setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data")
datos<-read.table("temp.csv", header=T, sep=',')
datos$curva <- factor(datos$curva, levels = c("1", "2", "3"), 
                      labels = c("T3", "T1", "T2"))
datos$gen<-as.factor(datos$gen)
datos$curva<-as.factor(datos$curva)
datos$id<-as.factor(datos$id)
datos$muestra<-as.factor(datos$muestra)
datos$diam2<-as.factor(datos$diam2)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ tibble  3.2.1     ✔ purrr   1.0.1
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.1     ✔ forcats 1.0.0
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'stringr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::arrange()   masks plyr::arrange()
## ✖ purrr::compact()   masks plyr::compact()
## ✖ dplyr::count()     masks plyr::count()
## ✖ dplyr::desc()      masks plyr::desc()
## ✖ dplyr::failwith()  masks plyr::failwith()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::id()        masks plyr::id()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::mutate()    masks plyr::mutate()
## ✖ dplyr::rename()    masks plyr::rename()
## ✖ dplyr::summarise() masks plyr::summarise()
## ✖ dplyr::summarize() masks plyr::summarize()
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
library(emmeans)
##Summary statistics
summ<-datos %>%
  group_by(curva, gen, diam2) %>%
  get_summary_stats(temp, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 7
##    curva diam2 gen   variable     n  mean    sd
##    <fct> <fct> <fct> <chr>    <dbl> <dbl> <dbl>
##  1 T3    0     CCN51 temp         3  25   0    
##  2 T3    1     CCN51 temp         3  37.3 0.675
##  3 T3    2     CCN51 temp         3  40.9 0.153
##  4 T3    3     CCN51 temp         3  46.1 0.941
##  5 T3    4     CCN51 temp         3  45.2 0.252
##  6 T3    5     CCN51 temp         3  43.6 0.862
##  7 T3    6     CCN51 temp         3  38.2 0.705
##  8 T3    0     ICS95 temp         3  25   0    
##  9 T3    1     ICS95 temp         3  40.3 0.486
## 10 T3    2     ICS95 temp         3  41.2 0.477
## 11 T3    3     ICS95 temp         3  47.4 0.522
## 12 T3    4     ICS95 temp         3  46.4 0.492
## 13 T3    5     ICS95 temp         3  45.3 1.10 
## 14 T3    6     ICS95 temp         3  39.2 0.568
## 15 T3    0     TCS01 temp         3  25   0    
## 16 T3    1     TCS01 temp         3  38.4 0.333
## 17 T3    2     TCS01 temp         3  41.8 0.577
## 18 T3    3     TCS01 temp         3  46.6 0.275
## 19 T3    4     TCS01 temp         3  42.5 1.43 
## 20 T3    5     TCS01 temp         3  40.2 5.06 
## 21 T3    6     TCS01 temp         3  35.8 1.63 
## 22 T1    0     CCN51 temp         3  23.6 0.361
## 23 T1    1     CCN51 temp         3  36.3 0.275
## 24 T1    2     CCN51 temp         3  39.7 0.401
## 25 T1    3     CCN51 temp         3  42.9 1.28 
## 26 T1    4     CCN51 temp         3  44.7 0.284
## 27 T1    5     CCN51 temp         3  44.0 1.13 
## 28 T1    6     CCN51 temp         3  42.8 0.355
## 29 T1    0     ICS95 temp         3  23.6 0.265
## 30 T1    1     ICS95 temp         3  37.9 0.126
## 31 T1    2     ICS95 temp         3  39.6 0.451
## 32 T1    3     ICS95 temp         3  42.9 1.00 
## 33 T1    4     ICS95 temp         3  43.0 0.161
## 34 T1    5     ICS95 temp         3  43.5 0.765
## 35 T1    6     ICS95 temp         3  41.4 0.176
## 36 T1    0     TCS01 temp         3  23.5 0.231
## 37 T1    1     TCS01 temp         3  37.1 0.5  
## 38 T1    2     TCS01 temp         3  40.1 0.404
## 39 T1    3     TCS01 temp         3  43.7 1.25 
## 40 T1    4     TCS01 temp         3  44.7 0.284
## 41 T1    5     TCS01 temp         3  43.4 0.444
## 42 T1    6     TCS01 temp         3  42.5 0.765
## 43 T2    0     CCN51 temp         3  25.9 0.202
## 44 T2    1     CCN51 temp         3  34.5 0.275
## 45 T2    2     CCN51 temp         3  38.1 0.301
## 46 T2    3     CCN51 temp         3  42.7 0.605
## 47 T2    4     CCN51 temp         3  44.0 0.306
## 48 T2    5     CCN51 temp         3  44.0 0.835
## 49 T2    6     CCN51 temp         3  39.0 1.42 
## 50 T2    0     ICS95 temp         3  25.8 0.25 
## 51 T2    1     ICS95 temp         3  37.6 0.1  
## 52 T2    2     ICS95 temp         3  36.6 0.202
## 53 T2    3     ICS95 temp         3  43.7 0.729
## 54 T2    4     ICS95 temp         3  44.2 0.293
## 55 T2    5     ICS95 temp         3  43.7 0.52 
## 56 T2    6     ICS95 temp         3  42.4 0.679
## 57 T2    0     TCS01 temp         3  25.9 0.218
## 58 T2    1     TCS01 temp         3  37.2 0.304
## 59 T2    2     TCS01 temp         3  38.0 0.608
## 60 T2    3     TCS01 temp         3  43.4 0.681
## 61 T2    4     TCS01 temp         3  44.9 0.939
## 62 T2    5     TCS01 temp         3  45.0 0.832
## 63 T2    6     TCS01 temp         3  41.5 1.45
##Visualization
bxp <- ggboxplot(
  datos, x = "curva", y = "temp",
  color = "diam2", palette = "jco",
  facet.by =  "gen"
)
bxp

##Check assumptions
##Outliers

datos %>%
  group_by(curva, gen, diam2) %>%
  identify_outliers(temp)
##  [1] curva      diam2      gen        tiem.let   dia        progamada 
##  [7] muestra    temp       id         is.outlier is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm<-datos %>%
  group_by(curva, gen, diam2) #%>%
  #shapiro_test(temp)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 189 × 9
##     curva tiem.let diam2   dia gen   progamada muestra  temp id   
##     <fct> <chr>    <fct> <int> <fct>     <int> <fct>   <dbl> <fct>
##   1 T3    cero     0         0 CCN51        35 14       25   1    
##   2 T3    cero     0         0 CCN51        35 25       25   2    
##   3 T3    cero     0         0 CCN51        35 36       25   3    
##   4 T3    cero     0         0 ICS95        35 14       25   4    
##   5 T3    cero     0         0 ICS95        35 25       25   5    
##   6 T3    cero     0         0 ICS95        35 36       25   6    
##   7 T3    cero     0         0 TCS01        35 14       25   7    
##   8 T3    cero     0         0 TCS01        35 25       25   8    
##   9 T3    cero     0         0 TCS01        35 36       25   9    
##  10 T1    cero     0         0 CCN51        35 14       24   10   
##  11 T1    cero     0         0 CCN51        35 25       23.3 11   
##  12 T1    cero     0         0 CCN51        35 36       23.5 12   
##  13 T1    cero     0         0 ICS95        35 14       23.2 13   
##  14 T1    cero     0         0 ICS95        35 25       23.6 14   
##  15 T1    cero     0         0 ICS95        35 36       23.8 15   
##  16 T1    cero     0         0 TCS01        35 14       23.4 16   
##  17 T1    cero     0         0 TCS01        35 25       23.8 17   
##  18 T1    cero     0         0 TCS01        35 36       23.4 18   
##  19 T2    cero     0         0 CCN51        35 14       25.7 19   
##  20 T2    cero     0         0 CCN51        35 25       26.1 20   
##  21 T2    cero     0         0 CCN51        35 36       25.8 21   
##  22 T2    cero     0         0 ICS95        35 14       25.8 22   
##  23 T2    cero     0         0 ICS95        35 25       25.6 23   
##  24 T2    cero     0         0 ICS95        35 36       26.1 24   
##  25 T2    cero     0         0 TCS01        35 14       26.2 25   
##  26 T2    cero     0         0 TCS01        35 25       25.8 26   
##  27 T2    cero     0         0 TCS01        35 36       25.8 27   
##  28 T3    uno      1         1 CCN51        35 14       36.6 1    
##  29 T3    uno      1         1 CCN51        35 25       38.0 2    
##  30 T3    uno      1         1 CCN51        35 36       37.3 3    
##  31 T3    uno      1         1 ICS95        35 14       39.8 4    
##  32 T3    uno      1         1 ICS95        35 25       40.8 5    
##  33 T3    uno      1         1 ICS95        35 36       40.2 6    
##  34 T3    uno      1         1 TCS01        35 14       38   7    
##  35 T3    uno      1         1 TCS01        35 25       38.4 8    
##  36 T3    uno      1         1 TCS01        35 36       38.6 9    
##  37 T1    uno      1         1 CCN51        35 14       36.6 10   
##  38 T1    uno      1         1 CCN51        35 25       36.2 11   
##  39 T1    uno      1         1 CCN51        35 36       36.1 12   
##  40 T1    uno      1         1 ICS95        35 14       37.9 13   
##  41 T1    uno      1         1 ICS95        35 25       38.0 14   
##  42 T1    uno      1         1 ICS95        35 36       37.8 15   
##  43 T1    uno      1         1 TCS01        35 14       37.1 16   
##  44 T1    uno      1         1 TCS01        35 25       37.6 17   
##  45 T1    uno      1         1 TCS01        35 36       36.6 18   
##  46 T2    uno      1         1 CCN51        35 14       34.4 19   
##  47 T2    uno      1         1 CCN51        35 25       34.4 20   
##  48 T2    uno      1         1 CCN51        35 36       34.8 21   
##  49 T2    uno      1         1 ICS95        35 14       37.7 22   
##  50 T2    uno      1         1 ICS95        35 25       37.5 23   
##  51 T2    uno      1         1 ICS95        35 36       37.6 24   
##  52 T2    uno      1         1 TCS01        35 14       37.1 25   
##  53 T2    uno      1         1 TCS01        35 25       37.6 26   
##  54 T2    uno      1         1 TCS01        35 36       37.0 27   
##  55 T3    dos      2         2 CCN51        40 14       41   1    
##  56 T3    dos      2         2 CCN51        40 25       40.9 2    
##  57 T3    dos      2         2 CCN51        40 36       40.7 3    
##  58 T3    dos      2         2 ICS95        40 14       41.2 4    
##  59 T3    dos      2         2 ICS95        40 25       40.7 5    
##  60 T3    dos      2         2 ICS95        40 36       41.6 6    
##  61 T3    dos      2         2 TCS01        40 14       41.2 7    
##  62 T3    dos      2         2 TCS01        40 25       42.4 8    
##  63 T3    dos      2         2 TCS01        40 36       41.7 9    
##  64 T1    dos      2         2 CCN51        37 14       40.1 10   
##  65 T1    dos      2         2 CCN51        37 25       39.6 11   
##  66 T1    dos      2         2 CCN51        37 36       39.3 12   
##  67 T1    dos      2         2 ICS95        37 14       39.6 13   
##  68 T1    dos      2         2 ICS95        37 25       40.0 14   
##  69 T1    dos      2         2 ICS95        37 36       39.2 15   
##  70 T1    dos      2         2 TCS01        37 14       40.3 16   
##  71 T1    dos      2         2 TCS01        37 25       40.3 17   
##  72 T1    dos      2         2 TCS01        37 36       39.6 18   
##  73 T2    dos      2         2 CCN51        38 14       37.8 19   
##  74 T2    dos      2         2 CCN51        38 25       38.0 20   
##  75 T2    dos      2         2 CCN51        38 36       38.4 21   
##  76 T2    dos      2         2 ICS95        38 14       36.8 22   
##  77 T2    dos      2         2 ICS95        38 25       36.4 23   
##  78 T2    dos      2         2 ICS95        38 36       36.6 24   
##  79 T2    dos      2         2 TCS01        38 14       37.4 25   
##  80 T2    dos      2         2 TCS01        38 25       38.4 26   
##  81 T2    dos      2         2 TCS01        38 36       38.4 27   
##  82 T3    tres     3         3 CCN51        44 14       46.7 1    
##  83 T3    tres     3         3 CCN51        44 25       46.6 2    
##  84 T3    tres     3         3 CCN51        44 36       45   3    
##  85 T3    tres     3         3 ICS95        44 14       47.8 4    
##  86 T3    tres     3         3 ICS95        44 25       47.6 5    
##  87 T3    tres     3         3 ICS95        44 36       46.8 6    
##  88 T3    tres     3         3 TCS01        44 14       46.8 7    
##  89 T3    tres     3         3 TCS01        44 25       46.8 8    
##  90 T3    tres     3         3 TCS01        44 36       46.3 9    
##  91 T1    tres     3         3 CCN51        40 14       43.6 10   
##  92 T1    tres     3         3 CCN51        40 25       43.6 11   
##  93 T1    tres     3         3 CCN51        40 36       41.4 12   
##  94 T1    tres     3         3 ICS95        40 14       43.2 13   
##  95 T1    tres     3         3 ICS95        40 25       43.6 14   
##  96 T1    tres     3         3 ICS95        40 36       41.8 15   
##  97 T1    tres     3         3 TCS01        40 14       44.4 16   
##  98 T1    tres     3         3 TCS01        40 25       44.6 17   
##  99 T1    tres     3         3 TCS01        40 36       42.3 18   
## 100 T2    tres     3         3 CCN51        42 14       43.2 19   
## 101 T2    tres     3         3 CCN51        42 25       43.0 20   
## 102 T2    tres     3         3 CCN51        42 36       42.0 21   
## 103 T2    tres     3         3 ICS95        42 14       43.2 22   
## 104 T2    tres     3         3 ICS95        42 25       44.6 23   
## 105 T2    tres     3         3 ICS95        42 36       43.4 24   
## 106 T2    tres     3         3 TCS01        42 14       43.6 25   
## 107 T2    tres     3         3 TCS01        42 25       43.9 26   
## 108 T2    tres     3         3 TCS01        42 36       42.6 27   
## 109 T3    cuatro   4         4 CCN51        46 14       45.4 1    
## 110 T3    cuatro   4         4 CCN51        46 25       45.2 2    
## 111 T3    cuatro   4         4 CCN51        46 36       45.0 3    
## 112 T3    cuatro   4         4 ICS95        46 14       47.0 4    
## 113 T3    cuatro   4         4 ICS95        46 25       46.2 5    
## 114 T3    cuatro   4         4 ICS95        46 36       46   6    
## 115 T3    cuatro   4         4 TCS01        46 14       41.0 7    
## 116 T3    cuatro   4         4 TCS01        46 25       43.8 8    
## 117 T3    cuatro   4         4 TCS01        46 36       42.6 9    
## 118 T1    cuatro   4         4 CCN51        44 14       44.8 10   
## 119 T1    cuatro   4         4 CCN51        44 25       45.0 11   
## 120 T1    cuatro   4         4 CCN51        44 36       44.4 12   
## 121 T1    cuatro   4         4 ICS95        44 14       42.9 13   
## 122 T1    cuatro   4         4 ICS95        44 25       43.2 14   
## 123 T1    cuatro   4         4 ICS95        44 36       43.0 15   
## 124 T1    cuatro   4         4 TCS01        44 14       44.8 16   
## 125 T1    cuatro   4         4 TCS01        44 25       44.9 17   
## 126 T1    cuatro   4         4 TCS01        44 36       44.4 18   
## 127 T2    cuatro   4         4 CCN51        44 14       43.7 19   
## 128 T2    cuatro   4         4 CCN51        44 25       44.3 20   
## 129 T2    cuatro   4         4 CCN51        44 36       44.1 21   
## 130 T2    cuatro   4         4 ICS95        44 14       44.0 22   
## 131 T2    cuatro   4         4 ICS95        44 25       44.5 23   
## 132 T2    cuatro   4         4 ICS95        44 36       44.0 24   
## 133 T2    cuatro   4         4 TCS01        44 14       45.1 25   
## 134 T2    cuatro   4         4 TCS01        44 25       45.8 26   
## 135 T2    cuatro   4         4 TCS01        44 36       43.9 27   
## 136 T3    cinco    5         5 CCN51        48 14       43.4 1    
## 137 T3    cinco    5         5 CCN51        48 25       44.5 2    
## 138 T3    cinco    5         5 CCN51        48 36       42.8 3    
## 139 T3    cinco    5         5 ICS95        48 14       44.2 4    
## 140 T3    cinco    5         5 ICS95        48 25       45.2 5    
## 141 T3    cinco    5         5 ICS95        48 36       46.4 6    
## 142 T3    cinco    5         5 TCS01        48 14       34.4 7    
## 143 T3    cinco    5         5 TCS01        48 25       42.9 8    
## 144 T3    cinco    5         5 TCS01        48 36       43.4 9    
## 145 T1    cinco    5         5 CCN51        44 14       42.6 10   
## 146 T1    cinco    5         5 CCN51        44 25       44.6 11   
## 147 T1    cinco    5         5 CCN51        44 36       44.6 12   
## 148 T1    cinco    5         5 ICS95        44 14       43.1 13   
## 149 T1    cinco    5         5 ICS95        44 25       44.4 14   
## 150 T1    cinco    5         5 ICS95        44 36       43.0 15   
## 151 T1    cinco    5         5 TCS01        44 14       43.8 16   
## 152 T1    cinco    5         5 TCS01        44 25       43.6 17   
## 153 T1    cinco    5         5 TCS01        44 36       43.0 18   
## 154 T2    cinco    5         5 CCN51        46 14       44.2 19   
## 155 T2    cinco    5         5 CCN51        46 25       44.8 20   
## 156 T2    cinco    5         5 CCN51        46 36       43.2 21   
## 157 T2    cinco    5         5 ICS95        46 14       43.4 22   
## 158 T2    cinco    5         5 ICS95        46 25       44.3 23   
## 159 T2    cinco    5         5 ICS95        46 36       43.4 24   
## 160 T2    cinco    5         5 TCS01        46 14       45.3 25   
## 161 T2    cinco    5         5 TCS01        46 25       45.6 26   
## 162 T2    cinco    5         5 TCS01        46 36       44   27   
## 163 T3    Seis     6         6 CCN51        47 14       37.4 1    
## 164 T3    Seis     6         6 CCN51        47 25       38.8 2    
## 165 T3    Seis     6         6 CCN51        47 36       38.3 3    
## 166 T3    Seis     6         6 ICS95        47 14       38.8 4    
## 167 T3    Seis     6         6 ICS95        47 25       39.0 5    
## 168 T3    Seis     6         6 ICS95        47 36       39.8 6    
## 169 T3    Seis     6         6 TCS01        47 14       36.7 7    
## 170 T3    Seis     6         6 TCS01        47 25       34.0 8    
## 171 T3    Seis     6         6 TCS01        47 36       36.8 9    
## 172 T1    Seis     6         6 CCN51        44 14       42.4 10   
## 173 T1    Seis     6         6 CCN51        44 25       42.8 11   
## 174 T1    Seis     6         6 CCN51        44 36       43.1 12   
## 175 T1    Seis     6         6 ICS95        44 14       41.2 13   
## 176 T1    Seis     6         6 ICS95        44 25       41.4 14   
## 177 T1    Seis     6         6 ICS95        44 36       41.6 15   
## 178 T1    Seis     6         6 TCS01        44 14       41.6 16   
## 179 T1    Seis     6         6 TCS01        44 25       42.8 17   
## 180 T1    Seis     6         6 TCS01        44 36       43.1 18   
## 181 T2    Seis     6         6 CCN51        46 14       38.0 19   
## 182 T2    Seis     6         6 CCN51        46 25       38.4 20   
## 183 T2    Seis     6         6 CCN51        46 36       40.6 21   
## 184 T2    Seis     6         6 ICS95        46 14       42.8 22   
## 185 T2    Seis     6         6 ICS95        46 25       42.8 23   
## 186 T2    Seis     6         6 ICS95        46 36       41.6 24   
## 187 T2    Seis     6         6 TCS01        46 14       41   25   
## 188 T2    Seis     6         6 TCS01        46 25       43.2 26   
## 189 T2    Seis     6         6 TCS01        46 36       40.4 27
##Create QQ plot for each cell of design:

