 - 4 TCS01  0.06100 0.289 106   0.211  1.0000
##  5 CCN51 - 5 TCS01 -0.65633 0.289 106  -2.272  0.7696
##  5 CCN51 - 6 TCS01 -1.22033 0.289 106  -4.224  0.0081
##  6 CCN51 - 0 ICS95  2.68633 0.289 106   9.299  <.0001
##  6 CCN51 - 1 ICS95  3.17000 0.289 106  10.973  <.0001
##  6 CCN51 - 2 ICS95  3.64967 0.289 106  12.633  <.0001
##  6 CCN51 - 3 ICS95  3.11033 0.289 106  10.766  <.0001
##  6 CCN51 - 4 ICS95  3.00100 0.289 106  10.388  <.0001
##  6 CCN51 - 5 ICS95  1.32000 0.289 106   4.569  0.0023
##  6 CCN51 - 6 ICS95  0.50133 0.289 106   1.735  0.9756
##  6 CCN51 - 0 TCS01  2.07200 0.289 106   7.172  <.0001
##  6 CCN51 - 1 TCS01  2.89100 0.289 106  10.007  <.0001
##  6 CCN51 - 2 TCS01  2.15200 0.289 106   7.449  <.0001
##  6 CCN51 - 3 TCS01  1.37667 0.289 106   4.765  0.0011
##  6 CCN51 - 4 TCS01  0.01567 0.289 106   0.054  1.0000
##  6 CCN51 - 5 TCS01 -0.70167 0.289 106  -2.429  0.6624
##  6 CCN51 - 6 TCS01 -1.26567 0.289 106  -4.381  0.0046
##  0 ICS95 - 1 ICS95  0.48367 0.262 108   1.846  0.9551
##  0 ICS95 - 2 ICS95  0.96333 0.262 108   3.677  0.0476
##  0 ICS95 - 3 ICS95  0.42400 0.262 108   1.618  0.9886
##  0 ICS95 - 4 ICS95  0.31467 0.262 108   1.201  0.9998
##  0 ICS95 - 5 ICS95 -1.36633 0.262 108  -5.215  0.0002
##  0 ICS95 - 6 ICS95 -2.18500 0.262 108  -8.340  <.0001
##  0 ICS95 - 0 TCS01 -0.61433 0.289 106  -2.126  0.8528
##  0 ICS95 - 1 TCS01  0.20467 0.289 106   0.708  1.0000
##  0 ICS95 - 2 TCS01 -0.53433 0.289 106  -1.850  0.9541
##  0 ICS95 - 3 TCS01 -1.30967 0.289 106  -4.533  0.0026
##  0 ICS95 - 4 TCS01 -2.67067 0.289 106  -9.244  <.0001
##  0 ICS95 - 5 TCS01 -3.38800 0.289 106 -11.727  <.0001
##  0 ICS95 - 6 TCS01 -3.95200 0.289 106 -13.680  <.0001
##  1 ICS95 - 2 ICS95  0.47967 0.262 108   1.831  0.9585
##  1 ICS95 - 3 ICS95 -0.05967 0.262 108  -0.228  1.0000
##  1 ICS95 - 4 ICS95 -0.16900 0.262 108  -0.645  1.0000
##  1 ICS95 - 5 ICS95 -1.85000 0.262 108  -7.061  <.0001
##  1 ICS95 - 6 ICS95 -2.66867 0.262 108 -10.186  <.0001
##  1 ICS95 - 0 TCS01 -1.09800 0.289 106  -3.801  0.0329
##  1 ICS95 - 1 TCS01 -0.27900 0.289 106  -0.966  1.0000
##  1 ICS95 - 2 TCS01 -1.01800 0.289 106  -3.524  0.0744
##  1 ICS95 - 3 TCS01 -1.79333 0.289 106  -6.208  <.0001
##  1 ICS95 - 4 TCS01 -3.15433 0.289 106 -10.919  <.0001
##  1 ICS95 - 5 TCS01 -3.87167 0.289 106 -13.402  <.0001
##  1 ICS95 - 6 TCS01 -4.43567 0.289 106 -15.354  <.0001
##  2 ICS95 - 3 ICS95 -0.53933 0.262 108  -2.059  0.8849
##  2 ICS95 - 4 ICS95 -0.64867 0.262 108  -2.476  0.6279
##  2 ICS95 - 5 ICS95 -2.32967 0.262 108  -8.892  <.0001
##  2 ICS95 - 6 ICS95 -3.14833 0.262 108 -12.017  <.0001
##  2 ICS95 - 0 TCS01 -1.57767 0.289 106  -5.461  0.0001
##  2 ICS95 - 1 TCS01 -0.75867 0.289 106  -2.626  0.5159
##  2 ICS95 - 2 TCS01 -1.49767 0.289 106  -5.184  0.0002
##  2 ICS95 - 3 TCS01 -2.27300 0.289 106  -7.868  <.0001
##  2 ICS95 - 4 TCS01 -3.63400 0.289 106 -12.579  <.0001
##  2 ICS95 - 5 TCS01 -4.35133 0.289 106 -15.062  <.0001
##  2 ICS95 - 6 TCS01 -4.91533 0.289 106 -17.014  <.0001
##  3 ICS95 - 4 ICS95 -0.10933 0.262 108  -0.417  1.0000
##  3 ICS95 - 5 ICS95 -1.79033 0.262 108  -6.833  <.0001
##  3 ICS95 - 6 ICS95 -2.60900 0.262 108  -9.958  <.0001
##  3 ICS95 - 0 TCS01 -1.03833 0.289 106  -3.594  0.0610
##  3 ICS95 - 1 TCS01 -0.21933 0.289 106  -0.759  1.0000
##  3 ICS95 - 2 TCS01 -0.95833 0.289 106  -3.317  0.1289
##  3 ICS95 - 3 TCS01 -1.73367 0.289 106  -6.001  <.0001
##  3 ICS95 - 4 TCS01 -3.09467 0.289 106 -10.712  <.0001
##  3 ICS95 - 5 TCS01 -3.81200 0.289 106 -13.195  <.0001
##  3 ICS95 - 6 TCS01 -4.37600 0.289 106 -15.147  <.0001
##  4 ICS95 - 5 ICS95 -1.68100 0.262 108  -6.416  <.0001
##  4 ICS95 - 6 ICS95 -2.49967 0.262 108  -9.541  <.0001
##  4 ICS95 - 0 TCS01 -0.92900 0.289 106  -3.216  0.1654
##  4 ICS95 - 1 TCS01 -0.11000 0.289 106  -0.381  1.0000
##  4 ICS95 - 2 TCS01 -0.84900 0.289 106  -2.939  0.3025
##  4 ICS95 - 3 TCS01 -1.62433 0.289 106  -5.623  <.0001
##  4 ICS95 - 4 TCS01 -2.98533 0.289 106 -10.334  <.0001
##  4 ICS95 - 5 TCS01 -3.70267 0.289 106 -12.817  <.0001
##  4 ICS95 - 6 TCS01 -4.26667 0.289 106 -14.769  <.0001
##  5 ICS95 - 6 ICS95 -0.81867 