Roading ggplot
from previous lecture.. we generated a phyloseq object. it can be saved to hard disk using the below command.
library(ggplot2)
library(tidyverse)
Advanced ggplot2
head(mpg)
## # A tibble: 6 × 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
## 1 audi a4 1.8 1999 4 auto(l5) f 18 29 p compa…
## 2 audi a4 1.8 1999 4 manual(m5) f 21 29 p compa…
## 3 audi a4 2 2008 4 manual(m6) f 20 31 p compa…
## 4 audi a4 2 2008 4 auto(av) f 21 30 p compa…
## 5 audi a4 2.8 1999 6 auto(l5) f 16 26 p compa…
## 6 audi a4 2.8 1999 6 manual(m5) f 18 26 p compa…
Generating plot
mpg %>%
ggplot(aes(x = cty, y = hwy))
mpg %>%
ggplot(aes(x = cty, y = hwy)) +
geom_point()
mpg %>%
ggplot(aes(x = cty, y = hwy)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)")
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)")
+ theme()
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.position = "top")
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(axis.title.x = element_text(family = "serif", size = 15))
theme() and element_markdown()
#install.packages("ggtext")
library(ggtext)
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(axis.title.y = element_markdown(family = "serif", size = 15))
Basic markdown syntax is at https://www.markdownguide.org/basic-syntax/
Italic
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("*Highway mileage (MPG)*") +
theme(axis.title.y = element_markdown(family = "serif", size = 15))
Bold
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("**Highway mileage (MPG)**") +
theme(axis.title.y = element_markdown(family = "serif", size = 15))
Italic
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("*Highway mileage (MPG)*") +
theme(axis.title.y = element_markdown(family = "serif", size = 20))
superscript and subscript
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("High<sup>way</sup>
mileage
<sub>(MPG)</sub>") +
theme(axis.title.y = element_markdown(family = "serif", size = 25))
Comprehensive
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("*Hi***gh**<sub>way</sub> mile<sub>age</sub> ***(MPG)***") +
theme(axis.title.y = element_markdown(family = "serif", size = 30))
+ guides()
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
guides(col=guide_legend(ncol=5))
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
guides(col=guide_legend(ncol=3, title.position = "bottom"))
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
guides(col=guide_legend(ncol=3, title.position = "bottom", override.aes = list(size = 4)))
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1))
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>"))
theme_…
classic
The order matters (theme and theme_classic)
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>")) +
theme_classic()
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>"))
### bw
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_bw() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>"))
### dark
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_dark() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>"))
### minimal
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_minimal() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>"))
geom_smooth
lm, one line
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>")) +
geom_smooth(method = "lm", aes(x = cty, y = hwy, col = NA))
### lm multiple line
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>")) +
geom_smooth(method = "lm", aes(x = cty, y = hwy, col = manufacturer))
se
, Confidence intervals
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>")) +
geom_smooth(method = "lm", aes(x = cty, y = hwy, col = manufacturer), se = F)
gam, curvy line
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(ncol=3, title.position = "bottom", title.hjust = 1, keywidth = 0.2, keyheight = 0.2, title = "*Manufacturer*<sup>company</sup>")) +
geom_smooth(method = "gam", aes(x = cty, y = hwy, col = NA))
Colors
manual colors
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c("red", "blue", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey"))
Changing labels
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c("red", "blue", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey"),
labels = c("Audi", "Chevy", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey", "grey"))
### Automated colors1
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_viridis_d()
Automated colors2
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_brewer()
Automated colors3
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_brewer(type = "qual", palette = 6)
Automated colors4
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_brewer(type = "div", palette = 2)
Note https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3 for more colors, that they are distinguishable.