ggqqplot(datos, "temp", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev<-datos %>%
  group_by(diam2) %>%
  levene_test(temp ~ curva*gen)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         8    18     0.864 0.563
## 2 1         8    18     0.700 0.688
## 3 2         8    18     0.308 0.953
## 4 3         8    18     0.198 0.988
## 5 4         8    18     1.45  0.242
## 6 5         8    18     0.728 0.666
## 7 6         8    18     0.402 0.905
##Computation
#General table
res.aov <- anova_test(
  data = datos, dv = temp, wid = id,
  within = diam2, between = c(curva, gen),detailed = T, type = 3
)
res.aov
## ANOVA Table (type III tests)
## 
## $ANOVA
##            Effect DFn DFd        SSn    SSd          F         p p<.05   ges
## 1     (Intercept)   1  18 290620.993 23.255 224953.128  2.49e-38     * 1.000
## 2           curva   2  18     13.274 23.255      5.137  1.70e-02     * 0.110
## 3             gen   2  18     11.868 23.255      4.593  2.40e-02     * 0.099
## 4           diam2   6 108   7697.935 84.357   1642.574 1.17e-103     * 0.986
## 5       curva:gen   4  18     49.426 23.255      9.564  2.50e-04     * 0.315
## 6     curva:diam2  12 108    273.329 84.357     29.161  1.77e-28     * 0.718
## 7       gen:diam2  12 108     40.928 84.357      4.367  1.20e-05     * 0.276
## 8 curva:gen:diam2  24 108     57.620 84.357      3.074  3.78e-05     * 0.349
## 
## $`Mauchly's Test for Sphericity`
##            Effect     W        p p<.05
## 1           diam2 0.004 4.03e-10     *
## 2     curva:diam2 0.004 4.03e-10     *
## 3       gen:diam2 0.004 4.03e-10     *
## 4 curva:gen:diam2 0.004 4.03e-10     *
## 
## $`Sphericity Corrections`
##            Effect   GGe     DF[GG]    p[GG] p[GG]<.05   HFe      DF[HF]
## 1           diam2 0.362 2.17, 39.1 5.21e-39         * 0.414 2.48, 44.66
## 2     curva:diam2 0.362 4.34, 39.1 1.29e-11         * 0.414 4.96, 44.66
## 3       gen:diam2 0.362 4.34, 39.1 4.00e-03         * 0.414 4.96, 44.66
## 4 curva:gen:diam2 0.362 8.69, 39.1 7.00e-03         * 0.414 9.92, 44.66
##      p[HF] p[HF]<.05
## 1 3.09e-44         *
## 2 5.50e-13         *
## 3 3.00e-03         *
## 4 5.00e-03         *
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##            Effect  DFn  DFd        SSn    SSd          F        p p<.05   ges
## 1     (Intercept) 1.00 18.0 290620.993 23.255 224953.128 2.49e-38     * 1.000
## 2           curva 2.00 18.0     13.274 23.255      5.137 1.70e-02     * 0.110
## 3             gen 2.00 18.0     11.868 23.255      4.593 2.40e-02     * 0.099
## 4           diam2 2.17 39.1   7697.935 84.357   1642.574 5.21e-39     * 0.986
## 5       curva:gen 4.00 18.0     49.426 23.255      9.564 2.50e-04     * 0.315
## 6     curva:diam2 4.34 39.1    273.329 84.357     29.161 1.29e-11     * 0.718
## 7       gen:diam2 4.34 39.1     40.928 84.357      4.367 4.00e-03     * 0.276
## 8 curva:gen:diam2 8.69 39.1     57.620 84.357      3.074 7.00e-03     * 0.349
#Table by error
res.aov.error <- aov(temp ~ diam2*curva*gen + Error(id/diam2), datos)
res.aov.error
## 
## Call:
## aov(formula = temp ~ diam2 * curva * gen + Error(id/diam2), data = datos)
## 
## Grand Mean: 39.21323
## 
## Stratum 1: id
## 
## Terms:
##                    curva      gen curva:gen Residuals
## Sum of Squares  13.27415 11.86765  49.42561  23.25452
## Deg. of Freedom        2        2         4        18
## 
## Residual standard error: 1.136626
## 48 out of 56 effects not estimable
## Estimated effects may be unbalanced
## 
## Stratum 2: id:diam2
## 
## Terms:
##                    diam2 diam2:curva diam2:gen diam2:curva:gen Residuals
## Sum of Squares  7697.935     273.329    40.928          57.620    84.357
## Deg. of Freedom        6          12        12              24       108
## 
## Residual standard error: 0.8837899
## Estimated effects may be unbalanced
## Emmeans
emmip(res.aov.error, gen ~ diam2 | curva)
## Note: re-fitting model with sum-to-zero contrasts