0.262 108  -3.125  0.2039
##  5 ICS95 - 0 TCS01  0.75200 0.289 106   2.603  0.5331
##  5 ICS95 - 1 TCS01  1.57100 0.289 106   5.438  0.0001
##  5 ICS95 - 2 TCS01  0.83200 0.289 106   2.880  0.3387
##  5 ICS95 - 3 TCS01  0.05667 0.289 106   0.196  1.0000
##  5 ICS95 - 4 TCS01 -1.30433 0.289 106  -4.515  0.0028
##  5 ICS95 - 5 TCS01 -2.02167 0.289 106  -6.998  <.0001
##  5 ICS95 - 6 TCS01 -2.58567 0.289 106  -8.950  <.0001
##  6 ICS95 - 0 TCS01  1.57067 0.289 106   5.437  0.0001
##  6 ICS95 - 1 TCS01  2.38967 0.289 106   8.272  <.0001
##  6 ICS95 - 2 TCS01  1.65067 0.289 106   5.714  <.0001
##  6 ICS95 - 3 TCS01  0.87533 0.289 106   3.030  0.2512
##  6 ICS95 - 4 TCS01 -0.48567 0.289 106  -1.681  0.9825
##  6 ICS95 - 5 TCS01 -1.20300 0.289 106  -4.164  0.0100
##  6 ICS95 - 6 TCS01 -1.76700 0.289 106  -6.116  <.0001
##  0 TCS01 - 1 TCS01  0.81900 0.262 108   3.126  0.2033
##  0 TCS01 - 2 TCS01  0.08000 0.262 108   0.305  1.0000
##  0 TCS01 - 3 TCS01 -0.69533 0.262 108  -2.654  0.4951
##  0 TCS01 - 4 TCS01 -2.05633 0.262 108  -7.849  <.0001
##  0 TCS01 - 5 TCS01 -2.77367 0.262 108 -10.587  <.0001
##  0 TCS01 - 6 TCS01 -3.33767 0.262 108 -12.739  <.0001
##  1 TCS01 - 2 TCS01 -0.73900 0.262 108  -2.821  0.3771
##  1 TCS01 - 3 TCS01 -1.51433 0.262 108  -5.780  <.0001
##  1 TCS01 - 4 TCS01 -2.87533 0.262 108 -10.975  <.0001
##  1 TCS01 - 5 TCS01 -3.59267 0.262 108 -13.713  <.0001
##  1 TCS01 - 6 TCS01 -4.15667 0.262 108 -15.865  <.0001
##  2 TCS01 - 3 TCS01 -0.77533 0.262 108  -2.959  0.2901
##  2 TCS01 - 4 TCS01 -2.13633 0.262 108  -8.154  <.0001
##  2 TCS01 - 5 TCS01 -2.85367 0.262 108 -10.892  <.0001
##  2 TCS01 - 6 TCS01 -3.41767 0.262 108 -13.045  <.0001
##  3 TCS01 - 4 TCS01 -1.36100 0.262 108  -5.195  0.0002
##  3 TCS01 - 5 TCS01 -2.07833 0.262 108  -7.933  <.0001
##  3 TCS01 - 6 TCS01 -2.64233 0.262 108 -10.085  <.0001
##  4 TCS01 - 5 TCS01 -0.71733 0.262 108  -2.738  0.4342
##  4 TCS01 - 6 TCS01 -1.28133 0.262 108  -4.891  0.0006
##  5 TCS01 - 6 TCS01 -0.56400 0.262 108  -2.153  0.8394
## 
## curva = T2:
##  contrast          estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51 -0.72633 0.262 108  -2.772  0.4101
##  0 CCN51 - 2 CCN51 -0.69867 0.262 108  -2.667  0.4858
##  0 CCN51 - 3 CCN51 -1.14100 0.262 108  -4.355  0.0050
##  0 CCN51 - 4 CCN51 -1.32300 0.262 108  -5.050  0.0003
##  0 CCN51 - 5 CCN51 -1.67233 0.262 108  -6.383  <.0001
##  0 CCN51 - 6 CCN51 -2.89567 0.262 108 -11.052  <.0001
##  0 CCN51 - 0 ICS95 -1.02867 0.289 106  -3.561  0.0671
##  0 CCN51 - 1 ICS95 -0.50967 0.289 106  -1.764  0.9711
##  0 CCN51 - 2 ICS95 -0.55067 0.289 106  -1.906  0.9395
##  0 CCN51 - 3 ICS95 -0.82467 0.289 106  -2.855  0.3550
##  0 CCN51 - 4 ICS95 -0.95967 0.289 106  -3.322  0.1274
##  0 CCN51 - 5 ICS95 -1.29133 0.289 106  -4.470  0.0033
##  0 CCN51 - 6 ICS95 -2.26533 0.289 106  -7.841  <.0001
##  0 CCN51 - 0 TCS01 -0.90733 0.289 106  -3.141  0.1970
##  0 CCN51 - 1 TCS01 -0.71967 0.289 106  -2.491  0.6167
##  0 CCN51 - 2 TCS01 -1.22800 0.289 106  -4.251  0.0074
##  0 CCN51 - 3 TCS01 -1.80700 0.289 106  -6.255  <.0001
##  0 CCN51 - 4 TCS01 -2.09800 0.289 106  -7.262  <.0001
##  0 CCN51 - 5 TCS01 -3.33400 0.289 106 -11.540  <.0001
##  0 CCN51 - 6 TCS01 -4.13600 0.289 106 -14.316  <.0001
##  1 CCN51 - 2 CCN51  0.02767 0.262 108   0.106  1.0000
##  1 CCN51 - 3 CCN51 -0.41467 0.262 108  -1.583  0.9911
##  1 CCN51 - 4 CCN51 -0.59667 0.262 108  -2.277  0.7663
##  1 CCN51 - 5 CCN51 -0.94600 0.262 108  -3.611  0.0579
##  1 CCN51 - 6 CCN51 -2.16933 0.262 108  -8.280  <.0001
##  1 CCN51 - 0 ICS95 -0.30233 0.289 106  -1.047  1.0000
##  1 CCN51 - 1 ICS95  0.21667 0.289 106   0.750  1.0000
##  1 CCN51 - 2 ICS95  0.17567 0.289 106   0.608  1.0000
##  1 CCN51 - 3 ICS95 -0.09833 0.289 106  -0.340  1.0000
##  1 CCN51 - 4 ICS95 -0.23333 0.289 106  -0.808  1.0000
##  1 CCN51 - 5 ICS95 -0.56500 0.289 106  -1.956  0.9242
##  1 CCN51 - 6 ICS95 -1.53900 0.289 106  -5.327  0.0001
##  1 CCN51 - 0 TCS01 -0.18100 0.289 106  -0.627  1.0000
##  1 CCN51 - 1 TCS01  0.00667 0.289 106   0.023  1.0000
##  1 CCN51 - 2 TCS01 -0.50167 0.289 106  -1.736  0.9754
##  1 CCN51 - 3 TCS01 -1.08067 