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999'))
facetting
facet_wrap
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_wrap(~cyl)
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_wrap(~cyl, nrow = 1)
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_wrap(~cyl, nrow = 1, scales = "free")
facet_grid
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_grid(year~cyl)
## Title
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_grid(year~cyl) +
ggtitle("Correlation between city mpg and high mpg")
labs
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_grid(year~cyl) +
labs(tag = "A")
ggarrange
#install.packages("ggpubr")
library(ggpubr)
ggarrange(
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
labs(tag = "A")
,
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown(),
axis.text.x = element_blank()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_grid(year~cyl) +
labs(tag = "B")
)
### common.legend
ggarrange(
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
labs(tag = "A")
,
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown(),
axis.text.x = element_blank()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_grid(year~cyl) +
labs(tag = "B")
,
common.legend = T
)
widths = c()
ggarrange(
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
labs(tag = "A")
,
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown(),
axis.text.x = element_blank()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_grid(year~cyl) +
labs(tag = "B")
,
common.legend = T
,
widths = c(1,3)
)
Saving plot file
saving plot as an object
plot_ab <- ggarrange(
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
labs(tag = "A")
,
mpg %>%
ggplot(aes(x = cty, y = hwy, col = manufacturer)) +
theme_classic() +
geom_point() +
xlab("City mileage (MPG)") +
ylab("Highway mileage (MPG)") +
theme(legend.title = element_markdown(),
axis.text.x = element_blank()) +
guides(col=guide_legend(title = "Manufacturer", override.aes = list(size = 4))) +
scale_color_manual(values = c('#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9',
'#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999')) +
facet_grid(year~cyl) +
labs(tag = "B")
,
common.legend = T
,
widths = c(1,3)
)
plot_ab
#dir.create("Figures")
pdf(file = "Figures/Figure1.pdf", # The directory you want to save the file in
width = 10, # The width of the plot in inches
height = 10 # The height of the plot in inches
) #fixing multiple page issue
plot_ab
dev.off()
## quartz_off_screen
## 2
png
#dir.create("Figures")
png(file = "Figures/Figure1.png", # The directory you want to save the file in
width = 180, # The width of the plot in inches
height = 170, # The height of the plot in inches
units = "mm",
res = 600
) #fixing multiple page issue
plot_ab
dev.off()
## quartz_off_screen
## 2
How to use kbl
kableExtra package
#devtools::install_github("kupietz/kableExtra")
library(kableExtra)
kbl
mpg %>%
head() %>%
kbl(format = "html", escape = 0)
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class |
---|---|---|---|---|---|---|---|---|---|---|
audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
audi | a4 | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | compact |
kable_styling
mpg %>%
head() %>%
kbl(format = "html", escape = 0) %>%
kable_styling(full_width = 0, html_font = "sans")
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class |
---|---|---|---|---|---|---|---|---|---|---|
audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
audi | a4 | 2.8 | 1999 | 6 | manual(m5) | f | 18 | 26 | p | compact |
Application
audi <- mpg %>%
filter(manufacturer == "audi") %>%
lm(data = ., cty ~ year + cyl + displ)
chevy <- mpg %>%
filter(manufacturer == "chevrolet") %>%
lm(data = ., cty ~ year + cyl + displ)
paste0(audi$coefficients %>%
round(2),
", (",
confint(audi)[,1] %>%
round(2),
", ",
confint(audi)[,2] %>%
round(2),
")")
## [1] "-468.26, (-2003.32, 1066.8)" "0.25, (-0.52, 1.01)"
## [3] "0.81, (-12.97, 14.58)" "-3.67, (-29.53, 22.19)"
summary(audi)$coefficients %>%
data.frame(check.names = F) %>%
.$`Pr(>|t|)` %>%
round(., 4) %>%
format(nsmall = 4)
## [1] "0.5235" "0.5023" "0.9016" "0.7655"
audi2 <- cbind (
`Effect (95% CIs)` =
paste0(
audi$coefficients %>%
round(2),
", (",
confint(audi)[,1] %>%
round(2),
", ",
confint(audi)[,2] %>%
round(2),
")"),
`<i>p</i>-value` = summary(audi)$coefficients %>%
data.frame(check.names = F) %>%
.$`Pr(>|t|)` %>%
round(4) %>%
format(nsmall = 4),
` ` = ifelse(summary(audi)$coefficients %>%
data.frame(check.names = F) %>%
.$`Pr(>|t|)` %>%
as.numeric() < 0.05,
"*",
"")
)
chevy2 <- cbind (
`Effect (95% CIs)` =
paste0(
chevy$coefficients %>%
round(2),
", (",
confint(chevy)[,1] %>%
round(2),
", ",
confint(chevy)[,2] %>%
round(2),
")"),
`<i>p</i>-value` = summary(chevy)$coefficients %>%
data.frame(check.names = F) %>%
.$`Pr(>|t|)` %>%
round(4) %>%
format(nsmall = 4),
` ` = ifelse(summary(chevy)$coefficients %>%
data.frame(check.names = F) %>%
.$`Pr(>|t|)` %>%
as.numeric() < 0.05,
"*",
"")
)
data <- cbind(audi2, chevy2) %>%
as.data.frame()
row.names(data) <- c("Intercept",
"Year produced<sup>a</sup>",
"Number of cylinders",
"Displacement")
data
## Effect (95% CIs) <i>p</i>-value
## Intercept -468.26, (-2003.32, 1066.8) 0.5235
## Year produced<sup>a</sup> 0.25, (-0.52, 1.01) 0.5023
## Number of cylinders 0.81, (-12.97, 14.58) 0.9016
## Displacement -3.67, (-29.53, 22.19) 0.7655
## Effect (95% CIs) <i>p</i>-value
## Intercept -1.95, (-387.77, 383.86) 0.9915
## Year produced<sup>a</sup> 0.02, (-0.18, 0.21) 0.8649
## Number of cylinders -2.58, (-4.25, -0.9) 0.0051 *
## Displacement 0.85, (-0.82, 2.52) 0.2939
https://blog.hubspot.com/website/how-to-bold-in-html#:~:text=To%20italicize%20the%20text%20in,style%20property%20set%20to%20italic.