emm_curva <- emmeans(res.aov.error, pairwise ~ curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_curva
## $emmeans
##  curva emmean    SE df lower.CL upper.CL
##  T3      39.6 0.143 18     39.3     39.9
##  T1      39.1 0.143 18     38.8     39.4
##  T2      39.0 0.143 18     38.7     39.3
## 
## Results are averaged over the levels of: diam2, gen 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE df t.ratio p.value
##  T3 - T1     0.494 0.203 18   2.438  0.0626
##  T3 - T2     0.612 0.203 18   3.021  0.0191
##  T1 - T2     0.118 0.203 18   0.584  0.8304
## 
## Results are averaged over the levels of: diam2, gen 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_curva <- emmeans(res.aov.error, pairwise ~ gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
## NOTE: Results may be misleading due to involvement in interactions
emm_gen_curva
## $emmeans
## curva = T3:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   39.5 0.248 18     38.9     40.0
##  ICS95   40.7 0.248 18     40.2     41.2
##  TCS01   38.6 0.248 18     38.1     39.1
## 
## curva = T1:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   39.1 0.248 18     38.6     39.6
##  ICS95   38.8 0.248 18     38.3     39.4
##  TCS01   39.3 0.248 18     38.8     39.8
## 
## curva = T2:
##  gen   emmean    SE df lower.CL upper.CL
##  CCN51   38.3 0.248 18     37.8     38.9
##  ICS95   39.2 0.248 18     38.6     39.7
##  TCS01   39.4 0.248 18     38.9     39.9
## 
## Results are averaged over the levels of: diam2 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95   -1.226 0.351 18  -3.496  0.0069
##  CCN51 - TCS01    0.845 0.351 18   2.410  0.0661
##  ICS95 - TCS01    2.071 0.351 18   5.905  <.0001
## 
## curva = T1:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95    0.288 0.351 18   0.821  0.6950
##  CCN51 - TCS01   -0.167 0.351 18  -0.475  0.8838
##  ICS95 - TCS01   -0.455 0.351 18  -1.296  0.4152
## 
## curva = T2:
##  contrast      estimate    SE df t.ratio p.value
##  CCN51 - ICS95   -0.821 0.351 18  -2.342  0.0753
##  CCN51 - TCS01   -1.088 0.351 18  -3.102  0.0161
##  ICS95 - TCS01   -0.267 0.351 18  -0.760  0.7314
## 
## Results are averaged over the levels of: diam2 
## P value adjustment: tukey method for comparing a family of 3 estimates
emm_gen_diam2 <- emmeans(res.aov.error, pairwise ~ diam2 | curva*gen)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2
## $emmeans
## curva = T3, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       25.0 0.534 121     23.9     26.1
##  1       37.3 0.534 121     36.2     38.3
##  2       40.9 0.534 121     39.8     41.9
##  3       46.1 0.534 121     45.0     47.1
##  4       45.2 0.534 121     44.1     46.2
##  5       43.6 0.534 121     42.5     44.6
##  6       38.2 0.534 121     37.1     39.3
## 
## curva = T1, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       23.6 0.534 121     22.5     24.7
##  1       36.3 0.534 121     35.2     37.3
##  2       39.7 0.534 121     38.6     40.7
##  3       42.9 0.534 121     41.8     43.9
##  4       44.7 0.534 121     43.7     45.8
##  5       44.0 0.534 121     42.9     45.0
##  6       42.8 0.534 121     41.7     43.8
## 
## curva = T2, gen = CCN51:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       25.9 0.534 121     24.8     26.9
##  1       34.5 0.534 121     33.5     35.6
##  2       38.1 0.534 121     37.0     39.1
##  3       42.7 0.534 121     41.7     43.8
##  4       44.0 0.534 121     43.0     45.1
##  5       44.0 0.534 121     43.0     45.1
##  6       39.0 0.534 121     38.0     40.1
## 
## curva = T3, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       25.0 0.534 121     23.9     26.1
##  1       40.3 0.534 121     39.2     41.3
##  2       41.2 0.534 121     40.1     42.3
##  3       47.4 0.534 121     46.3     48.5
##  4       46.4 0.534 121     45.3     47.5
##  5       45.3 0.534 121     44.2     46.4
##  6       39.2 0.534 121     38.1     40.3
## 
## curva = T1, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       23.6 0.534 121     22.5     24.6
##  1       37.9 0.534 121     36.9     39.0
##  2       39.6 0.534 121     38.5     40.6
##  3       42.9 0.534 121     41.8     43.9
##  4       43.0 0.534 121     42.0     44.1
##  5       43.5 0.534 121     42.5     44.6
##  6       41.4 0.534 121     40.4     42.5
## 
## curva = T2, gen = ICS95:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       25.9 0.534 121     24.8     26.9
##  1       37.6 0.534 121     36.5     38.7
##  2       36.6 0.534 121     35.6     37.7
##  3       43.7 0.534 121     42.7     44.8
##  4       44.2 0.534 121     43.1     45.2
##  5       43.7 0.534 121     42.6     44.8
##  6       42.4 0.534 121     41.4     43.5
## 
## curva = T3, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       25.0 0.534 121     23.9     26.1
##  1       38.4 0.534 121     37.3     39.4
##  2       41.8 0.534 121     40.7     42.8
##  3       46.6 0.534 121     45.6     47.7
##  4       42.5 0.534 121     41.4     43.5
##  5       40.2 0.534 121     39.2     41.3
##  6       35.8 0.534 121     34.8     36.9
## 
## curva = T1, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       23.5 0.534 121     22.5     24.6
##  1       37.1 0.534 121     36.0     38.2
##  2       40.1 0.534 121     39.0     41.1
##  3       43.7 0.534 121     42.7     44.8
##  4       44.7 0.534 121     43.6     45.7
##  5       43.5 0.534 121     42.4     44.5
##  6       42.5 0.534 121     41.5     43.6
## 
## curva = T2, gen = TCS01:
##  diam2 emmean    SE  df lower.CL upper.CL
##  0       25.9 0.534 121     24.8     27.0
##  1       37.2 0.534 121     36.2     38.3
##  2       38.0 0.534 121     37.0     39.1
##  3       43.4 0.534 121     42.3     44.4
##  4       44.9 0.534 121     43.9     46.0
##  5       45.0 0.534 121     43.9     46.0
##  6       41.5 0.534 121     40.5     42.6
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -12.2833 0.722 108 -17.022  <.0001
##  0 - 2    -15.8667 0.722 108 -21.988  <.0001
##  0 - 3    -21.0833 0.722 108 -29.217  <.0001
##  0 - 4    -20.1833 0.722 108 -27.970  <.0001
##  0 - 5    -18.5667 0.722 108 -25.729  <.0001
##  0 - 6    -13.2000 0.722 108 -18.292  <.0001
##  1 - 2     -3.5833 0.722 108  -4.966  0.0001
##  1 - 3     -8.8000 0.722 108 -12.195  <.0001
##  1 - 4     -7.9000 0.722 108 -10.948  <.0001
##  1 - 5     -6.2833 0.722 108  -8.707  <.0001
##  1 - 6     -0.9167 0.722 108  -1.270  0.8639
##  2 - 3     -5.2167 0.722 108  -7.229  <.0001
##  2 - 4     -4.3167 0.722 108  -5.982  <.0001
##  2 - 5     -2.7000 0.722 108  -3.742  0.0053
##  2 - 6      2.6667 0.722 108   3.695  0.0062
##  3 - 4      0.9000 0.722 108   1.247  0.8738
##  3 - 5      2.5167 0.722 108   3.488  0.0122
##  3 - 6      7.8833 0.722 108  10.925  <.0001
##  4 - 5      1.6167 0.722 108   2.240  0.2831
##  4 - 6      6.9833 0.722 108   9.677  <.0001
##  5 - 6      5.3667 0.722 108   7.437  <.0001
## 
## curva = T1, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -12.6833 0.722 108 -17.576  <.0001
##  0 - 2    -16.0833 0.722 108 -22.288  <.0001
##  0 - 3    -19.2833 0.722 108 -26.723  <.0001
##  0 - 4    -21.1167 0.722 108 -29.263  <.0001
##  0 - 5    -20.3500 0.722 108 -28.201  <.0001
##  0 - 6    -19.1833 0.722 108 -26.584  <.0001
##  1 - 2     -3.4000 0.722 108  -4.712  0.0001
##  1 - 3     -6.6000 0.722 108  -9.146  <.0001
##  1 - 4     -8.4333 0.722 108 -11.687  <.0001
##  1 - 5     -7.6667 0.722 108 -10.624  <.0001
##  1 - 6     -6.5000 0.722 108  -9.008  <.0001
##  2 - 3     -3.2000 0.722 108  -4.435  0.0004
##  2 - 4     -5.0333 0.722 108  -6.975  <.0001
##  2 - 5     -4.2667 0.722 108  -5.913  <.0001
##  2 - 6     -3.1000 0.722 108  -4.296  0.0007
##  3 - 4     -1.8333 0.722 108  -2.541  0.1554
##  3 - 5     -1.0667 0.722 108  -1.478  0.7571
##  3 - 6      0.1000 0.722 108   0.139  1.0000
##  4 - 5      0.7667 0.722 108   1.062  0.9376
##  4 - 6      1.9333 0.722 108   2.679  0.1136
##  5 - 6      1.1667 0.722 108   1.617  0.6719
## 
## curva = T2, gen = CCN51:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1     -8.6500 0.722 108 -11.987  <.0001
##  0 - 2    -12.2000 0.722 108 -16.907  <.0001
##  0 - 3    -16.8500 0.722 108 -23.351  <.0001
##  0 - 4    -18.1500 0.722 108 -25.152  <.0001
##  0 - 5    -18.1667 0.722 108 -25.175  <.0001
##  0 - 6    -13.1333 0.722 108 -18.200  <.0001
##  1 - 2     -3.5500 0.722 108  -4.920  0.0001
##  1 - 3     -8.2000 0.722 108 -11.363  <.0001
##  1 - 4     -9.5000 0.722 108 -13.165  <.0001
##  1 - 5     -9.5167 0.722 108 -13.188  <.0001
##  1 - 6     -4.4833 0.722 108  -6.213  <.0001
##  2 - 3     -4.6500 0.722 108  -6.444  <.0001
##  2 - 4     -5.9500 0.722 108  -8.245  <.0001
##  2 - 5     -5.9667 0.722 108  -8.269  <.0001
##  2 - 6     -0.9333 0.722 108  -1.293  0.8536
##  3 - 4     -1.3000 0.722 108  -1.802  0.5500
##  3 - 5     -1.3167 0.722 108  -1.825  0.5346
##  3 - 6      3.7167 0.722 108   5.151  <.0001
##  4 - 5     -0.0167 0.722 108  -0.023  1.0000
##  4 - 6      5.0167 0.722 108   6.952  <.0001
##  5 - 6      5.0333 0.722 108   6.975  <.0001
## 
## curva = T3, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -15.2667 0.722 108 -21.156  <.0001
##  0 - 2    -16.2000 0.722 108 -22.450  <.0001
##  0 - 3    -22.4000 0.722 108 -31.042  <.0001
##  0 - 4    -21.4000 0.722 108 -29.656  <.0001
##  0 - 5    -20.3000 0.722 108 -28.131  <.0001
##  0 - 6    -14.2000 0.722 108 -19.678  <.0001
##  1 - 2     -0.9333 0.722 108  -1.293  0.8536
##  1 - 3     -7.1333 0.722 108  -9.885  <.0001
##  1 - 4     -6.1333 0.722 108  -8.499  <.0001
##  1 - 5     -5.0333 0.722 108  -6.975  <.0001
##  1 - 6      1.0667 0.722 108   1.478  0.7571
##  2 - 3     -6.2000 0.722 108  -8.592  <.0001
##  2 - 4     -5.2000 0.722 108  -7.206  <.0001
##  2 - 5     -4.1000 0.722 108  -5.682  <.0001
##  2 - 6      2.0000 0.722 108   2.772  0.0911
##  3 - 4      1.0000 0.722 108   1.386  0.8082
##  3 - 5      2.1000 0.722 108   2.910  0.0642
##  3 - 6      8.2000 0.722 108  11.363  <.0001
##  4 - 5      1.1000 0.722 108   1.524  0.7296
##  4 - 6      7.2000 0.722 108   9.978  <.0001
##  5 - 6      6.1000 0.722 108   8.453  <.0001
## 
## curva = T1, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -14.3667 0.722 108 -19.909  <.0001
##  0 - 2    -16.0333 0.722 108 -22.219  <.0001
##  0 - 3    -19.3333 0.722 108 -26.792  <.0001
##  0 - 4    -19.4667 0.722 108 -26.977  <.0001
##  0 - 5    -19.9667 0.722 108 -27.670  <.0001
##  0 - 6    -17.8667 0.722 108 -24.759  <.0001
##  1 - 2     -1.6667 0.722 108  -2.310  0.2490
##  1 - 3     -4.9667 0.722 108  -6.883  <.0001
##  1 - 4     -5.1000 0.722 108  -7.068  <.0001
##  1 - 5     -5.6000 0.722 108  -7.760  <.0001
##  1 - 6     -3.5000 0.722 108  -4.850  0.0001
##  2 - 3     -3.3000 0.722 108  -4.573  0.0003
##  2 - 4     -3.4333 0.722 108  -4.758  0.0001
##  2 - 5     -3.9333 0.722 108  -5.451  <.0001
##  2 - 6     -1.8333 0.722 108  -2.541  0.1554
##  3 - 4     -0.1333 0.722 108  -0.185  1.0000
##  3 - 5     -0.6333 0.722 108  -0.878  0.9752
##  3 - 6      1.4667 0.722 108   2.032  0.4006
##  4 - 5     -0.5000 0.722 108  -0.693  