0.289 106  -3.741  0.0395
##  1 CCN51 - 4 TCS01 -1.37167 0.289 106  -4.748  0.0012
##  1 CCN51 - 5 TCS01 -2.60767 0.289 106  -9.026  <.0001
##  1 CCN51 - 6 TCS01 -3.40967 0.289 106 -11.802  <.0001
##  2 CCN51 - 3 CCN51 -0.44233 0.262 108  -1.688  0.9818
##  2 CCN51 - 4 CCN51 -0.62433 0.262 108  -2.383  0.6951
##  2 CCN51 - 5 CCN51 -0.97367 0.262 108  -3.716  0.0423
##  2 CCN51 - 6 CCN51 -2.19700 0.262 108  -8.386  <.0001
##  2 CCN51 - 0 ICS95 -0.33000 0.289 106  -1.142  0.9999
##  2 CCN51 - 1 ICS95  0.18900 0.289 106   0.654  1.0000
##  2 CCN51 - 2 ICS95  0.14800 0.289 106   0.512  1.0000
##  2 CCN51 - 3 ICS95 -0.12600 0.289 106  -0.436  1.0000
##  2 CCN51 - 4 ICS95 -0.26100 0.289 106  -0.903  1.0000
##  2 CCN51 - 5 ICS95 -0.59267 0.289 106  -2.051  0.8878
##  2 CCN51 - 6 ICS95 -1.56667 0.289 106  -5.423  0.0001
##  2 CCN51 - 0 TCS01 -0.20867 0.289 106  -0.722  1.0000
##  2 CCN51 - 1 TCS01 -0.02100 0.289 106  -0.073  1.0000
##  2 CCN51 - 2 TCS01 -0.52933 0.289 106  -1.832  0.9580
##  2 CCN51 - 3 TCS01 -1.10833 0.289 106  -3.836  0.0294
##  2 CCN51 - 4 TCS01 -1.39933 0.289 106  -4.844  0.0008
##  2 CCN51 - 5 TCS01 -2.63533 0.289 106  -9.122  <.0001
##  2 CCN51 - 6 TCS01 -3.43733 0.289 106 -11.898  <.0001
##  3 CCN51 - 4 CCN51 -0.18200 0.262 108  -0.695  1.0000
##  3 CCN51 - 5 CCN51 -0.53133 0.262 108  -2.028  0.8977
##  3 CCN51 - 6 CCN51 -1.75467 0.262 108  -6.697  <.0001
##  3 CCN51 - 0 ICS95  0.11233 0.289 106   0.389  1.0000
##  3 CCN51 - 1 ICS95  0.63133 0.289 106   2.185  0.8214
##  3 CCN51 - 2 ICS95  0.59033 0.289 106   2.043  0.8912
##  3 CCN51 - 3 ICS95  0.31633 0.289 106   1.095  0.9999
##  3 CCN51 - 4 ICS95  0.18133 0.289 106   0.628  1.0000
##  3 CCN51 - 5 ICS95 -0.15033 0.289 106  -0.520  1.0000
##  3 CCN51 - 6 ICS95 -1.12433 0.289 106  -3.892  0.0247
##  3 CCN51 - 0 TCS01  0.23367 0.289 106   0.809  1.0000
##  3 CCN51 - 1 TCS01  0.42133 0.289 106   1.458  0.9967
##  3 CCN51 - 2 TCS01 -0.08700 0.289 106  -0.301  1.0000
##  3 CCN51 - 3 TCS01 -0.66600 0.289 106  -2.305  0.7480
##  3 CCN51 - 4 TCS01 -0.95700 0.289 106  -3.313  0.1304
##  3 CCN51 - 5 TCS01 -2.19300 0.289 106  -7.591  <.0001
##  3 CCN51 - 6 TCS01 -2.99500 0.289 106 -10.367  <.0001
##  4 CCN51 - 5 CCN51 -0.34933 0.262 108  -1.333  0.9990
##  4 CCN51 - 6 CCN51 -1.57267 0.262 108  -6.003  <.0001
##  4 CCN51 - 0 ICS95  0.29433 0.289 106   1.019  1.0000
##  4 CCN51 - 1 ICS95  0.81333 0.289 106   2.815  0.3809
##  4 CCN51 - 2 ICS95  0.77233 0.289 106   2.673  0.4810
##  4 CCN51 - 3 ICS95  0.49833 0.289 106   1.725  0.9770
##  4 CCN51 - 4 ICS95  0.36333 0.289 106   1.258  0.9995
##  4 CCN51 - 5 ICS95  0.03167 0.289 106   0.110  1.0000
##  4 CCN51 - 6 ICS95 -0.94233 0.289 106  -3.262  0.1480
##  4 CCN51 - 0 TCS01  0.41567 0.289 106   1.439  0.9972
##  4 CCN51 - 1 TCS01  0.60333 0.289 106   2.088  0.8712
##  4 CCN51 - 2 TCS01  0.09500 0.289 106   0.329  1.0000
##  4 CCN51 - 3 TCS01 -0.48400 0.289 106  -1.675  0.9832
##  4 CCN51 - 4 TCS01 -0.77500 0.289 106  -2.683  0.4743
##  4 CCN51 - 5 TCS01 -2.01100 0.289 106  -6.961  <.0001
##  4 CCN51 - 6 TCS01 -2.81300 0.289 106  -9.737  <.0001
##  5 CCN51 - 6 CCN51 -1.22333 0.262 108  -4.669  0.0015
##  5 CCN51 - 0 ICS95  0.64367 0.289 106   2.228  0.7967
##  5 CCN51 - 1 ICS95  1.16267 0.289 106   4.024  0.0160
##  5 CCN51 - 2 ICS95  1.12167 0.289 106   3.883  0.0254
##  5 CCN51 - 3 ICS95  0.84767 0.289 106   2.934  0.3053
##  5 CCN51 - 4 ICS95  0.71267 0.289 106   2.467  0.6346
##  5 CCN51 - 5 ICS95  0.38100 0.289 106   1.319  0.9991
##  5 CCN51 - 6 ICS95 -0.59300 0.289 106  -2.053  0.8873
##  5 CCN51 - 0 TCS01  0.76500 0.289 106   2.648  0.4997
##  5 CCN51 - 1 TCS01  0.95267 0.289 106   3.298  0.1354
##  5 CCN51 - 2 TCS01  0.44433 0.289 106   1.538  0.9936
##  5 CCN51 - 3 TCS01 -0.13467 0.289 106  -0.466  1.0000
##  5 CCN51 - 4 TCS01 -0.42567 0.289 106  -1.473  0.9962
##  5 CCN51 - 5 TCS01 -1.66167 0.289 106  -5.752  <.0001
##  5 CCN51 - 6 TCS01 -2.46367 0.289 106  -8.528  <.0001
##  6 CCN51 - 0 ICS95  1.86700 0.289 106   6.462  <.0001
##  6 CCN51 - 1 ICS95  2.38600 0.289 106   8.259  <.0001
##  6 CCN51 - 2 ICS95  2.34500 0.289 106   8.117  <.0001