data %>%
kbl(format = "html", escape = 0) %>%
kable_styling(full_width = 0, html_font = "sans") %>%
add_header_above(c(" " = 1, "Audi" = 3, "Chevrolet" = 3)) %>%
kable_styling(full_width = 0, html_font = "sans")
Effect (95% CIs) | p-value | Effect (95% CIs) | p-value | |||
---|---|---|---|---|---|---|
Intercept | -468.26, (-2003.32, 1066.8) | 0.5235 | -1.95, (-387.77, 383.86) | 0.9915 | ||
Year produceda | 0.25, (-0.52, 1.01) | 0.5023 | 0.02, (-0.18, 0.21) | 0.8649 | ||
Number of cylinders | 0.81, (-12.97, 14.58) | 0.9016 | -2.58, (-4.25, -0.9) | 0.0051 |
|
|
Displacement | -3.67, (-29.53, 22.19) | 0.7655 | 0.85, (-0.82, 2.52) | 0.2939 |
Saving kbl file
table <- data %>%
kbl(format = "html", escape = 0) %>%
kable_styling(full_width = 0, html_font = "sans") %>%
add_header_above(c(" " = 1, "Audi" = 3, "Chevrolet" = 3)) %>%
add_footnote("Only data from 1999 and 2008 were used.") %>%
kable_styling(full_width = 0, html_font = "sans")
save_kable(table, "Figures/Table1.html")
Bibliography
## Computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>. We have invested a lot of time and effort in creating R, please cite it when using it for data analysis. See also 'citation("pkgname")' for citing R packages.
## Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). "Welcome to the tidyverse." Journal of Open Source Software_, *4*(43), 1686. doi:10.21105/joss.01686 <https://doi.org/10.21105/joss.01686>.
## R. version 0.5.0. Buffalo, New York. http://github.com/trinker/pacman
## J, reikoch, Beasley W, O'Connor B, Warnes GR, Quinn M, Kamvar ZN (2023). yaml: Methods to Convert R Data to YAML and Back_. R package version 2.3.7, <https://CRAN.R-project.org/package=yaml>. ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see 'help("citation")'.
## Generation in R. R package version 1.45, <https://yihui.org/knitr/>. Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC. ISBN 978-1498716963 Yihui Xie (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In Victoria Stodden, Friedrich Leisch and Roger D. Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN 978-1466561595
## Atkins A, Wickham H, Cheng J, Chang W, Iannone R (2023). rmarkdown: Dynamic Documents for R. R package version 2.25, <https://github.com/rstudio/rmarkdown>. Xie Y, Allaire J, Grolemund G (2018). R Markdown: The Definitive Guide. Chapman and Hall/CRC, Boca Raton, Florida. ISBN 9781138359338, <https://bookdown.org/yihui/rmarkdown>. Xie Y, Dervieux C, Riederer E (2020). R Markdown Cookbook_. Chapman and Hall/CRC, Boca Raton, Florida. ISBN 9780367563837, <https://bookdown.org/yihui/rmarkdown-cookbook>.
## 'rmarkdown' Documents. R package version 1.0.4, <https://CRAN.R-project.org/package=rmdformats>.