0.9928
##  4 - 6      1.6000 0.722 108   2.217  0.2951
##  5 - 6      2.1000 0.722 108   2.910  0.0642
## 
## curva = T2, gen = ICS95:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -11.7500 0.722 108 -16.283  <.0001
##  0 - 2    -10.7667 0.722 108 -14.920  <.0001
##  0 - 3    -17.8667 0.722 108 -24.759  <.0001
##  0 - 4    -18.3167 0.722 108 -25.383  <.0001
##  0 - 5    -17.8500 0.722 108 -24.736  <.0001
##  0 - 6    -16.5833 0.722 108 -22.981  <.0001
##  1 - 2      0.9833 0.722 108   1.363  0.8202
##  1 - 3     -6.1167 0.722 108  -8.476  <.0001
##  1 - 4     -6.5667 0.722 108  -9.100  <.0001
##  1 - 5     -6.1000 0.722 108  -8.453  <.0001
##  1 - 6     -4.8333 0.722 108  -6.698  <.0001
##  2 - 3     -7.1000 0.722 108  -9.839  <.0001
##  2 - 4     -7.5500 0.722 108 -10.463  <.0001
##  2 - 5     -7.0833 0.722 108  -9.816  <.0001
##  2 - 6     -5.8167 0.722 108  -8.061  <.0001
##  3 - 4     -0.4500 0.722 108  -0.624  0.9959
##  3 - 5      0.0167 0.722 108   0.023  1.0000
##  3 - 6      1.2833 0.722 108   1.778  0.5654
##  4 - 5      0.4667 0.722 108   0.647  0.9950
##  4 - 6      1.7333 0.722 108   2.402  0.2079
##  5 - 6      1.2667 0.722 108   1.755  0.5808
## 
## curva = T3, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -13.3667 0.722 108 -18.523  <.0001
##  0 - 2    -16.7500 0.722 108 -23.212  <.0001
##  0 - 3    -21.6167 0.722 108 -29.956  <.0001
##  0 - 4    -17.4667 0.722 108 -24.205  <.0001
##  0 - 5    -15.2333 0.722 108 -21.110  <.0001
##  0 - 6    -10.8333 0.722 108 -15.013  <.0001
##  1 - 2     -3.3833 0.722 108  -4.689  0.0002
##  1 - 3     -8.2500 0.722 108 -11.433  <.0001
##  1 - 4     -4.1000 0.722 108  -5.682  <.0001
##  1 - 5     -1.8667 0.722 108  -2.587  0.1404
##  1 - 6      2.5333 0.722 108   3.511  0.0113
##  2 - 3     -4.8667 0.722 108  -6.744  <.0001
##  2 - 4     -0.7167 0.722 108  -0.993  0.9545
##  2 - 5      1.5167 0.722 108   2.102  0.3591
##  2 - 6      5.9167 0.722 108   8.199  <.0001
##  3 - 4      4.1500 0.722 108   5.751  <.0001
##  3 - 5      6.3833 0.722 108   8.846  <.0001
##  3 - 6     10.7833 0.722 108  14.943  <.0001
##  4 - 5      2.2333 0.722 108   3.095  0.0390
##  4 - 6      6.6333 0.722 108   9.192  <.0001
##  5 - 6      4.4000 0.722 108   6.097  <.0001
## 
## curva = T1, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -13.5667 0.722 108 -18.801  <.0001
##  0 - 2    -16.5333 0.722 108 -22.912  <.0001
##  0 - 3    -20.2000 0.722 108 -27.993  <.0001
##  0 - 4    -21.1333 0.722 108 -29.286  <.0001
##  0 - 5    -19.9167 0.722 108 -27.600  <.0001
##  0 - 6    -18.9833 0.722 108 -26.307  <.0001
##  1 - 2     -2.9667 0.722 108  -4.111  0.0015
##  1 - 3     -6.6333 0.722 108  -9.192  <.0001
##  1 - 4     -7.5667 0.722 108 -10.486  <.0001
##  1 - 5     -6.3500 0.722 108  -8.800  <.0001
##  1 - 6     -5.4167 0.722 108  -7.506  <.0001
##  2 - 3     -3.6667 0.722 108  -5.081  <.0001
##  2 - 4     -4.6000 0.722 108  -6.375  <.0001
##  2 - 5     -3.3833 0.722 108  -4.689  0.0002
##  2 - 6     -2.4500 0.722 108  -3.395  0.0162
##  3 - 4     -0.9333 0.722 108  -1.293  0.8536
##  3 - 5      0.2833 0.722 108   0.393  0.9997
##  3 - 6      1.2167 0.722 108   1.686  0.6268
##  4 - 5      1.2167 0.722 108   1.686  0.6268
##  4 - 6      2.1500 0.722 108   2.979  0.0535
##  5 - 6      0.9333 0.722 108   1.293  0.8536
## 
## curva = T2, gen = TCS01:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1    -11.3500 0.722 108 -15.729  <.0001
##  0 - 2    -12.1500 0.722 108 -16.837  <.0001
##  0 - 3    -17.4667 0.722 108 -24.205  <.0001
##  0 - 4    -19.0167 0.722 108 -26.353  <.0001
##  0 - 5    -19.0500 0.722 108 -26.399  <.0001
##  0 - 6    -15.6167 0.722 108 -21.641  <.0001
##  1 - 2     -0.8000 0.722 108  -1.109  0.9242
##  1 - 3     -6.1167 0.722 108  -8.476  <.0001
##  1 - 4     -7.6667 0.722 108 -10.624  <.0001
##  1 - 5     -7.7000 0.722 108 -10.671  <.0001
##  1 - 6     -4.2667 0.722 108  -5.913  <.0001
##  2 - 3     -5.3167 0.722 108  -7.368  <.0001
##  2 - 4     -6.8667 0.722 108  -9.516  <.0001
##  2 - 5     -6.9000 0.722 108  -9.562  <.0001
##  2 - 6     -3.4667 0.722 108  -4.804  0.0001
##  3 - 4     -1.5500 0.722 108  -2.148  0.3327
##  3 - 5     -1.5833 0.722 108  -2.194  0.3073
##  3 - 6      1.8500 0.722 108   2.564  0.1478
##  4 - 5     -0.0333 0.722 108  -0.046  1.0000
##  4 - 6      3.4000 0.722 108   4.712  0.0001
##  5 - 6      3.4333 0.722 108   4.758  0.0001
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
emm_gen_diam2_trend <- emmeans(res.aov.error, pairwise ~ diam2*gen | curva)
## Note: re-fitting model with sum-to-zero contrasts
emm_gen_diam2_trend
## $emmeans
## curva = T3:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51   25.0 0.534 121     23.9     26.1
##  1     CCN51   37.3 0.534 121     36.2     38.3
##  2     CCN51   40.9 0.534 121     39.8     41.9
##  3     CCN51   46.1 0.534 121     45.0     47.1
##  4     CCN51   45.2 0.534 121     44.1     46.2
##  5     CCN51   43.6 0.534 121     42.5     44.6
##  6     CCN51   38.2 0.534 121     37.1     39.3
##  0     ICS95   25.0 0.534 121     23.9     26.1
##  1     ICS95   40.3 0.534 121     39.2     41.3
##  2     ICS95   41.2 0.534 121     40.1     42.3
##  3     ICS95   47.4 0.534 121     46.3     48.5
##  4     ICS95   46.4 0.534 121     45.3     47.5
##  5     ICS95   45.3 0.534 121     44.2     46.4
##  6     ICS95   39.2 0.534 121     38.1     40.3
##  0     TCS01   25.0 0.534 121     23.9     26.1
##  1     TCS01   38.4 0.534 121     37.3     39.4
##  2     TCS01   41.8 0.534 121     40.7     42.8
##  3     TCS01   46.6 0.534 121     45.6     47.7
##  4     TCS01   42.5 0.534 121     41.4     43.5
##  5     TCS01   40.2 0.534 121     39.2     41.3
##  6     TCS01   35.8 0.534 121     34.8     36.9
## 
## curva = T1:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51   23.6 0.534 121     22.5     24.7
##  1     CCN51   36.3 0.534 121     35.2     37.3
##  2     CCN51   39.7 0.534 121     38.6     40.7
##  3     CCN51   42.9 0.534 121     41.8     43.9
##  4     CCN51   44.7 0.534 121     43.7     45.8
##  5     CCN51   44.0 0.534 121     42.9     45.0
##  6     CCN51   42.8 0.534 121     41.7     43.8
##  0     ICS95   23.6 0.534 121     22.5     24.6
##  1     ICS95   37.9 0.534 121     36.9     39.0
##  2     ICS95   39.6 0.534 121     38.5     40.6
##  3     ICS95   42.9 0.534 121     41.8     43.9
##  4     ICS95   43.0 0.534 121     42.0     44.1
##  5     ICS95   43.5 0.534 121     42.5     44.6
##  6     ICS95   41.4 0.534 121     40.4     42.5
##  0     TCS01   23.5 0.534 121     22.5     24.6
##  1     TCS01   37.1 0.534 121     36.0     38.2
##  2     TCS01   40.1 0.534 121     39.0     41.1
##  3     TCS01   43.7 0.534 121     42.7     44.8
##  4     TCS01   44.7 0.534 121     43.6     45.7
##  5     TCS01   43.5 0.534 121     42.4     44.5
##  6     TCS01   42.5 0.534 121     41.5     43.6
## 
## curva = T2:
##  diam2 gen   emmean    SE  df lower.CL upper.CL
##  0     CCN51   25.9 0.534 121     24.8     26.9
##  1     CCN51   34.5 0.534 121     33.5     35.6
##  2     CCN51   38.1 0.534 121     37.0     39.1
##  3     CCN51   42.7 0.534 121     41.7     43.8
##  4     CCN51   44.0 0.534 121     43.0     45.1
##  5     CCN51   44.0 0.534 121     43.0     45.1
##  6     CCN51   39.0 0.534 121     38.0     40.1
##  0     ICS95   25.9 0.534 121     24.8     26.9
##  1     ICS95   37.6 0.534 121     36.5     38.7
##  2     ICS95   36.6 0.534 121     35.6     37.7
##  3     ICS95   43.7 0.534 121     42.7     44.8
##  4     ICS95   44.2 0.534 121     43.1     45.2
##  5     ICS95   43.7 0.534 121     42.6     44.8
##  6     ICS95   42.4 0.534 121     41.4     43.5
##  0     TCS01   25.9 0.534 121     24.8     27.0
##  1     TCS01   37.2 0.534 121     36.2     38.3
##  2     TCS01   38.0 0.534 121     37.0     39.1
##  3     TCS01   43.4 0.534 121     42.3     44.4
##  4     TCS01   44.9 0.534 121     43.9     46.0
##  5     TCS01   45.0 0.534 121     43.9     46.0
##  6     TCS01   41.5 0.534 121     40.5     42.6
## 
## Warning: EMMs are biased unless design is perfectly balanced 
## Confidence level used: 0.95 
## 
## $contrasts
## curva = T3:
##  contrast          estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51 -12.2833 0.722 108 -17.022  <.0001
##  0 CCN51 - 2 CCN51 -15.8667 0.722 108 -21.988  <.0001
##  0 CCN51 - 3 CCN51 -21.0833 0.722 108 -29.217  <.0001
##  0 CCN51 - 4 CCN51 -20.1833 0.722 108 -27.970  <.0001
##  0 CCN51 - 5 CCN51 -18.5667 0.722 108 -25.729  <.0001
##  0 CCN51 - 6 CCN51 -13.2000 0.722 108 -18.292  <.0001
##  0 CCN51 - 0 ICS95   0.0000 0.755 121   0.000  1.0000
##  0 CCN51 - 1 ICS95 -15.2667 0.755 121 -20.232  <.0001
##  0 CCN51 - 2 ICS95 -16.2000 0.755 121 -21.469  <.0001
##  0 CCN51 - 3 ICS95 -22.4000 0.755 121 -29.686  <.0001
##  0 CCN51 - 4 ICS95 -21.4000 0.755 121 -28.361  <.0001
##  0 CCN51 - 5 ICS95 -20.3000 0.755 121 -26.903  <.0001
##  0 CCN51 - 6 ICS95 -14.2000 0.755 121 -18.819  <.0001
##  0 CCN51 - 0 TCS01   0.0000 0.755 121   0.000  1.0000
##  0 CCN51 - 1 TCS01 -13.3667 0.755 121 -17.714  <.0001
##  0 CCN51 - 2 TCS01 -16.7500 0.755 121 -22.198  <.0001
##  0 CCN51 - 3 TCS01 -21.6167 0.755 121 -28.648  <.0001
##  0 CCN51 - 4 TCS01 -17.4667 0.755 121 -23.148  <.0001
##  0 CCN51 - 5 TCS01 -15.2333 0.755 121 -20.188  <.0001
##  0 CCN51 - 6 TCS01 -10.8333 0.755 121 -14.357  <.0001
##  1 CCN51 - 2 CCN51  -3.5833 0.722 108  -4.966  0.0005
##  1 CCN51 - 3 CCN51  -8.8000 0.722 108 -12.195  <.0001
##  1 CCN51 - 4 CCN51  -7.9000 0.722 108 -10.948  <.0001
##  1 CCN51 - 5 CCN51  -6.2833 0.722 108  -8.707  <.0001
##  1 CCN51 - 6 CCN51  -0.9167 0.722 108  -1.270  0.9995
##  1 CCN51 - 0 ICS95  12.2833 0.755 121  16.279  <.0001
##  1 CCN51 - 1 ICS95  -2.9833 0.755 121  -3.954  0.0192
##  1 CCN51 - 2 ICS95  -3.9167 0.755 121  -5.191  0.0002
##  1 CCN51 - 3 ICS95 -10.1167 0.755 121 -13.407  <.0001
##  1 CCN51 - 4 ICS95  -9.1167 0.755 121 -12.082  <.0001
##  1 CCN51 - 5 ICS95  -8.0167 0.755 121 -10.624  <.0001
##  1 CCN51 - 6 ICS95  -1.9167 0.755 121  -2.540  0.5798
##  1 CCN51 - 0 TCS01  12.2833 0.755 121  16.279  <.0001
##  1 CCN51 - 1 TCS01  -1.0833 0.755 121  -1.436  0.9974
##  1 CCN51 - 2 TCS01  -4.4667 0.755 121  -5.919  <.0001
##  1 CCN51 - 3 TCS01  -9.3333 0.755 121 -12.369  <.0001
##  1 CCN51 - 4 TCS01  -5.1833 0.755 121  -6.869  <.0001
##  1 CCN51 - 5 TCS01  -2.9500 0.755 121  -3.910  0.0222
##  1 CCN51 - 6 TCS01   1.4500 0.755 121   1.922  0.9358
##  2 CCN51 - 3 CCN51  -5.2167 0.722 108  -7.229  <.0001
##  2 CCN51 - 4 CCN51  -4.3167 0.722 108  -5.982  <.0001
##  2 CCN51 - 5 CCN51  -2.7000 0.722 108  -3.742  0.0392
##  2 CCN51 - 6 CCN51   2.6667 0.722 108   3.695  0.0451
##  2 CCN51 - 0 ICS95  15.8667 0.755 121  21.027  <.0001
##  2 CCN51 - 1 ICS95   0.6000 0.755 121   0.795  1.0000
##  2 CCN51 - 2 ICS95  -0.3333 0.755 121  -0.442  1.0000
##  2 CCN51 - 3 ICS95  -6.5333 0.755 121  -8.658  <.0001
##  2 CCN51 - 4 ICS95  -5.5333 0.755 121  -7.333  <.0001
##  2 CCN51 - 5 ICS95  -4.4333 0.755 121  -5.875  <.0001
##  2 CCN51 - 6 ICS95   1.6667 0.755 121   2.209  0.8089
##  2 CCN51 - 0 TCS01  15.8667 0.755 121  21.027  <.0001
##  2 CCN51 - 1 TCS01   2.5000 0.755 121   3.313  0.1278
##  2 CCN51 - 2 TCS01  -0.8833 0.755 121  -1.171  0.9998
##  2 CCN51 - 3 TCS01  -5.7500 0.755 121  -7.620  <.0001
##  2 CCN51 - 4 TCS01  -1.6000 0.755 121  -2.120  0.8568
##  2 CCN51 - 5 TCS01   0.6333 0.755 121   0.839  1.0000
##  2 CCN51 - 6 TCS01   5.0333 0.755 121   6.670  <.0001
##  3 CCN51 - 4 CCN51   0.9000 0.722 108   1.247  0.9996
##  3 CCN51 - 5 CCN51   2.5167 0.722 108   3.488  0.0819
##  3 CCN51 - 6 CCN51   7.8833 0.722 108  10.925  <.0001
##  3 CCN51 - 0 ICS95  21.0833 0.755 121  27.941  <.0001
##  3 CCN51 - 1 ICS95   5.8167 0.755 121   7.709  <.0001
##  3 CCN51 - 2 ICS95   4.8833 0.755 121   6.472  <.0001
##  3 CCN51 - 3 ICS95  -1.3167 0.755 121  -1.745  0.9746
##  3 CCN51 - 4 ICS95  -0.3167 0.755 121  -0.420  1.0000
##  3 CCN51 - 5 ICS95   0.7833 0.755 121   1.038  1.0000
##  3 CCN51 - 6 ICS95   6.8833 0.755 121   9.122  <.0001
##  3 CCN51 - 0 TCS01  21.0833 0.755 121  27.941  <.0001
##  3 CCN51 - 1 TCS01   7.7167 0.755 121  10.227  <.0001
##  3 CCN51 - 2 TCS01   4.3333 0.755 121   5.743  <.0001
##  3 CCN51 - 3 TCS01  -0.5333 0.755 121  -0.707  1.0000
##  3 CCN51 - 4 TCS01   3.6167 0.755 121   4.793  0.0009
##  3 CCN51 - 5 TCS01   5.8500 0.755 121   7.753  <.0001
##  3 CCN51 - 6 TCS01  10.2500 0.755 121  13.584  <.0001
##  4 CCN51 - 5 CCN51   1.6167 0.722 108   2.240  0.7893
##  4 CCN51 - 6 CCN51   6.9833 0.722 108   9.677  <.0001
##  4 CCN51 - 0 ICS95  20.1833 0.755 121  26.748  <.0001
##  4 CCN51 - 1 ICS95   4.9167 0.755 121   6.516  <.0001
##  4 CCN51 - 2 ICS95   3.9833 0.755 121   5.279  0.0001
##  4 CCN51 - 3 ICS95  -2.2167 0.755 121  -2.938  0.3010
##  4 CCN51 - 4 ICS95  -1.2167 0.755 121  -1.612  0.9893
##  4 CCN51 - 5 ICS95  -0.1167 0.755 121  -0.155  1.0000
##  4 CCN51 - 6 ICS95   5.9833 0.755 121   7.929  <.0001
##  4 CCN51 - 0 TCS01  20.1833 0.755 121  26.748  <.0001
##  4 CCN51 - 1 TCS01   6.8167 0.755 121   9.034  <.0001
##  4 CCN51 - 2 TCS01   3.4333 0.755 121   4.550  0.0022
##  4 CCN51 - 3 TCS01  -1.4333 0.755 121  -1.900  0.9422
##  4 CCN51 - 4 TCS01   2.7167 0.755 121   3.600  0.0581
##  4 CCN51 - 5 TCS01   4.9500 0.755 121   6.560  <.0001
##  4 CCN51 - 6 TCS01   9.3500 0.755 121  12.391  <.0001
##  5 CCN51 - 6 CCN51   5.3667 0.722 108   7.437  <.0001
##  5 CCN51 - 0 ICS95  18.5667 0.755 121  24.606  <.0001
##  5 CCN51 - 1 ICS95   3.3000 0.755 121   4.373  0.0044
##  5 CCN51 - 2 ICS95   2.3667 0.755 121   3.136  0.1964
##  5 CCN51 - 3 ICS95  -3.8333 0.755 121  -5.080  0.0003
##  5 CCN51 - 4 ICS95  -2.8333 0.755 121  -3.755  0.0364
##  5 CCN51 - 5 ICS95  -1.7333 0.755 121  -2.297  0.7541
##  5 CCN51 - 6 ICS95   4.3667 0.755 121   5.787  <.0001
##  5 CCN51 - 0 TCS01  18.5667 0.755 121  24.606  <.0001
##  5 CCN51 - 1 TCS01   5.2000 0.755 121   6.891  <.0001
##  5 CCN51 - 2 TCS01   1.8167 0.755 121   2.408  0.6779
##  5 CCN51 - 3 TCS01  -3.0500 0.755 121  -4.042  0.0143
##  5 CCN51 - 4 TCS01   1.1000 0.755 121   1.458  0.9968
##  5 CCN51 - 5 TCS01   3.3333 0.755 121   4.418  0.0037
##  5 CCN51 - 6 TCS01   7.7333 0.755 121  10.249  <.0001
##  6 CCN51 - 0 ICS95  13.2000 0.755 121  17.493  <.0001
##  6 CCN51 - 1 ICS95  -2.0667 0.755 121  -2.739  0.4324
##  6 CCN51 - 2 ICS95  -3.0000 0.755 121  -3.976  0.0178
##  6 CCN51 - 3 ICS95  -9.2000 0.755 121 -12.192  <.0001
##  6 CCN51 - 4 ICS95  -8.2000 0.755 121 -10.867  <.0001
##  6 CCN51 - 5 ICS95  -7.1000 0.755 121  -9.409  <.0001
##  6 CCN51 - 6 ICS95  -1.0000 0.755 121  -1.325  0.9991
##  6 CCN51 - 0 TCS01  13.2000 0.755 121  17.493  <.0001
##  6 CCN51 - 1 TCS01  -0.1667 0.755 121  -0.221  1.0000
##  6 CCN51 - 2 TCS01  -3.5500 0.755 121  -4.705  0.0012
##  6 CCN51 - 3 TCS01  -8.4167 0.755 121 -11.154  <.0001
##  6 CCN51 - 4 TCS01  -4.2667 0.755 121  -5.654  <.0001
##  6 CCN51 - 5 TCS01  -2.0333 0.755 121  -2.695  0.4643
##  6 CCN51 - 6 TCS01   2.3667 0.755 121   3.136  0.1964
##  0 ICS95 - 1 ICS95 -15.2667 0.722 108 -21.156  <.0001
##  0 ICS95 - 2 ICS95 -16.2000 0.722 108 -22.450  <.0001
##  0 ICS95 - 3 ICS95 -22.4000 0.722 108 -31.042  <.0001
##  0 ICS95 - 4 ICS95 -21.4000 0.722 108 -29.656  <.0001
##  0 ICS95 - 5 ICS95 -20.3000 0.722 108 -28.131  <.0001
##  0 ICS95 - 6 ICS95 -14.2000 0.722 108 -19.678  <.0001
##  0 ICS95 - 0 TCS01   0.0000 0.755 121   0.000  1.0000
##  0 ICS95 - 1 TCS01 -13.3667 0.755 121 -17.714  <.0001
##  0 ICS95 - 2 TCS01 -16.7500 0.755 121 -22.198  <.0001
##  0 ICS95 - 3 TCS01 -21.6167 0.755 121 -28.648  <.0001
##  0 ICS95 - 4 TCS01 -17.4667 0.755 121 -23.148  <.0001
##  0 ICS95 - 5 TCS01 -15.2333 0.755 121 -20.188  <.0001
##  0 ICS95 - 6 TCS01 -10.8333 0.755 121 -14.357  <.0001
##  1 ICS95 - 2 ICS95  -0.9333 0.722 108  -1.293  0.9993
##  1 ICS95 - 3 ICS95  -7.1333 0.722 108  -9.885  <.0001
##  1 ICS95 - 4 ICS95  -6.1333 0.722 108  -8.499  <.0001
##  1 ICS95 - 5 ICS95  -5.0333 0.722 108  -6.975  <.0001
##  1 ICS95 - 6 ICS95   1.0667 0.722 108   1.478  0.9961
##  1 ICS95 - 0 TCS01  15.2667 0.755 121  20.232  <.0001
##  1 ICS95 - 1 TCS01   1.9000 0.755 121   2.518  0.5964
##  1 ICS95 - 2 TCS01  -1.4833 0.755 121  -1.966  0.9217
##  1 ICS95 - 3 TCS01  -6.3500 0.755 121  -8.415  <.0001
##  1 ICS95 - 4 TCS01  -2.2000 0.755 121  -2.916  0.3144
##  1 ICS95 - 5 TCS01   0.0333 0.755 121   0.044  1.0000
##  1 ICS95 - 6 TCS01   4.4333 0.755 121   5.875  <.0001
##  2 ICS95 - 3 ICS95  -6.2000 0.722 108  -8.592  <.0001
##  2 ICS95 - 4 ICS95  -5.2000 0.722 108  -7.206  <.0001
##  2 ICS95 - 5 ICS95  -4.1000 0.722 108  -5.682  <.0001
##  2 ICS95 - 6 ICS95   2.0000 0.722 108   2.772  0.4106
##  2 ICS95 - 0 TCS01  16.2000 0.755 121  21.469  <.0001
##  2 ICS95 - 1 TCS01   2.8333 0.755 121   3.755  0.0364
##  2 ICS95 - 2 TCS01  -0.5500 0.755 121  -0.729  1.0000
##  2 ICS95 - 3 TCS01  -5.4167 0.755 121  -7.178  <.0001
##  2 ICS95 - 4 TCS01  -1.2667 0.755 121  -1.679  0.9832
##  2 ICS95 - 5 TCS01   0.9667 0.755 121   1.281  0.9994
##  2 ICS95 - 6 TCS01   5.3667 0.755 121   7.112  <.0001
##  3 ICS95 - 4 ICS95   1.0000 0.722 108   1.386  0.9983
##  3 ICS95 - 5 ICS95   2.1000 0.722 108   2.910  0.3195
##  3 ICS95 - 6 ICS95   8.2000 0.722 108  11.363  <.0001
##  3 ICS95 - 0 TCS01  22.4000 0.755 121  29.686  <.0001
##  3 ICS95 - 1 TCS01   9.0333 0.755 121  11.972  <.0001
##  3 ICS95 - 2 TCS01   5.6500 0.755 121   7.488  <.0001
##  3 ICS95 - 3 TCS01   0.7833 0.755 121   1.038  1.0000
##  3 ICS95 - 4 TCS01   4.9333 0.755 121   6.538  <.0001
##  3 ICS95 - 5 TCS01   7.1667 0.755 121   9.498  <.0001
##  3 ICS95 - 6 TCS01  11.5667 0.755 121  15.329  <.0001
##  4 ICS95 - 5 ICS95   1.1000 0.722 108   1.524  0.9943
##  4 ICS95 - 6 ICS95   7.2000 0.722 108   9.978  <.0001
##  4 ICS95 - 0 TCS01  21.4000 0.755 121  28.361  <.0001
##  4 ICS95 - 1 TCS01   8.0333 0.755 121  10.646  <.0001
##  4 ICS95 - 2 TCS01   4.6500 0.755 121   6.162  <.0001
##  4 ICS95 - 3 TCS01  -0.2167 0.755 121  -0.287  1.0000
##  4 ICS95 - 4 TCS01   3.9333 0.755 121   5.213  0.0001
##  4 ICS95 - 5 TCS01   6.1667 0.755 121   8.172  <.0001
##  4 ICS95 - 6 TCS01  10.5667 0.755 121  14.004  <.0001
##  5 ICS95 - 6 ICS95   6.1000 0.722 108   8.453  <.0001
##  5 ICS95 - 0 TCS01  20.3000 0.755 121  26.903  <.0001
##  5 ICS95 - 1 TCS01   6.9333 0.755 121   9.188  <.0001
##  5 ICS95 - 2 TCS01   3.5500 0.755 121   4.705  0.0012
##  5 ICS95 - 3 TCS01  -1.3167 0.755 121  -1.745  0.9746
##  5 ICS95 - 4 TCS01   2.8333 0.755 121   3.755  0.0364
##  5 ICS95 - 5 TCS01   5.0667 0.755 121   6.715  <.0001
##  5 ICS95 - 6 TCS01   9.4667 0.755 121  12.546  <.0001
##  6 ICS95 - 0 TCS01  14.2000 0.755 121  18.819  <.0001
##  6 ICS95 - 1 TCS01   0.8333 0.755 121   1.104  0.9999
##  6 ICS95 - 2 TCS01  -2.5500 0.755 121  -3.379  0.1076
##  6 ICS95 - 3 TCS01  -7.4167 0.755 121  -9.829  <.0001
##  6 ICS95 - 4 TCS01  -3.2667 0.755 121  -4.329  0.0052
##  6 ICS95 - 5 TCS01  -1.0333 0.755 121  -1.369  0.9986
##  6 ICS95 - 6 TCS01   3.3667 0.755 121   4.462  0.0031
##  0 TCS01 - 1 TCS01 -13.3667 0.722 108 -18.523  <.0001
##  0 TCS01 - 2 TCS01 -16.7500 0.722 108 -23.212  <.0001
##  0 TCS01 - 3 TCS01 -21.6167 0.722 108 -29.956  <.0001
##  0 TCS01 - 4 TCS01 -17.4667 0.722 108 -24.205  <.0001
##  0 TCS01 - 5 TCS01 -15.2333 0.722 108 -21.110  <.0001
##  0 TCS01 - 6 TCS01 -10.8333 0.722 108 -15.013  <.0001
##  1 TCS01 - 2 TCS01  -3.3833 0.722 108  -4.689  0.0014
##  1 TCS01 - 3 TCS01  -8.2500 0.722 108 -11.433  <.0001
##  1 TCS01 - 4 TCS01  -4.1000 0.722 108  -5.682  <.0001
##  1 TCS01 - 5 TCS01  -1.8667 0.722 108  -2.587  0.5451
##  1 TCS01 - 6 TCS01   2.5333 0.722 108   3.511  0.0769
##  2 TCS01 - 3 TCS01  -4.8667 0.722 108  -6.744  <.0001
##  2 TCS01 - 4 TCS01  -0.7167 0.722 108  -0.993  1.0000
##  2 TCS01 - 5 TCS01   1.5167 0.722 108   2.102  0.8651
##  2 TCS01 - 6 TCS01   5.9167 0.722 108   8.199  <.0001
##  3 TCS01 - 4 TCS01   4.1500 0.722 108   5.751  <.0001
##  3 TCS01 - 5 TCS01   6.3833 0.722 108   8.846  <.0001
##  3 TCS01 - 6 TCS01  10.7833 0.722 108  14.943  <.0001
##  4 TCS01 - 5 TCS01   2.2333 0.722 108   3.095  0.2179
##  4 TCS01 - 6 TCS01   6.6333 0.722 108   9.192  <.0001
##  5 TCS01 - 6 TCS01   4.4000 0.722 108   6.097  <.0001
## 
## curva = T1:
##  contrast          estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51 -12.6833 0.722 108 -17.576  <.0001
##  0 CCN51 - 2 CCN51 -16.0833 0.722 108 -22.288  <.0001
##  0 CCN51 - 3 CCN51 -19.2833 0.722 108 -26.723  <.0001
##  0 CCN51 - 4 CCN51 -21.1167 0.722 108 -29.263  <.0001
##  0 CCN51 - 5 CCN51 -20.3500 0.722 108 -28.201  <.0001
##  0 CCN51 - 6 CCN51 -19.1833 0.722 108 -26.584  <.0001
##  0 CCN51 - 0 ICS95   0.0500 0.755 121   0.066  1.0000
##  0 CCN51 - 1 ICS95 -14.3167 0.755 121 -18.973  <.0001
##  0 CCN51 - 2 ICS95 -15.9833 0.755 121 -21.182  <.0001
##  0 CCN51 - 3 ICS95 -19.2833 0.755 121 -25.555  <.0001
##  0 CCN51 - 4 ICS95 -19.4167 0.755 121 -25.732  <.0001
##  0 CCN51 - 5 ICS95 -19.9167 0.755 121 -26.395  <.0001
##  0 CCN51 - 6 ICS95 -17.8167 0.755 121 -23.612  <.0001
##  0 CCN51 - 0 TCS01   0.0667 0.755 121   0.088  1.0000
##  0 CCN51 - 1 TCS01 -13.5000 0.755 121 -17.891  <.0001
##  0 CCN51 - 2 TCS01 -16.4667 0.755 121 -21.823  <.0001
##  0 CCN51 - 3 TCS01 -20.1333 0.755 121 -26.682  <.0001
##  0 CCN51 - 4 TCS01 -21.0667 0.755 121 -27.919  <.0001
##  0 CCN51 - 5 TCS01 -19.8500 0.755 121 -26.306  <.0001
##  0 CCN51 - 6 TCS01 -18.9167 0.755 121 -25.070  <.0001
##  1 CCN51 - 2 CCN51  -3.4000 0.722 108  -4.712  0.0013
##  1 CCN51 - 3 CCN51  -6.6000 0.722 108  -9.146  <.0001
##  1 CCN51 - 4 CCN51  -8.4333 0.722 108 -11.687  <.0001
##  1 CCN51 - 5 CCN51  -7.6667 0.722 108 -10.624  <.0001
##  1 CCN51 - 6 CCN51  -6.5000 0.722 108  -9.008  <.0001
##  1 CCN51 - 0 ICS95  12.7333 0.755 121  16.875  <.0001
##  1 CCN51 - 1 ICS95  -1.6333 0.755 121  -2.165  0.8338
##  1 CCN51 - 2 ICS95  -3.3000 0.755 121  -4.373  0.0044
##  1 CCN51 - 3 ICS95  -6.6000 0.755 121  -8.747  <.0001
##  1 CCN51 - 4 ICS95  -6.7333 0.755 121  -8.923  <.0001
##  1 CCN51 - 5 ICS95  -7.2333 0.755 121  -9.586  <.0001
##  1 CCN51 - 6 ICS95  -5.1333 0.755 121  -6.803  <.0001
##  1 CCN51 - 0 TCS01  12.7500 0.755 121  16.897  <.0001
##  1 CCN51 - 1 TCS01  -0.8167 0.755 121  -1.082  1.0000
##  1 CCN51 - 2 