##  6 CCN51 - 3 ICS95  2.07100 0.289 106   7.169  <.0001
##  6 CCN51 - 4 ICS95  1.93600 0.289 106   6.701  <.0001
##  6 CCN51 - 5 ICS95  1.60433 0.289 106   5.553  <.0001
##  6 CCN51 - 6 ICS95  0.63033 0.289 106   2.182  0.8233
##  6 CCN51 - 0 TCS01  1.98833 0.289 106   6.882  <.0001
##  6 CCN51 - 1 TCS01  2.17600 0.289 106   7.532  <.0001
##  6 CCN51 - 2 TCS01  1.66767 0.289 106   5.773  <.0001
##  6 CCN51 - 3 TCS01  1.08867 0.289 106   3.768  0.0363
##  6 CCN51 - 4 TCS01  0.79767 0.289 106   2.761  0.4181
##  6 CCN51 - 5 TCS01 -0.43833 0.289 106  -1.517  0.9946
##  6 CCN51 - 6 TCS01 -1.24033 0.289 106  -4.293  0.0063
##  0 ICS95 - 1 ICS95  0.51900 0.262 108   1.981  0.9157
##  0 ICS95 - 2 ICS95  0.47800 0.262 108   1.824  0.9598
##  0 ICS95 - 3 ICS95  0.20400 0.262 108   0.779  1.0000
##  0 ICS95 - 4 ICS95  0.06900 0.262 108   0.263  1.0000
##  0 ICS95 - 5 ICS95 -0.26267 0.262 108  -1.003  1.0000
##  0 ICS95 - 6 ICS95 -1.23667 0.262 108  -4.720  0.0013
##  0 ICS95 - 0 TCS01  0.12133 0.289 106   0.420  1.0000
##  0 ICS95 - 1 TCS01  0.30900 0.289 106   1.070  1.0000
##  0 ICS95 - 2 TCS01 -0.19933 0.289 106  -0.690  1.0000
##  0 ICS95 - 3 TCS01 -0.77833 0.289 106  -2.694  0.4659
##  0 ICS95 - 4 TCS01 -1.06933 0.289 106  -3.701  0.0445
##  0 ICS95 - 5 TCS01 -2.30533 0.289 106  -7.980  <.0001
##  0 ICS95 - 6 TCS01 -3.10733 0.289 106 -10.756  <.0001
##  1 ICS95 - 2 ICS95 -0.04100 0.262 108  -0.156  1.0000
##  1 ICS95 - 3 ICS95 -0.31500 0.262 108  -1.202  0.9998
##  1 ICS95 - 4 ICS95 -0.45000 0.262 108  -1.718  0.9781
##  1 ICS95 - 5 ICS95 -0.78167 0.262 108  -2.983  0.2763
##  1 ICS95 - 6 ICS95 -1.75567 0.262 108  -6.701  <.0001
##  1 ICS95 - 0 TCS01 -0.39767 0.289 106  -1.376  0.9984
##  1 ICS95 - 1 TCS01 -0.21000 0.289 106  -0.727  1.0000
##  1 ICS95 - 2 TCS01 -0.71833 0.289 106  -2.486  0.6201
##  1 ICS95 - 3 TCS01 -1.29733 0.289 106  -4.491  0.0031
##  1 ICS95 - 4 TCS01 -1.58833 0.289 106  -5.498  0.0001
##  1 ICS95 - 5 TCS01 -2.82433 0.289 106  -9.776  <.0001
##  1 ICS95 - 6 TCS01 -3.62633 0.289 106 -12.552  <.0001
##  2 ICS95 - 3 ICS95 -0.27400 0.262 108  -1.046  1.0000
##  2 ICS95 - 4 ICS95 -0.40900 0.262 108  -1.561  0.9924
##  2 ICS95 - 5 ICS95 -0.74067 0.262 108  -2.827  0.3728
##  2 ICS95 - 6 ICS95 -1.71467 0.262 108  -6.545  <.0001
##  2 ICS95 - 0 TCS01 -0.35667 0.289 106  -1.235  0.9997
##  2 ICS95 - 1 TCS01 -0.16900 0.289 106  -0.585  1.0000
##  2 ICS95 - 2 TCS01 -0.67733 0.289 106  -2.345  0.7217
##  2 ICS95 - 3 TCS01 -1.25633 0.289 106  -4.349  0.0052
##  2 ICS95 - 4 TCS01 -1.54733 0.289 106  -5.356  0.0001
##  2 ICS95 - 5 TCS01 -2.78333 0.289 106  -9.634  <.0001
##  2 ICS95 - 6 TCS01 -3.58533 0.289 106 -12.410  <.0001
##  3 ICS95 - 4 ICS95 -0.13500 0.262 108  -0.515  1.0000
##  3 ICS95 - 5 ICS95 -0.46667 0.262 108  -1.781  0.9683
##  3 ICS95 - 6 ICS95 -1.44067 0.262 108  -5.499  0.0001
##  3 ICS95 - 0 TCS01 -0.08267 0.289 106  -0.286  1.0000
##  3 ICS95 - 1 TCS01  0.10500 0.289 106   0.363  1.0000
##  3 ICS95 - 2 TCS01 -0.40333 0.289 106  -1.396  0.9981
##  3 ICS95 - 3 TCS01 -0.98233 0.289 106  -3.400  0.1040
##  3 ICS95 - 4 TCS01 -1.27333 0.289 106  -4.408  0.0042
##  3 ICS95 - 5 TCS01 -2.50933 0.289 106  -8.686  <.0001
##  3 ICS95 - 6 TCS01 -3.31133 0.289 106 -11.462  <.0001
##  4 ICS95 - 5 ICS95 -0.33167 0.262 108  -1.266  0.9995
##  4 ICS95 - 6 ICS95 -1.30567 0.262 108  -4.983  0.0004
##  4 ICS95 - 0 TCS01  0.05233 0.289 106   0.181  1.0000
##  4 ICS95 - 1 TCS01  0.24000 0.289 106   0.831  1.0000
##  4 ICS95 - 2 TCS01 -0.26833 0.289 106  -0.929  1.0000
##  4 ICS95 - 3 TCS01 -0.84733 0.289 106  -2.933  0.3060
##  4 ICS95 - 4 TCS01 -1.13833 0.289 106  -3.940  0.0211
##  4 ICS95 - 5 TCS01 -2.37433 0.289 106  -8.219  <.0001
##  4 ICS95 - 6 TCS01 -3.17633 0.289 106 -10.995  <.0001
##  5 ICS95 - 6 ICS95 -0.97400 0.262 108  -3.718  0.0422
##  5 ICS95 - 0 TCS01  0.38400 0.289 106   1.329  0.9990
##  5 ICS95 - 1 TCS01  0.57167 0.289 106   1.979  0.9163
##  5 ICS95 - 2 TCS01  0.06333 0.289 106   0.219  1.0000
##  5 ICS95 - 3 TCS01 -0.51567 0.289 106  -1.785  0.9675
##  5 ICS95 - 4 TCS01 -0.80667 0.289 106  -2.792  0.3966
##  5 ICS95 - 5 TCS01 -2.04267 0.289 106  -7.071  <.0001
##  5 ICS95 - 6 TCS01 -2.84467 0.289 106  -9.847  <.0001
##  6 ICS95 - 0 TCS01  1.35800 0.289 106   4.701  0.0014
##  6 ICS95 - 1 TCS01  1.54567 0.289 106   5.350  0.0001
##  6 ICS95 - 2 TCS01  1.03733 0.289 106   3.591  0.0616
##  6 ICS95 - 3 TCS01  0.45833 0.289 106   1.586  0.9908
##  6 ICS95 - 4 TCS01  0.16733 0.289 106   0.579  1.0000
##  6 ICS95 - 5 TCS01 -1.06867 0.289 106  -3.699  0.0448
##  6 ICS95 - 6 TCS01 -1.87067 0.289 106  -6.475  <.0001
##  0 TCS01 - 1 TCS01  0.18767 0.262 108   0.716  1.0000
##  0 TCS01 - 2 TCS01 -0.32067 0.262 108  -1.224  0.9997
##  0 TCS01 - 3 TCS01 -0.89967 0.262 108  -3.434  0.0948
##  0 TCS01 - 4 TCS01 -1.19067 0.262 108  -4.545  0.0025
##  0 TCS01 - 5 TCS01 -2.42667 0.262 108  -9.262  <.0001
##  0 TCS01 - 6 TCS01 -3.22867 0.262 108 -12.323  <.0001
##  1 TCS01 - 2 TCS01 -0.50833 0.262 108  -1.940  0.9294
##  1 TCS01 - 3 TCS01 -1.08733 0.262 108  -4.150  0.0104
##  1 TCS01 - 4 TCS01 -1.37833 0.262 108  -5.261  0.0001
##  1 TCS01 - 5 TCS01 -2.61433 0.262 108  -9.978  <.0001
##  1 TCS01 - 6 TCS01 -3.41633 0.262 108 -13.039  <.0001
##  2 TCS01 - 3 TCS01 -0.57900 0.262 108  -2.210  0.8075
##  2 TCS01 - 4 TCS01 -0.87000 0.262 108  -3.321  0.1274
##  2 TCS01 - 5 TCS01 -2.10600 0.262 108  -8.038  <.0001
##  2 TCS01 - 6 TCS01 -2.90800 0.262 108 -11.099  <.0001
##  3 TCS01 - 4 TCS01 -0.29100 0.262 108  -1.111  0.9999
##  3 TCS01 - 5 TCS01 -1.52700 0.262 108  -5.828  <.0001
##  3 TCS01 - 6 TCS01 -2.32900 0.262 108  -8.889  <.0001
##  4 TCS01 - 5 TCS01 -1.23600 0.262 108  -4.718  0.0013
##  4 TCS01 - 6 TCS01 -2.03800 0.262 108  -7.779  <.0001
##  5 TCS01 - 6 TCS01 -0.80200 0.262 108  -3.061  0.2347
## 
## P value adjustment: tukey method for comparing a family of 21 estimates
emm_diam2 <- emmeans(res.aov.error, pairwise ~ diam2)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_diam2
## $emmeans
##  diam2 emmean     SE  df lower.CL upper.CL
##  0       3.16 0.0681 106     3.03     3.30
##  1       2.96 0.0681 106     2.83     3.10
##  2       3.19 0.0681 106     3.05     3.32
##  3       3.50 0.0681 106     3.36     3.63
##  4       3.95 0.0681 106     3.81     4.08
##  5       4.76 0.0681 106     4.63     4.90
##  6       5.73 0.0681 106     5.60     5.87
## 
## Results are averaged over the levels of: curva, gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate     SE  df t.ratio p.value
##  0 - 1      0.2003 0.0873 108   2.293  0.2569
##  0 - 2     -0.0264 0.0873 108  -0.303  0.9999
##  0 - 3     -0.3338 0.0873 108  -3.822  0.0040
##  0 - 4     -0.7859 0.0873 108  -8.999  <.0001
##  0 - 5     -1.6026 0.0873 108 -18.350  <.0001
##  0 - 6     -2.5688 0.0873 108 -29.414  <.0001
##  1 - 2     -0.2267 0.0873 108  -2.596  0.1376
##  1 - 3     -0.5341 0.0873 108  -6.115  <.0001
##  1 - 4     -0.9862 0.0873 108 -11.292  <.0001
##  1 - 5     -1.8029 0.0873 108 -20.643  <.0001
##  1 - 6     -2.7690 0.0873 108 -31.707  <.0001
##  2 - 3     -0.3074 0.0873 108  -3.520  0.0110
##  2 - 4     -0.7595 0.0873 108  -8.696  <.0001
##  2 - 5     -1.5761 0.0873 108 -18.048  <.0001
##  2 - 6     -2.5423 0.0873 108 -29.111  <.0001
##  3 - 4     -0.4521 0.0873 108  -5.177  <.0001
##  3 - 5     -1.2688 0.0873 108 -14.528  <.0001
##  3 - 6     -2.2350 0.0873 108 -25.591  <.0001
##  4 - 5     -0.8167 0.0873 108  -9.351  <.0001
##  4 - 6     -1.7829 0.0873 108 -20.414  <.0001
##  5 - 6     -0.9662 0.0873 108 -11.063  <.0001
## 
## Results are averaged over the levels of: curva, gen 
## P value adjustment: tukey method for comparing a family of 7 estimates
emm_diam2_curva <- emmeans(res.aov.error, pairwise ~ diam2 | curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_diam2_curva