TCS01  -3.7833 0.755 121  -5.014  0.0003
##  1 CCN51 - 3 TCS01  -7.4500 0.755 121  -9.873  <.0001
##  1 CCN51 - 4 TCS01  -8.3833 0.755 121 -11.110  <.0001
##  1 CCN51 - 5 TCS01  -7.1667 0.755 121  -9.498  <.0001
##  1 CCN51 - 6 TCS01  -6.2333 0.755 121  -8.261  <.0001
##  2 CCN51 - 3 CCN51  -3.2000 0.722 108  -4.435  0.0037
##  2 CCN51 - 4 CCN51  -5.0333 0.722 108  -6.975  <.0001
##  2 CCN51 - 5 CCN51  -4.2667 0.722 108  -5.913  <.0001
##  2 CCN51 - 6 CCN51  -3.1000 0.722 108  -4.296  0.0062
##  2 CCN51 - 0 ICS95  16.1333 0.755 121  21.381  <.0001
##  2 CCN51 - 1 ICS95   1.7667 0.755 121   2.341  0.7245
##  2 CCN51 - 2 ICS95   0.1000 0.755 121   0.133  1.0000
##  2 CCN51 - 3 ICS95  -3.2000 0.755 121  -4.241  0.0071
##  2 CCN51 - 4 ICS95  -3.3333 0.755 121  -4.418  0.0037
##  2 CCN51 - 5 ICS95  -3.8333 0.755 121  -5.080  0.0003
##  2 CCN51 - 6 ICS95  -1.7333 0.755 121  -2.297  0.7541
##  2 CCN51 - 0 TCS01  16.1500 0.755 121  21.403  <.0001
##  2 CCN51 - 1 TCS01   2.5833 0.755 121   3.424  0.0956
##  2 CCN51 - 2 TCS01  -0.3833 0.755 121  -0.508  1.0000
##  2 CCN51 - 3 TCS01  -4.0500 0.755 121  -5.367  0.0001
##  2 CCN51 - 4 TCS01  -4.9833 0.755 121  -6.604  <.0001
##  2 CCN51 - 5 TCS01  -3.7667 0.755 121  -4.992  0.0004
##  2 CCN51 - 6 TCS01  -2.8333 0.755 121  -3.755  0.0364
##  3 CCN51 - 4 CCN51  -1.8333 0.722 108  -2.541  0.5797
##  3 CCN51 - 5 CCN51  -1.0667 0.722 108  -1.478  0.9961
##  3 CCN51 - 6 CCN51   0.1000 0.722 108   0.139  1.0000
##  3 CCN51 - 0 ICS95  19.3333 0.755 121  25.622  <.0001
##  3 CCN51 - 1 ICS95   4.9667 0.755 121   6.582  <.0001
##  3 CCN51 - 2 ICS95   3.3000 0.755 121   4.373  0.0044
##  3 CCN51 - 3 ICS95   0.0000 0.755 121   0.000  1.0000
##  3 CCN51 - 4 ICS95  -0.1333 0.755 121  -0.177  1.0000
##  3 CCN51 - 5 ICS95  -0.6333 0.755 121  -0.839  1.0000
##  3 CCN51 - 6 ICS95   1.4667 0.755 121   1.944  0.9290
##  3 CCN51 - 0 TCS01  19.3500 0.755 121  25.644  <.0001
##  3 CCN51 - 1 TCS01   5.7833 0.755 121   7.664  <.0001
##  3 CCN51 - 2 TCS01   2.8167 0.755 121   3.733  0.0390
##  3 CCN51 - 3 TCS01  -0.8500 0.755 121  -1.126  0.9999
##  3 CCN51 - 4 TCS01  -1.7833 0.755 121  -2.363  0.7092
##  3 CCN51 - 5 TCS01  -0.5667 0.755 121  -0.751  1.0000
##  3 CCN51 - 6 TCS01   0.3667 0.755 121   0.486  1.0000
##  4 CCN51 - 5 CCN51   0.7667 0.722 108   1.062  1.0000
##  4 CCN51 - 6 CCN51   1.9333 0.722 108   2.679  0.4766
##  4 CCN51 - 0 ICS95  21.1667 0.755 121  28.051  <.0001
##  4 CCN51 - 1 ICS95   6.8000 0.755 121   9.012  <.0001
##  4 CCN51 - 2 ICS95   5.1333 0.755 121   6.803  <.0001
##  4 CCN51 - 3 ICS95   1.8333 0.755 121   2.430  0.6619
##  4 CCN51 - 4 ICS95   1.7000 0.755 121   2.253  0.7823
##  4 CCN51 - 5 ICS95   1.2000 0.755 121   1.590  0.9908
##  4 CCN51 - 6 ICS95   3.3000 0.755 121   4.373  0.0044
##  4 CCN51 - 0 TCS01  21.1833 0.755 121  28.073  <.0001
##  4 CCN51 - 1 TCS01   7.6167 0.755 121  10.094  <.0001
##  4 CCN51 - 2 TCS01   4.6500 0.755 121   6.162  <.0001
##  4 CCN51 - 3 TCS01   0.9833 0.755 121   1.303  0.9993
##  4 CCN51 - 4 TCS01   0.0500 0.755 121   0.066  1.0000
##  4 CCN51 - 5 TCS01   1.2667 0.755 121   1.679  0.9832
##  4 CCN51 - 6 TCS01   2.2000 0.755 121   2.916  0.3144
##  5 CCN51 - 6 CCN51   1.1667 0.722 108   1.617  0.9887
##  5 CCN51 - 0 ICS95  20.4000 0.755 121  27.035  <.0001
##  5 CCN51 - 1 ICS95   6.0333 0.755 121   7.996  <.0001
##  5 CCN51 - 2 ICS95   4.3667 0.755 121   5.787  <.0001
##  5 CCN51 - 3 ICS95   1.0667 0.755 121   1.414  0.9979
##  5 CCN51 - 4 ICS95   0.9333 0.755 121   1.237  0.9997
##  5 CCN51 - 5 ICS95   0.4333 0.755 121   0.574  1.0000
##  5 CCN51 - 6 ICS95   2.5333 0.755 121   3.357  0.1140
##  5 CCN51 - 0 TCS01  20.4167 0.755 121  27.057  <.0001
##  5 CCN51 - 1 TCS01   6.8500 0.755 121   9.078  <.0001
##  5 CCN51 - 2 TCS01   3.8833 0.755 121   5.146  0.0002
##  5 CCN51 - 3 TCS01   0.2167 0.755 121   0.287  1.0000
##  5 CCN51 - 4 TCS01  -0.7167 0.755 121  -0.950  1.0000
##  5 CCN51 - 5 TCS01   0.5000 0.755 121   0.663  1.0000
##  5 CCN51 - 6 TCS01   1.4333 0.755 121   1.900  0.9422
##  6 CCN51 - 0 ICS95  19.2333 0.755 121  25.489  <.0001
##  6 CCN51 - 1 ICS95   4.8667 0.755 121   6.450  <.0001
##  6 CCN51 - 2 ICS95   3.2000 0.755 121   4.241  0.0071
##  6 CCN51 - 3 ICS95  -0.1000 0.755 121  -0.133  1.0000
##  6 CCN51 - 4 ICS95  -0.2333 0.755 121  -0.309  1.0000
##  6 CCN51 - 5 ICS95  -0.7333 0.755 121  -0.972  1.0000
##  6 CCN51 - 6 ICS95   1.3667 0.755 121   1.811  0.9631
##  6 CCN51 - 0 TCS01  19.2500 0.755 121  25.511  <.0001
##  6 CCN51 - 1 TCS01   5.6833 0.755 121   7.532  <.0001
##  6 CCN51 - 2 TCS01   2.7167 0.755 121   3.600  0.0581
##  6 CCN51 - 3 TCS01  -0.9500 0.755 121  -1.259  0.9996
##  6 CCN51 - 4 TCS01  -1.8833 0.755 121  -2.496  0.6129
##  6 CCN51 - 5 TCS01  -0.6667 0.755 121  -0.884  1.0000
##  6 CCN51 - 6 TCS01   0.2667 0.755 121   0.353  1.0000
##  0 ICS95 - 1 ICS95 -14.3667 0.722 108 -19.909  <.0001
##  0 ICS95 - 2 ICS95 -16.0333 0.722 108 -22.219  <.0001
##  0 ICS95 - 3 ICS95 -19.3333 0.722 108 -26.792  <.0001
##  0 ICS95 - 4 ICS95 -19.4667 0.722 108 -26.977  <.0001
##  0 ICS95 - 5 ICS95 -19.9667 0.722 108 -27.670  <.0001
##  0 ICS95 - 6 ICS95 -17.8667 0.722 108 -24.759  <.0001
##  0 ICS95 - 0 TCS01   0.0167 0.755 121   0.022  1.0000
##  0 ICS95 - 1 TCS01 -13.5500 0.755 121 -17.957  <.0001
##  0 ICS95 - 2 TCS01 -16.5167 0.755 121 -21.889  <.0001
##  0 ICS95 - 3 TCS01 -20.1833 0.755 121 -26.748  <.0001
##  0 ICS95 - 4 TCS01 -21.1167 0.755 121 -27.985  <.0001
##  0 ICS95 - 5 TCS01 -19.9000 0.755 121 -26.373  <.0001
##  0 ICS95 - 6 TCS01 -18.9667 0.755 121 -25.136  <.0001
##  1 ICS95 - 2 ICS95  -1.6667 0.722 108  -2.310  0.7453
##  1 ICS95 - 3 ICS95  -4.9667 0.722 108  -6.883  <.0001
##  1 ICS95 - 4 ICS95  -5.1000 0.722 108  -7.068  <.0001
##  1 ICS95 - 5 ICS95  -5.6000 0.722 108  -7.760  <.0001
##  1 ICS95 - 6 ICS95  -3.5000 0.722 108  -4.850  0.0008
##  1 ICS95 - 0 TCS01  14.3833 0.755 121  19.062  <.0001
##  1 ICS95 - 1 TCS01   0.8167 0.755 121   1.082  1.0000
##  1 ICS95 - 2 TCS01  -2.1500 0.755 121  -2.849  0.3565
##  1 ICS95 - 3 TCS01  -5.8167 0.755 121  -7.709  <.0001
##  1 ICS95 - 4 TCS01  -6.7500 0.755 121  -8.946  <.0001
##  1 ICS95 - 5 TCS01  -5.5333 0.755 121  -7.333  <.0001
##  1 ICS95 - 6 TCS01  -4.6000 0.755 121  -6.096  <.0001
##  2 ICS95 - 3 ICS95  -3.3000 0.722 108  -4.573  0.0022
##  2 ICS95 - 4 ICS95  -3.4333 0.722 108  -4.758  0.0011
##  2 ICS95 - 5 ICS95  -3.9333 0.722 108  -5.451  0.0001
##  2 ICS95 - 6 ICS95  -1.8333 0.722 108  -2.541  0.5797
##  2 ICS95 - 0 TCS01  16.0500 0.755 121  21.270  <.0001
##  2 ICS95 - 1 TCS01   2.4833 0.755 121   3.291  0.1352
##  2 ICS95 - 2 TCS01  -0.4833 0.755 121  -0.641  1.0000
##  2 ICS95 - 3 TCS01  -4.1500 0.755 121  -5.500  <.0001
##  2 ICS95 - 4 TCS01  -5.0833 0.755 121  -6.737  <.0001
##  2 ICS95 - 5 TCS01  -3.8667 0.755 121  -5.124  0.0002
##  2 ICS95 - 6 TCS01  -2.9333 0.755 121  -3.887  0.0239
##  3 ICS95 - 4 ICS95  -0.1333 0.722 108  -0.185  1.0000
##  3 ICS95 - 5 ICS95  -0.6333 0.722 108  -0.878  1.0000
##  3 ICS95 - 6 ICS95   1.4667 0.722 108   2.032  0.8959
##  3 ICS95 - 0 TCS01  19.3500 0.755 121  25.644  <.0001
##  3 ICS95 - 1 TCS01   5.7833 0.755 121   7.664  <.0001
##  3 ICS95 - 2 TCS01   2.8167 0.755 121   3.733  0.0390
##  3 ICS95 - 3 TCS01  -0.8500 0.755 121  -1.126  0.9999
##  3 ICS95 - 4 TCS01  -1.7833 0.755 121  -2.363  0.7092
##  3 ICS95 - 5 TCS01  -0.5667 0.755 121  -0.751  1.0000
##  3 ICS95 - 6 TCS01   0.3667 0.755 121   0.486  1.0000
##  4 ICS95 - 5 ICS95  -0.5000 0.722 108  -0.693  1.0000
##  4 ICS95 - 6 ICS95   1.6000 0.722 108   2.217  0.8032
##  4 ICS95 - 0 TCS01  19.4833 0.755 121  25.820  <.0001
##  4 ICS95 - 1 TCS01   5.9167 0.755 121   7.841  <.0001
##  4 ICS95 - 2 TCS01   2.9500 0.755 121   3.910  0.0222
##  4 ICS95 - 3 TCS01  -0.7167 0.755 121  -0.950  1.0000
##  4 ICS95 - 4 TCS01  -1.6500 0.755 121  -2.187  0.8216
##  4 ICS95 - 5 TCS01  -0.4333 0.755 121  -0.574  1.0000
##  4 ICS95 - 6 TCS01   0.5000 0.755 121   0.663  1.0000
##  5 ICS95 - 6 ICS95   2.1000 0.722 108   2.910  0.3195
##  5 ICS95 - 0 TCS01  19.9833 0.755 121  26.483  <.0001
##  5 ICS95 - 1 TCS01   6.4167 0.755 121   8.504  <.0001
##  5 ICS95 - 2 TCS01   3.4500 0.755 121   4.572  0.0021
##  5 ICS95 - 3 TCS01  -0.2167 0.755 121  -0.287  1.0000
##  5 ICS95 - 4 TCS01  -1.1500 0.755 121  -1.524  0.9945
##  5 ICS95 - 5 TCS01   0.0667 0.755 121   0.088  1.0000
##  5 ICS95 - 6 TCS01   1.0000 0.755 121   1.325  0.9991
##  6 ICS95 - 0 TCS01  17.8833 0.755 121  23.700  <.0001
##  6 ICS95 - 1 TCS01   4.3167 0.755 121   5.721  <.0001
##  6 ICS95 - 2 TCS01   1.3500 0.755 121   1.789  0.9673
##  6 ICS95 - 3 TCS01  -2.3167 0.755 121  -3.070  0.2280
##  6 ICS95 - 4 TCS01  -3.2500 0.755 121  -4.307  0.0056
##  6 ICS95 - 5 TCS01  -2.0333 0.755 121  -2.695  0.4643
##  6 ICS95 - 6 TCS01  -1.1000 0.755 121  -1.458  0.9968
##  0 TCS01 - 1 TCS01 -13.5667 0.722 108 -18.801  <.0001
##  0 TCS01 - 2 TCS01 -16.5333 0.722 108 -22.912  <.0001
##  0 TCS01 - 3 TCS01 -20.2000 0.722 108 -27.993  <.0001
##  0 TCS01 - 4 TCS01 -21.1333 0.722 108 -29.286  <.0001
##  0 TCS01 - 5 TCS01 -19.9167 0.722 108 -27.600  <.0001
##  0 TCS01 - 6 TCS01 -18.9833 0.722 108 -26.307  <.0001
##  1 TCS01 - 2 TCS01  -2.9667 0.722 108  -4.111  0.0118
##  1 TCS01 - 3 TCS01  -6.6333 0.722 108  -9.192  <.0001
##  1 TCS01 - 4 TCS01  -7.5667 0.722 108 -10.486  <.0001
##  1 TCS01 - 5 TCS01  -6.3500 0.722 108  -8.800  <.0001
##  1 TCS01 - 6 TCS01  -5.4167 0.722 108  -7.506  <.0001
##  2 TCS01 - 3 TCS01  -3.6667 0.722 108  -5.081  0.0003
##  2 TCS01 - 4 TCS01  -4.6000 0.722 108  -6.375  <.0001
##  2 TCS01 - 5 TCS01  -3.3833 0.722 108  -4.689  0.0014
##  2 TCS01 - 6 TCS01  -2.4500 0.722 108  -3.395  0.1051
##  3 TCS01 - 4 TCS01  -0.9333 0.722 108  -1.293  0.9993
##  3 TCS01 - 5 TCS01   0.2833 0.722 108   0.393  1.0000
##  3 TCS01 - 6 TCS01   1.2167 0.722 108   1.686  0.9820
##  4 TCS01 - 5 TCS01   1.2167 0.722 108   1.686  0.9820
##  4 TCS01 - 6 TCS01   2.1500 0.722 108   2.979  0.2785
##  5 TCS01 - 6 TCS01   0.9333 0.722 108   1.293  0.9993
## 
## curva = T2:
##  contrast          estimate    SE  df t.ratio p.value
##  0 CCN51 - 1 CCN51  -8.6500 0.722 108 -11.987  <.0001
##  0 CCN51 - 2 CCN51 -12.2000 0.722 108 -16.907  <.0001
##  0 CCN51 - 3 CCN51 -16.8500 0.722 108 -23.351  <.0001
##  0 CCN51 - 4 CCN51 -18.1500 0.722 108 -25.152  <.0001
##  0 CCN51 - 5 CCN51 -18.1667 0.722 108 -25.175  <.0001
##  0 CCN51 - 6 CCN51 -13.1333 0.722 108 -18.200  <.0001
##  0 CCN51 - 0 ICS95   0.0333 0.755 121   0.044  1.0000
##  0 CCN51 - 1 ICS95 -11.7167 0.755 121 -15.528  <.0001
##  0 CCN51 - 2 ICS95 -10.7333 0.755 121 -14.224  <.0001
##  0 CCN51 - 3 ICS95 -17.8333 0.755 121 -23.634  <.0001
##  0 CCN51 - 4 ICS95 -18.2833 0.755 121 -24.230  <.0001
##  0 CCN51 - 5 ICS95 -17.8167 0.755 121 -23.612  <.0001
##  0 CCN51 - 6 ICS95 -16.5500 0.755 121 -21.933  <.0001
##  0 CCN51 - 0 TCS01  -0.0167 0.755 121  -0.022  1.0000
##  0 CCN51 - 1 TCS01 -11.3667 0.755 121 -15.064  <.0001
##  0 CCN51 - 2 TCS01 -12.1667 0.755 121 -16.124  <.0001
##  0 CCN51 - 3 TCS01 -17.4833 0.755 121 -23.170  <.0001
##  0 CCN51 - 4 TCS01 -19.0333 0.755 121 -25.224  <.0001
##  0 CCN51 - 5 TCS01 -19.0667 0.755 121 -25.268  <.0001
##  0 CCN51 - 6 TCS01 -15.6333 0.755 121 -20.718  <.0001
##  1 CCN51 - 2 CCN51  -3.5500 0.722 108  -4.920  0.0006
##  1 CCN51 - 3 CCN51  -8.2000 0.722 108 -11.363  <.0001
##  1 CCN51 - 4 CCN51  -9.5000 0.722 108 -13.165  <.0001
##  1 CCN51 - 5 CCN51  -9.5167 0.722 108 -13.188  <.0001
##  1 CCN51 - 6 CCN51  -4.4833 0.722 108  -6.213  <.0001
##  1 CCN51 - 0 ICS95   8.6833 0.755 121  11.508  <.0001
##  1 CCN51 - 1 ICS95  -3.0667 0.755 121  -4.064  0.0132
##  1 CCN51 - 2 ICS95  -2.0833 0.755 121  -2.761  0.4167
##  1 CCN51 - 3 ICS95  -9.1833 0.755 121 -12.170  <.0001
##  1 CCN51 - 4 ICS95  -9.6333 0.755 121 -12.767  <.0001
##  1 CCN51 - 5 ICS95  -9.1667 0.755 121 -12.148  <.0001
##  1 CCN51 - 6 ICS95  -7.9000 0.755 121 -10.470  <.0001
##  1 CCN51 - 0 TCS01   8.6333 0.755 121  11.441  <.0001
##  1 CCN51 - 1 TCS01  -2.7167 0.755 121  -3.600  0.0581
##  1 CCN51 - 2 TCS01  -3.5167 0.755 121  -4.660  0.0015
##  1 CCN51 - 3 TCS01  -8.8333 0.755 121 -11.706  <.0001
##  1 CCN51 - 4 TCS01 -10.3833 0.755 121 -13.761  <.0001
##  1 CCN51 - 5 TCS01 -10.4167 0.755 121 -13.805  <.0001
##  1 CCN51 - 6 TCS01  -6.9833 0.755 121  -9.255  <.0001
##  2 CCN51 - 3 CCN51  -4.6500 0.722 108  -6.444  <.0001
##  2 CCN51 - 4 CCN51  -5.9500 0.722 108  -8.245  <.0001
##  2 CCN51 - 5 CCN51  -5.9667 0.722 108  -8.269  <.0001
##  2 CCN51 - 6 CCN51  -0.9333 0.722 108  -1.293  0.9993
##  2 CCN51 - 0 ICS95  12.2333 0.755 121  16.212  <.0001
##  2 CCN51 - 1 ICS95   0.4833 0.755 121   0.641  1.0000
##  2 CCN51 - 2 ICS95   1.4667 0.755 121   1.944  0.9290
##  2 CCN51 - 3 ICS95  -5.6333 0.755 121  -7.466  <.0001
##  2 CCN51 - 4 ICS95  -6.0833 0.755 121  -8.062  <.0001
##  2 CCN51 - 5 ICS95  -5.6167 0.755 121  -7.444  <.0001
##  2 CCN51 - 6 ICS95  -4.3500 0.755 121  -5.765  <.0001
##  2 CCN51 - 0 TCS01  12.1833 0.755 121  16.146  <.0001
##  2 CCN51 - 1 TCS01   0.8333 0.755 121   1.104  0.9999
##  2 CCN51 - 2 TCS01   0.0333 0.755 121   0.044  1.0000
##  2 CCN51 - 3 TCS01  -5.2833 0.755 121  -7.002  <.0001
##  2 CCN51 - 4 TCS01  -6.8333 0.755 121  -9.056  <.0001
##  2 CCN51 - 5 TCS01  -6.8667 0.755 121  -9.100  <.0001
##  2 CCN51 - 6 TCS01  -3.4333 0.755 121  -4.550  0.0022
##  3 CCN51 - 4 CCN51  -1.3000 0.722 108  -1.802  0.9645
##  3 CCN51 - 5 CCN51  -1.3167 0.722 108  -1.825  0.9598
##  3 CCN51 - 6 CCN51   3.7167 0.722 108   5.151  0.0002
##  3 CCN51 - 0 ICS95  16.8833 0.755 121  22.375  <.0001
##  3 CCN51 - 1 ICS95   5.1333 0.755 121   6.803  <.0001
##  3 CCN51 - 2 ICS95   6.1167 0.755 121   8.106  <.0001
##  3 CCN51 - 3 ICS95  -0.9833 0.755 121  -1.303  0.9993
##  3 CCN51 - 4 ICS95  -1.4333 0.755 121  -1.900  0.9422
##  3 CCN51 - 5 ICS95  -0.9667 0.755 121  -1.281  0.9994
##  3 CCN51 - 6 ICS95   0.3000 0.755 121   0.398  1.0000
##  3 CCN51 - 0 TCS01  16.8333 0.755 121  22.309  <.0001
##  3 CCN51 - 1 TCS01   5.4833 0.755 121   7.267  <.0001
##  3 CCN51 - 2 TCS01   4.6833 0.755 121   6.207  <.0001
##  3 CCN51 - 3 TCS01  -0.6333 0.755 121  -0.839  1.0000
##  3 CCN51 - 4 TCS01  -2.1833 0.755 121  -2.893  0.3281
##  3 CCN51 - 5 TCS01  -2.2167 0.755 121  -2.938  0.3010
##  3 CCN51 - 6 TCS01   1.2167 0.755 121   1.612  0.9893
##  4 CCN51 - 5 CCN51  -0.0167 0.722 108  -0.023  1.0000
##  4 CCN51 - 6 CCN51   5.0167 0.722 108   6.952  <.0001
##  4 CCN51 - 0 ICS95  18.1833 0.755 121  24.098  <.0001
##  4 CCN51 - 1 ICS95   6.4333 0.755 121   8.526  <.0001
##  4 CCN51 - 2 ICS95   7.4167 0.755 121   9.829  <.0001
##  4 CCN51 - 3 ICS95   0.3167 0.755 121   0.420  1.0000
##  4 CCN51 - 4 ICS95  -0.1333 0.755 121  -0.177  1.0000
##  4 CCN51 - 5 ICS95   0.3333 0.755 121   0.442  1.0000
##  4 CCN51 - 6 ICS95   1.6000 0.755 121   2.120  0.8568
##  4 CCN51 - 0 TCS01  18.1333 0.755 121  24.031  <.0001
##  4 CCN51 - 1 TCS01   6.7833 0.755 121   8.990  <.0001
##  4 CCN51 - 2 TCS01   5.9833 0.755 121   7.929  <.0001
##  4 CCN51 - 3 TCS01   0.6667 0.755 121   0.884  1.0000
##  4 CCN51 - 4 TCS01  -0.8833 0.755 121  -1.171  0.9998
##  4 CCN51 - 5 TCS01  -0.9167 0.755 121  -1.215  0.9997
##  4 CCN51 - 6 TCS01   2.5167 0.755 121   3.335  0.1208
##  5 CCN51 - 6 CCN51   5.0333 0.722 108   6.975  <.0001
##  5 CCN51 - 0 ICS95  18.2000 0.755 121  24.120  <.0001
##  5 CCN51 - 1 ICS95   6.4500 0.755 121   8.548  <.0001
##  5 CCN51 - 2 ICS95   7.4333 0.755 121   9.851  <.0001
##  5 CCN51 - 3 ICS95   0.3333 0.755 121   0.442  1.0000
##  5 CCN51 - 4 ICS95  -0.1167 0.755 121  -0.155  1.0000
##  5 CCN51 - 5 ICS95   0.3500 0.755 121   0.464  1.0000
##  5 CCN51 - 6 ICS95   1.6167 0.755 121   2.143  0.8455
##  5 CCN51 - 0 TCS01  18.1500 0.755 121  24.053  <.0001
##  5 CCN51 - 1 TCS01   6.8000 0.755 121   9.012  <.0001
##  5 CCN51 - 2 TCS01   6.0000 0.755 121   7.952  <.0001
##  5 CCN51 - 3 TCS01   0.6833 0.755 121   0.906  1.0000
##  5 CCN51 - 4 TCS01  -0.8667 0.755 121  -1.149  0.9999
##  5 CCN51 - 5 TCS01  -0.9000 0.755 121  -1.193  0.9998
##  5 CCN51 - 6 TCS01   2.5333 0.755 121   3.357  0.1140
##  6 CCN51 - 0 ICS95  13.1667 0.755 121  17.449  <.0001
##  6 CCN51 - 1 ICS95   1.4167 0.755 121   1.877  0.9481
##  6 CCN51 - 2 ICS95   2.4000 0.755 121   3.181  0.1772
##  6 CCN51 - 3 ICS95  -4.7000 0.755 121  -6.229  <.0001
##  6 CCN51 - 4 ICS95  -5.1500 0.755 121  -6.825  <.0001
##  6 CCN51 - 5 ICS95  -4.6833 0.755 121  -6.207  <.0001
##  6 CCN51 - 6 ICS95  -3.4167 0.755 121  -4.528  0.0024
##  6 CCN51 - 0 TCS01  13.1167 0.755 121  17.383  <.0001
##  6 CCN51 - 1 TCS01   1.7667 0.755 121   2.341  0.7245
##  6 CCN51 - 2 TCS01   0.9667 0.755 121   1.281  0.9994
##  6 CCN51 - 3 TCS01  -4.3500 0.755 121  -5.765  <.0001
##  6 CCN51 - 4 TCS01  -5.9000 0.755 121  -7.819  <.0001
##  6 CCN51 - 5 TCS01  -5.9333 0.755 121  -7.863  <.0001
##  6 CCN51 - 6 TCS01  -2.5000 0.755 121  -3.313  0.1278
##  0 ICS95 - 1 ICS95 -11.7500 0.722 108 -16.283  <.0001
##  0 ICS95 - 2 ICS95 -10.7667 0.722 108 -14.920  <.0001
##  0 ICS95 - 3 ICS95 -17.8667 0.722 108 -24.759  <.0001
##  0 ICS95 - 4 ICS95 -18.3167 0.722 108 -25.383  <.0001
##  0 ICS95 - 5 ICS95 -17.8500 0.722 108 -24.736  <.0001
##  0 ICS95 - 6 ICS95 -16.5833 0.722 108 -22.981  <.0001
##  0 ICS95 - 0 TCS01  -0.0500 0.755 121  -0.066  1.0000
##  0 ICS95 - 1 TCS01 -11.4000 0.755 121 -15.108  <.0001
##  0 ICS95 - 2 TCS01 -12.2000 0.755 121 -16.168  <.0001
##  0 ICS95 - 3 TCS01 -17.5167 0.755 121 -23.214  <.0001
##  0 ICS95 - 4 TCS01 -19.0667 0.755 121 -25.268  <.0001
##  0 ICS95 - 5 TCS01 -19.1000 0.755 121 -25.312  <.0001
##  0 ICS95 - 6 TCS01 -15.6667 0.755 121 -20.762  <.0001
##  1 ICS95 - 2 ICS95   0.9833 0.722 108   1.363  0.9986
##  1 ICS95 - 3 ICS95  -6.1167 0.722 108  -8.476  <.0001
##  1 ICS95 - 4 ICS95  -6.5667 0.722 108  -9.100  <.0001
##  1 ICS95 - 5 ICS95  -6.1000 0.722 108  -8.453  <.0001
##  1 ICS95 - 6 ICS95  -4.8333 0.722 108  -6.698  <.0001
##  1 ICS95 - 0 TCS01  11.7000 0.755 121  15.506  <.0001
##  1 ICS95 - 1 TCS01   0.3500 0.755 121   0.464  1.0000
##  1 ICS95 - 2 TCS01  -0.4500 0.755 121  -0.596  1.0000
##  1 ICS95 - 3 TCS01  -5.7667 0.755 121  -7.642  <.0001
##  1 ICS95 - 4 TCS01  -7.3167 0.755 121  -9.696  <.0001
##  1 ICS95 - 5 TCS01  -7.3500 0.755 121  -9.741  <.0001
##  1 ICS95 - 6 TCS01  -3.9167 0.755 121  -5.191  0.0002
##  2 ICS95 - 3 ICS95  -7.1000 0.722 108  -9.839  <.0001
##  2 ICS95 - 4 ICS95  -7.5500 0.722 108 -10.463  <.0001
##  2 ICS95 - 5 ICS95  -7.0833 0.722 108  -9.816  <.0001
##  2 ICS95 - 6 ICS95  -5.8167 0.722 108  -8.061  <.0001
##  2 ICS95 - 0 TCS01  10.7167 0.755 121  14.202  <.0001
##  2 ICS95 - 1 TCS01  -0.6333 0.755 121  -0.839  1.0000
##  2 ICS95 - 2 TCS01  -1.4333 0.755 121  -1.900  0.9422
##  2 ICS95 - 3 TCS01  -6.7500 0.755 121  -8.946  <.0001
##  2 ICS95 - 4 TCS01  -8.3000 0.755 121 -11.000  <.0001
##  2 ICS95 - 5 TCS01  -8.3333 0.755 121 -11.044  <.0001
##  2 ICS95 - 6 TCS01  -4.9000 0.755 121  -6.494  <.0001
##  3 ICS95 - 4 ICS95  -0.4500 0.722 108  -0.624  1.0000
##  3 ICS95 - 5 ICS95   0.0167 0.722 108   0.023  1.0000
##  3 ICS95 - 6 ICS95   1.2833 0.722 108   1.778  0.9687
##  3 ICS95 - 0 TCS01  17.8167 0.755 121  23.612  <.0001
##  3 ICS95 - 1 TCS01   6.4667 0.755 121   8.570  <.0001
##  3 ICS95 - 2 TCS01   5.6667 0.755 121   7.510  <.0001
##  3 ICS95 - 3 TCS01   0.3500 0.755 121   0.464  1.0000
##  3 ICS95 - 4 TCS01  -1.2000 0.755 121  -1.590  0.9908
##  3 ICS95 - 5 TCS01  -1.2333 0.755 121  -1.634  0.9875
##  3 ICS95 - 6 TCS01   2.2000 0.755 121   2.916  0.3144
##  4 ICS95 - 5 ICS95   0.4667 0.722 108   0.647  1.0000
##  4 ICS95 - 6 ICS95   1.7333 0.722 108   2.402  0.6816
##  4 ICS95 - 0 TCS01  18.2667 0.755 121  24.208  <.0001
##  4 ICS95 - 1 TCS01   6.9167 0.755 121   9.166  <.0001
##  4 ICS95 - 2 TCS01   6.1167 0.755 121   8.106  <.0001
##  4 ICS95 - 3 TCS01   0.8000 0.755 121   1.060  1.0000
##  4 ICS95 - 4 TCS01  -0.7500 0.755 121  -0.994  1.0000
##  4 ICS95 - 5 TCS01  -0.7833 0.755 121  -1.038  1.0000
##  4 ICS95 - 6 TCS01   2.6500 0.755 121   3.512  0.0749
##  5 ICS95 - 6 ICS95   1.2667 0.722 108   1.755  0.9726
##  5 ICS95 - 0 TCS01  17.8000 0.755 121  23.590  <.0001
##  5 ICS95 - 1 TCS01   6.4500 0.755 121   8.548  <.0001
##  5 ICS95 - 2 TCS01   5.6500 0.755 121   7.488  <.0001
##  5 ICS95 - 3 TCS01   0.3333 0.755 121   0.442  1.0000
##  5 ICS95 - 4 TCS01  -1.2167 0.755 121  -1.612  0.9893
##  5 ICS95 - 5 TCS01  -1.2500 0.755 121  -1.657  0.9854
##  5 ICS95 - 6 TCS01   2.1833 0.755 121   2.893  0.3281
##  6 ICS95 - 0 TCS01  16.5333 0.755 121  21.911  <.0001
##  6 ICS95 - 1 TCS01   5.1833 0.755 121   6.869  <.0001
##  6 ICS95 - 2 TCS01   4.3833 0.755 121   5.809  <.0001
##  6 ICS95 - 3 TCS01  -0.9333 0.755 121  -1.237  0.9997
##  6 ICS95 - 4 TCS01  -2.4833 0.755 121  -3.291  0.1352
##  6 ICS95 - 5 TCS01  -2.5167 0.755 121  -3.335  0.1208
##  6 ICS95 - 6 TCS01   0.9167 0.755 121   1.215  0.9997
##  0 TCS01 - 1 TCS01 -11.3500 0.722 108 -15.729  <.0001
##  0 TCS01 - 2 TCS01 -12.1500 0.722 108 -16.837  <.0001
##  0 TCS01 - 3 TCS01 -17.4667 0.722 108 -24.205  <.0001
##  0 TCS01 - 4 TCS01 -19.0167 0.722 108 -26.353  <.0001
##  0 TCS01 - 5 TCS01 -19.0500 0.722 108 -26.399  <.0001
##  0 TCS01 - 6 TCS01 -15.6167 0.722 108 -21.641  <.0001
##  1 TCS01 - 2 TCS01  -0.8000 0.722 108  -1.109  0.9999
##  1 TCS01 - 3 TCS01  -6.1167 0.722 108  -8.476  <.0001
##  1 TCS01 - 4 TCS01  -7.6667 0.722 108 -10.624  <.0001
##  1 TCS01 - 5 TCS01  -7.7000 0.722 108 -10.671  <.0001
##  1 TCS01 - 6 TCS01  -4.2667 0.722 108  -5.913  <.0001
##  2 TCS01 - 3 TCS01  -5.3167 0.722 108  -7.368  <.0001
##  2 TCS01 - 4 TCS01  -6.8667 0.722 108  -9.516  <.0001
##  2 TCS01 - 5 TCS01  -6.9000 0.722 108  -9.562  <.0001
##  2 TCS01 - 6 TCS01  -3.4667 0.722 108  -4.804  0.0009
##  3 TCS01 - 4 TCS01  -1.5500 0.722 108  -2.148  0.8418
##  3 TCS01 - 5 TCS01  -1.5833 0.722 108  -2.194  0.8166
##  3 TCS01 - 6 TCS01   1.8500 0.722 108   2.564  0.5624
##  4 TCS01 - 5 TCS01  -0.0333 0.722 108  -0.046  1.0000
##  4 TCS01 - 6 TCS01   3.4000 0.722 108   4.712  0.0013
##  5 TCS01 - 6 TCS01   3.4333 0.722 108   4.758  0.0011
## 
## P value adjustment: tukey method for comparing a family of 21 estimates
##Splitting dataframe by temperature ramp
## Protocol 3 (T3)