## $emmeans
## curva = T3:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.35 0.118 106     3.12     3.58
##  1       3.24 0.118 106     3.00     3.47
##  2       3.73 0.118 106     3.50     3.96
##  3       3.54 0.118 106     3.30     3.77
##  4       3.75 0.118 106     3.52     3.99
##  5       4.45 0.118 106     4.21     4.68
##  6       5.90 0.118 106     5.67     6.13
## 
## curva = T1:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.09 0.118 106     2.86     3.32
##  1       2.59 0.118 106     2.36     2.83
##  2       2.61 0.118 106     2.38     2.84
##  3       3.29 0.118 106     3.06     3.53
##  4       4.23 0.118 106     3.99     4.46
##  5       5.35 0.118 106     5.11     5.58
##  6       5.79 0.118 106     5.56     6.03
## 
## curva = T2:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       3.04 0.118 106     2.81     3.28
##  1       3.05 0.118 106     2.82     3.29
##  2       3.23 0.118 106     2.99     3.46
##  3       3.66 0.118 106     3.42     3.89
##  4       3.86 0.118 106     3.63     4.09
##  5       4.50 0.118 106     4.27     4.73
##  6       5.50 0.118 106     5.26     5.73
## 
## Results are averaged over the levels of: gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.11100 0.151 108   0.734  0.9902
##  0 - 2    -0.37967 0.151 108  -2.510  0.1661
##  0 - 3    -0.18678 0.151 108  -1.235  0.8790
##  0 - 4    -0.40500 0.151 108  -2.677  0.1141
##  0 - 5    -1.09811 0.151 108  -7.260  <.0001
##  0 - 6    -2.55111 0.151 108 -16.865  <.0001
##  1 - 2    -0.49067 0.151 108  -3.244  0.0255
##  1 - 3    -0.29778 0.151 108  -1.969  0.4406
##  1 - 4    -0.51600 0.151 108  -3.411  0.0154
##  1 - 5    -1.20911 0.151 108  -7.993  <.0001
##  1 - 6    -2.66211 0.151 108 -17.599  <.0001
##  2 - 3     0.19289 0.151 108   1.275  0.8618
##  2 - 4    -0.02533 0.151 108  -0.167  1.0000
##  2 - 5    -0.71844 0.151 108  -4.750  0.0001
##  2 - 6    -2.17144 0.151 108 -14.355  <.0001
##  3 - 4    -0.21822 0.151 108  -1.443  0.7774
##  3 - 5    -0.91133 0.151 108  -6.025  <.0001
##  3 - 6    -2.36433 0.151 108 -15.630  <.0001
##  4 - 5    -0.69311 0.151 108  -4.582  0.0002
##  4 - 6    -2.14611 0.151 108 -14.188  <.0001
##  5 - 6    -1.45300 0.151 108  -9.606  <.0001
## 
## curva = T1:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     0.49633 0.151 108   3.281  0.0229
##  0 - 2     0.48078 0.151 108   3.178  0.0308
##  0 - 3    -0.20244 0.151 108  -1.338  0.8323
##  0 - 4    -1.13789 0.151 108  -7.522  <.0001
##  0 - 5    -2.25578 0.151 108 -14.913  <.0001
##  0 - 6    -2.70156 0.151 108 -17.860  <.0001
##  1 - 2    -0.01556 0.151 108  -0.103  1.0000
##  1 - 3    -0.69878 0.151 108  -4.620  0.0002
##  1 - 4    -1.63422 0.151 108 -10.804  <.0001
##  1 - 5    -2.75211 0.151 108 -18.194  <.0001
##  1 - 6    -3.19789 0.151 108 -21.141  <.0001
##  2 - 3    -0.68322 0.151 108  -4.517  0.0003
##  2 - 4    -1.61867 0.151 108 -10.701  <.0001
##  2 - 5    -2.73656 0.151 108 -18.091  <.0001
##  2 - 6    -3.18233 0.151 108 -21.038  <.0001
##  3 - 4    -0.93544 0.151 108  -6.184  <.0001
##  3 - 5    -2.05333 0.151 108 -13.574  <.0001
##  3 - 6    -2.49911 0.151 108 -16.521  <.0001
##  4 - 5    -1.11789 0.151 108  -7.390  <.0001
##  4 - 6    -1.56367 0.151 108 -10.337  <.0001
##  5 - 6    -0.44578 0.151 108  -2.947  0.0583
## 
## curva = T2:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -0.00656 0.151 108  -0.043  1.0000
##  0 - 2    -0.18044 0.151 108  -1.193  0.8954
##  0 - 3    -0.61222 0.151 108  -4.047  0.0018
##  0 - 4    -0.81489 0.151 108  -5.387  <.0001
##  0 - 5    -1.45389 0.151 108  -9.612  <.0001
##  0 - 6    -2.45367 0.151 108 -16.221  <.0001
##  1 - 2    -0.17389 0.151 108  -1.150  0.9110
##  1 - 3    -0.60567 0.151 108  -4.004  0.0021
##  1 - 4    -0.80833 0.151 108  -5.344  <.0001
##  1 - 5    -1.44733 0.151 108  -9.568  <.0001
##  1 - 6    -2.44711 0.151 108 -16.178  <.0001
##  2 - 3    -0.43178 0.151 108  -2.854  0.0741
##  2 - 4    -0.63444 0.151 108  -4.194  0.0011
##  2 - 5    -1.27344 0.151 108  -8.419  <.0001
##  2 - 6    -2.27322 0.151 108 -15.028  <.0001
##  3 - 4    -0.20267 0.151 108  -1.340  0.8316
##  3 - 5    -0.84167 0.151 108  -5.564  <.0001
##  3 - 6    -1.84144 0.151 108 -12.174  <.0001
##  4 - 5    -0.63900 0.151 108  -4.224  0.0010
##  4 - 6    -1.63878 0.151 108 -10.834  <.0001
##  5 - 6    -0.99978 0.151 108  -6.609  <.0001
## 
## Results are averaged over the levels of: gen 
## P value adjustment: tukey method for comparing a family of 7 estimates
##Splitting dataframe by temperature ramp
## Protocol 3 (T3)

datos.curve1<-filter(datos, curva=="T3")

##Check assumptions
##Outliers

datos.curve1 %>%
  group_by(gen, diam2) %>%
  identify_outliers(ph.testa)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm1<-datos.curve1 %>%
  group_by(gen, diam2) %>%
  shapiro_test(ph.testa)
norm1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic     p
##    <fct> <fct> <chr>        <dbl> <dbl>
##  1 0     CCN51 ph.testa     0.995 0.868
##  2 1     CCN51 ph.testa     0.960 0.615
##  3 2     CCN51 ph.testa     0.963 0.633
##  4 3     CCN51 ph.testa     0.843 0.222
##  5 4     CCN51 ph.testa     1.00  0.962
##  6 5     CCN51 ph.testa     1     1.00 
##  7 6     CCN51 ph.testa     0.999 0.947
##  8 0     ICS95 ph.testa     0.991 0.817
##  9 1     ICS95 ph.testa     0.843 0.223
## 10 2     ICS95 ph.testa     0.996 0.872
## 11 3     ICS95 ph.testa     0.944 0.546
## 12 4     ICS95 ph.testa     0.822 0.169
## 13 5     ICS95 ph.testa     0.914 0.431
## 14 6     ICS95 ph.testa     0.916 0.439
## 15 0     TCS01 ph.testa     0.872 0.301
## 16 1     TCS01 ph.testa     0.960 0.613
## 17 2     TCS01 ph.testa     0.958 0.607
## 18 3     TCS01 ph.testa     0.992 0.832
## 19 4     TCS01 ph.testa     0.988 0.786
## 20 5     TCS01 ph.testa     0.982 0.742
## 21 6     TCS01 ph.testa     0.983 0.748
##Create QQ plot for each cell of design:

ggqqplot(datos.curve1, "ph.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev1<-datos.curve1 %>%
  group_by(diam2) %>%
  levene_test(ph.testa ~ gen)
lev1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     1.21  0.361
## 2 1         2     6     0.815 0.486
## 3 2         2     6     1.19  0.366
## 4 3         2     6     0.879 0.463
## 5 4         2     6     0.527 0.615
## 6 5         2     6     1.77  0.249
## 7 6         2     6     0.128 0.882
##Computation

res.aov1 <- anova_test(
  data = datos.curve1, dv = ph.testa, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov1)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd       F        p p<.05   ges
## 1       gen 2.00  6.00  36.142 4.50e-04     * 0.684
## 2     diam2 1.71 10.25 143.156 4.95e-08     * 0.951
## 3 gen:diam2 3.42 10.25  23.210 5.42e-05     * 0.864
#CCN51
datos.ccn<-filter(datos.curve1, gen=="CCN51")
res.aov.ccn1 <- anova_test(
  data = datos.ccn, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 296.028 2.53e-12     * 0.989
#ICS95
datos.ics<-filter(datos.curve1, gen=="ICS95")
res.aov.ics1 <- anova_test(
  data = datos.ics, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05  ges
## 1  diam2   6  12 36.782 4.81e-07     * 0.94
#TCS01
datos.tcs<-filter(datos.curve1, gen=="TCS01")
res.aov.tcs1 <- anova_test(
  data = datos.tcs, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 68.236 1.42e-08     * 0.959
## Protocol 1 (T1)

datos.curve2<-filter(datos, curva=="T1")