datos.curve1<-filter(datos, curva=="T3")

##Check assumptions
##Outliers

datos.curve1 %>%
  group_by(gen, diam2) %>%
  identify_outliers(temp)
##  [1] diam2      gen        curva      tiem.let   dia        progamada 
##  [7] muestra    temp       id         is.outlier is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm1<-datos.curve1 %>%
  group_by(gen, diam2) #%>%
  #shapiro_test(temp)
norm1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 63 × 9
##    curva tiem.let diam2   dia gen   progamada muestra  temp id   
##    <fct> <chr>    <fct> <int> <fct>     <int> <fct>   <dbl> <fct>
##  1 T3    cero     0         0 CCN51        35 14       25   1    
##  2 T3    cero     0         0 CCN51        35 25       25   2    
##  3 T3    cero     0         0 CCN51        35 36       25   3    
##  4 T3    cero     0         0 ICS95        35 14       25   4    
##  5 T3    cero     0         0 ICS95        35 25       25   5    
##  6 T3    cero     0         0 ICS95        35 36       25   6    
##  7 T3    cero     0         0 TCS01        35 14       25   7    
##  8 T3    cero     0         0 TCS01        35 25       25   8    
##  9 T3    cero     0         0 TCS01        35 36       25   9    
## 10 T3    uno      1         1 CCN51        35 14       36.6 1    
## 11 T3    uno      1         1 CCN51        35 25       38.0 2    
## 12 T3    uno      1         1 CCN51        35 36       37.3 3    
## 13 T3    uno      1         1 ICS95        35 14       39.8 4    
## 14 T3    uno      1         1 ICS95        35 25       40.8 5    
## 15 T3    uno      1         1 ICS95        35 36       40.2 6    
## 16 T3    uno      1         1 TCS01        35 14       38   7    
## 17 T3    uno      1         1 TCS01        35 25       38.4 8    
## 18 T3    uno      1         1 TCS01        35 36       38.6 9    
## 19 T3    dos      2         2 CCN51        40 14       41   1    
## 20 T3    dos      2         2 CCN51        40 25       40.9 2    
## 21 T3    dos      2         2 CCN51        40 36       40.7 3    
## 22 T3    dos      2         2 ICS95        40 14       41.2 4    
## 23 T3    dos      2         2 ICS95        40 25       40.7 5    
## 24 T3    dos      2         2 ICS95        40 36       41.6 6    
## 25 T3    dos      2         2 TCS01        40 14       41.2 7    
## 26 T3    dos      2         2 TCS01        40 25       42.4 8    
## 27 T3    dos      2         2 TCS01        40 36       41.7 9    
## 28 T3    tres     3         3 CCN51        44 14       46.7 1    
## 29 T3    tres     3         3 CCN51        44 25       46.6 2    
## 30 T3    tres     3         3 CCN51        44 36       45   3    
## 31 T3    tres     3         3 ICS95        44 14       47.8 4    
## 32 T3    tres     3         3 ICS95        44 25       47.6 5    
## 33 T3    tres     3         3 ICS95        44 36       46.8 6    
## 34 T3    tres     3         3 TCS01        44 14       46.8 7    
## 35 T3    tres     3         3 TCS01        44 25       46.8 8    
## 36 T3    tres     3         3 TCS01        44 36       46.3 9    
## 37 T3    cuatro   4         4 CCN51        46 14       45.4 1    
## 38 T3    cuatro   4         4 CCN51        46 25       45.2 2    
## 39 T3    cuatro   4         4 CCN51        46 36       45.0 3    
## 40 T3    cuatro   4         4 ICS95        46 14       47.0 4    
## 41 T3    cuatro   4         4 ICS95        46 25       46.2 5    
## 42 T3    cuatro   4         4 ICS95        46 36       46   6    
## 43 T3    cuatro   4         4 TCS01        46 14       41.0 7    
## 44 T3    cuatro   4         4 TCS01        46 25       43.8 8    
## 45 T3    cuatro   4         4 TCS01        46 36       42.6 9    
## 46 T3    cinco    5         5 CCN51        48 14       43.4 1    
## 47 T3    cinco    5         5 CCN51        48 25       44.5 2    
## 48 T3    cinco    5         5 CCN51        48 36       42.8 3    
## 49 T3    cinco    5         5 ICS95        48 14       44.2 4    
## 50 T3    cinco    5         5 ICS95        48 25       45.2 5    
## 51 T3    cinco    5         5 ICS95        48 36       46.4 6    
## 52 T3    cinco    5         5 TCS01        48 14       34.4 7    
## 53 T3    cinco    5         5 TCS01        48 25       42.9 8    
## 54 T3    cinco    5         5 TCS01        48 36       43.4 9    
## 55 T3    Seis     6         6 CCN51        47 14       37.4 1    
## 56 T3    Seis     6         6 CCN51        47 25       38.8 2    
## 57 T3    Seis     6         6 CCN51        47 36       38.3 3    
## 58 T3    Seis     6         6 ICS95        47 14       38.8 4    
## 59 T3    Seis     6         6 ICS95        47 25       39.0 5    
## 60 T3    Seis     6         6 ICS95        47 36       39.8 6    
## 61 T3    Seis     6         6 TCS01        47 14       36.7 7    
## 62 T3    Seis     6         6 TCS01        47 25       34.0 8    
## 63 T3    Seis     6         6 TCS01        47 36       36.8 9
##Create QQ plot for each cell of design:

ggqqplot(datos.curve1, "temp", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev1<-datos.curve1 %>%
  group_by(diam2) %>%
  levene_test(temp ~ gen)
lev1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic       p
##   <fct> <int> <int>     <dbl>   <dbl>
## 1 0         2     6   NaN     NaN    
## 2 1         2     6     0.399   0.688
## 3 2         2     6     0.956   0.436
## 4 3         2     6     0.365   0.709
## 5 4         2     6     1.73    0.256
## 6 5         2     6     0.708   0.529
## 7 6         2     6     0.344   0.722
##Computation

res.aov1 <- anova_test(
  data = datos.curve1, dv = temp, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov1)
## ANOVA Table (type II tests)
## 
##      Effect  DFn  DFd       F        p p<.05   ges
## 1       gen 2.00 6.00  10.125 1.20e-02     * 0.387
## 2     diam2 1.51 9.04 284.522 1.35e-08     * 0.975
## 3 gen:diam2 3.01 9.04   2.768 1.03e-01       0.429
#CCN51
datos.ccn<-filter(datos.curve1, gen=="CCN51")
res.aov.ccn1 <- anova_test(
  data = datos.ccn, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 520.276 8.77e-14     * 0.994
#ICS95
datos.ics<-filter(datos.curve1, gen=="ICS95")
res.aov.ics1 <- anova_test(
  data = datos.ics, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 441.41 2.34e-13     * 0.995
#TCS01
datos.tcs<-filter(datos.curve1, gen=="TCS01")
res.aov.tcs1 <- anova_test(
  data = datos.tcs, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1  diam2   6  12 33.993 7.48e-07     * 0.933
## Protocol 1 (T1)

datos.curve2<-filter(datos, curva=="T1")

##Check assumptions
##Outliers

datos.curve2 %>%
  group_by(gen, diam2) %>%
  identify_outliers(temp)
##  [1] diam2      gen        curva      tiem.let   dia        progamada 
##  [7] muestra    temp       id         is.outlier is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve2 %>%
  group_by(gen, diam2) %>%
  shapiro_test(temp)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic      p
##    <fct> <fct> <chr>        <dbl>  <dbl>
##  1 0     CCN51 temp         0.942 0.537 
##  2 1     CCN51 temp         0.824 0.174 
##  3 2     CCN51 temp         0.995 0.862 
##  4 3     CCN51 temp         0.767 0.0372
##  5 4     CCN51 temp         0.936 0.510 
##  6 5     CCN51 temp         0.75  0     
##  7 6     CCN51 temp         0.974 0.688 
##  8 0     ICS95 temp         0.893 0.363 
##  9 1     ICS95 temp         0.987 0.780 
## 10 2     ICS95 temp         0.996 0.878 
## 11 3     ICS95 temp         0.900 0.384 
## 12 4     ICS95 temp         0.871 0.298 
## 13 5     ICS95 temp         0.778 0.0624
## 14 6     ICS95 temp         0.993 0.843 
## 15 0     TCS01 temp         0.75  0     
## 16 1     TCS01 temp         1     1.00  
## 17 2     TCS01 temp         0.75  0     
## 18 3     TCS01 temp         0.816 0.154 
## 19 4     TCS01 temp         0.936 0.510 
## 20 5     TCS01 temp         0.915 0.433 
## 21 6     TCS01 temp         0.897 0.377
##Create QQ plot for each cell of design:

ggqqplot(datos.curve2, "temp", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve2 %>%
  group_by(diam2) %>%
  levene_test(temp ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6    0.146  0.867
## 2 1         2     6    0.972  0.431
## 3 2         2     6    0.0346 0.966
## 4 3         2     6    0.0118 0.988
## 5 4         2     6    0.210  0.816
## 6 5         2     6    0.158  0.857
## 7 6         2     6    0.756  0.509
##Computation

res.aov2 <- anova_test(
  data = datos.curve2, dv = temp, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd        F        p p<.05   ges
## 1       gen 2.00  6.00    1.671 2.65e-01       0.118
## 2     diam2 2.04 12.23 1361.141 4.06e-15     * 0.994
## 3 gen:diam2 4.08 12.23    3.048 5.80e-02       0.436
#CCN51
datos.ccn<-filter(datos.curve2, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 309.313 1.95e-12     * 0.993
#ICS95
datos.ics<-filter(datos.curve2, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 738.094 1.09e-14     * 0.996
#TCS01
datos.tcs<-filter(datos.curve2, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 524.237 8.38e-14     * 0.994
## Protocol 2 (T2)

datos.curve3<-filter(datos, curva=="T2")

##Check assumptions
##Outliers

datos.curve3 %>%
  group_by(gen, diam2) %>%
  identify_outliers(temp)
##  [1] diam2      gen        curva      tiem.let   dia        progamada 
##  [7] muestra    temp       id         is.outlier is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve3 %>%
  group_by(gen, diam2) %>%
  shapiro_test(temp)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 21 × 5
##    diam2 gen   variable statistic      p
##    <fct> <fct> <chr>        <dbl>  <dbl>
##  1 0     CCN51 temp         0.980 0.726 
##  2 1     CCN51 temp         0.824 0.174 
##  3 2     CCN51 temp         0.991 0.817 
##  4 3     CCN51 temp         0.904 0.398 
##  5 4     CCN51 temp         0.964 0.637 
##  6 5     CCN51 temp         0.976 0.702 
##  7 6     CCN51 temp         0.835 0.202 
##  8 0     ICS95 temp         1     1.00  
##  9 1     ICS95 temp         1     1.00  
## 10 2     ICS95 temp         0.980 0.726 
## 11 3     ICS95 temp         0.858 0.263 
## 12 4     ICS95 temp         0.881 0.328 
## 13 5     ICS95 temp         0.75  0     
## 14 6     ICS95 temp         0.781 0.0704
## 15 0     TCS01 temp         0.842 0.220 
## 16 1     TCS01 temp         0.818 0.157 
## 17 2     TCS01 temp         0.818 0.157 
## 18 3     TCS01 temp         0.912 0.424 
## 19 4     TCS01 temp         0.971 0.675 
## 20 5     TCS01 temp         0.867 0.288 
## 21 6     TCS01 temp         0.904 0.399
##Create QQ plot for each cell of design:

ggqqplot(datos.curve3, "temp", ggtheme = theme_bw()) +
  facet_grid(diam2~ curva*gen, labeller = "label_both")
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve3 %>%
  group_by(diam2) %>%
  levene_test(temp ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 7 × 5
##   diam2   df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6    0.0460 0.955
## 2 1         2     6    0.256  0.782
## 3 2         2     6    0.370  0.706
## 4 3         2     6    0.0126 0.987
## 5 4         2     6    1.19   0.368
## 6 5         2     6    0.162  0.854
## 7 6         2     6    0.227  0.803
##Computation

res.aov2 <- anova_test(
  data = datos.curve3, dv = temp, wid = id,
  within = diam2, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##      Effect  DFn   DFd        F       p p<.05   ges
## 1       gen 2.00  6.00    7.031 2.7e-02     * 0.416
## 2     diam2 2.09 12.56 1059.324 8.3e-15     * 0.992
## 3 gen:diam2 4.19 12.56    7.205 3.0e-03     * 0.626
#CCN51
datos.ccn<-filter(datos.curve3, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 238.845 9.05e-12     * 0.991
#ICS95
datos.ics<-filter(datos.curve3, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 683.673 1.72e-14     * 0.996
#TCS01
datos.tcs<-filter(datos.curve3, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = temp, wid = id,
  within = diam2
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd       F        p p<.05   ges
## 1  diam2   6  12 359.847 7.91e-13     * 0.989
## Gráficas por réplica y genotipo
datos$diam2<-as.numeric(as.character(datos$diam2))
##Gráfica por réplica compuesta
pht<- ggplot(datos, aes(x = diam2)) +
  facet_grid(curva~gen*muestra) +
  geom_line(aes(y=temp)) +
  geom_point(aes(y=temp)) +
  scale_y_continuous(name = expression("Temperature (°C)")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 12))
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
pht

## Gráfica por genotipo

datos2<-summarySE (datos, measurevar = "temp", groupvars = c("curva", "gen","diam2"))
write.csv(datos2,"~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/René/1er_Cd/data_out/temp_mean.csv")

pht2<- ggplot(datos2, aes(x = diam2)) +
  facet_grid(~curva) +
  geom_errorbar(aes(ymin=temp-ci, ymax=temp+ci), width=.1) +
  geom_smooth(aes(y=temp), method="loess") +
  geom_point(aes(y=temp)) +
  scale_y_continuous(name = expression("Cd (mg*Kg"^"-1)")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "day", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 15))  
pht2
## `geom_smooth()` using formula = 'y ~ x'