##Check assumptions
##Outliers

datos.curve2 %>%
  group_by(gen, diam2) %>%
  identify_outliers(ph.testa)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve2 %>%
  group_by(gen, diam2) %>%
  shapiro_test(ph.testa)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic      p
##    <fct> <fct> <chr>        <dbl>  <dbl>
##  1 0     CCN51 ph.testa     0.866 0.283 
##  2 1     CCN51 ph.testa     0.950 0.570 
##  3 2     CCN51 ph.testa     0.908 0.413 
##  4 3     CCN51 ph.testa     0.983 0.749 
##  5 4     CCN51 ph.testa     0.942 0.537 
##  6 5     CCN51 ph.testa     0.976 0.701 
##  7 6     CCN51 ph.testa     0.812 0.142 
##  8 0     ICS95 ph.testa     0.910 0.419 
##  9 1     ICS95 ph.testa     0.920 0.453 
## 10 2     ICS95 ph.testa     0.947 0.554 
## 11 3     ICS95 ph.testa     0.975 0.694 
## 12 4     ICS95 ph.testa     0.970 0.669 
## 13 5     ICS95 ph.testa     0.788 0.0870
## 14 6     ICS95 ph.testa     0.842 0.218 
## 15 0     TCS01 ph.testa     0.968 0.656 
## 16 1     TCS01 ph.testa     0.852 0.245 
## 17 2     TCS01 ph.testa     0.997 0.896 
## 18 3     TCS01 ph.testa     0.998 0.922 
## 19 4     TCS01 ph.testa     0.974 0.691 
## 20 5     TCS01 ph.testa     0.807 0.131 
## 21 6     TCS01 ph.testa     0.841 0.217
##Create QQ plot for each cell of design:

ggqqplot(datos.curve2, "ph.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve2 %>%
  group_by(diam2) %>%
  levene_test(ph.testa ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.121 0.888
## 2 1         2     6     0.713 0.527
## 3 2         2     6     2.02  0.213
## 4 3         2     6     1.55  0.288
## 5 4         2     6     1.56  0.284
## 6 5         2     6     0.177 0.842
## 7 6         2     6     0.513 0.623
##Computation

res.aov2 <- anova_test(
  data = datos.curve2, dv = ph.testa, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect DFn DFd       F        p p<.05   ges
## 1       gen   2   6  51.776 1.64e-04     * 0.811
## 2     diam2   6  36 123.018 1.80e-22     * 0.939
## 3 gen:diam2  12  36   5.849 1.71e-05     * 0.594
#CCN51
datos.ccn<-filter(datos.curve2, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 26.027 3.26e-06     * 0.908
#ICS95
datos.ics<-filter(datos.curve2, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 58.546 3.43e-08     * 0.952
#TCS01
datos.tcs<-filter(datos.curve2, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 72.066 1.04e-08     * 0.966
## Protocol 2 (T2)

datos.curve3<-filter(datos, curva=="T2")

##Check assumptions
##Outliers

datos.curve3 %>%
  group_by(gen, diam2) %>%
  identify_outliers(ph.testa)
##  [1] diam2        gen          curva        time.let     muestra     
##  [6] ph.testa     acidez.testa ph.grano     acidez.grano id          
## [11] is.outlier   is.extreme  
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve3 %>%
  group_by(gen, diam2) %>%
  shapiro_test(ph.testa)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic       p
##    <fct> <fct> <chr>        <dbl>   <dbl>
##  1 0     CCN51 ph.testa     0.987 0.778  
##  2 1     CCN51 ph.testa     1.00  0.959  
##  3 2     CCN51 ph.testa     1.00  0.982  
##  4 3     CCN51 ph.testa     0.787 0.0843 
##  5 4     CCN51 ph.testa     0.939 0.524  
##  6 5     CCN51 ph.testa     0.801 0.116  
##  7 6     CCN51 ph.testa     0.754 0.00795
##  8 0     ICS95 ph.testa     0.781 0.0703 
##  9 1     ICS95 ph.testa     0.990 0.808  
## 10 2     ICS95 ph.testa     0.957 0.602  
## 11 3     ICS95 ph.testa     0.909 0.416  
## 12 4     ICS95 ph.testa     0.775 0.0553 
## 13 5     ICS95 ph.testa     0.800 0.114  
## 14 6     ICS95 ph.testa     0.925 0.471  
## 15 0     TCS01 ph.testa     0.935 0.508  
## 16 1     TCS01 ph.testa     0.980 0.726  
## 17 2     TCS01 ph.testa     1.00  0.975  
## 18 3     TCS01 ph.testa     0.993 0.837  
## 19 4     TCS01 ph.testa     0.825 0.175  
## 20 5     TCS01 ph.testa     0.894 0.366  
## 21 6     TCS01 ph.testa     0.997 0.897
##Create QQ plot for each cell of design:

ggqqplot(datos.curve3, "ph.testa", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve3 %>%
  group_by(diam2) %>%
  levene_test(ph.testa ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.324 0.735
## 2 1         2     6     1.67  0.265
## 3 2         2     6     2.57  0.156
## 4 3         2     6     1.74  0.254
## 5 4         2     6     1.07  0.401
## 6 5         2     6     1.52  0.293
## 7 6         2     6     1.33  0.333
##Computation

res.aov2 <- anova_test(
  data = datos.curve3, dv = ph.testa, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd      F        p p<.05   ges
## 1       gen 2.00  6.00 12.577 7.00e-03     * 0.607
## 2     diam2 1.76 10.55 55.558 3.48e-06     * 0.854
## 3 gen:diam2 3.52 10.55  4.634 2.30e-02     * 0.494
#CCN51
datos.ccn<-filter(datos.curve3, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 56.215 4.34e-08     * 0.959
#ICS95
datos.ics<-filter(datos.curve3, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 24.688 4.34e-06     * 0.902
#TCS01
datos.tcs<-filter(datos.curve3, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = ph.testa, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 16.091 4.19e-05     * 0.828
## Gráficas por réplica y genotipo
datos$diam2<-as.numeric(as.character(datos$diam2))
##Gráfica por réplica compuesta
pht<- ggplot(datos, aes(x = diam2)) +
  facet_grid(curva~gen*muestra) +
  geom_line(aes(y=ph.testa)) +
  geom_point(aes(y=ph.testa)) +
  scale_y_continuous(name = expression("Testa pH")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 12))
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
pht

## Gráfica por genotipo

datos2<-summarySE (datos, measurevar = "ph.testa", groupvars = c("curva", "gen","diam2"))
write.csv(datos2, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data_out/pH_mean_testa.csv")

pht2<- ggplot(datos2, aes(x = diam2)) +
  facet_grid(curva~gen) +
  geom_errorbar(aes(ymin=ph.testa-ci, ymax=ph.testa+ci), width=.1) +
  geom_line(aes(y=ph.testa)) +
  geom_point(aes(y=ph.testa)) +
  scale_y_continuous(name = expression("Testa pH")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 15))  
pht2